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� Introduction

The lambda calculus was originally conceived by Church ����	������ as
part of a general theory of functions and logic� intended as a foundation
for mathematics� Although the full system turned out to be inconsistent�
as shown in Kleene and Rosser������� the subsystem dealing with func

tions only became a successful model for the computable functions� This
system is called now the lambda calculus� Books on this subject e�g� are
Church������� Curry and Feys ������� Curry et al������� ��
	�� Barendregt
������� Hindley and Seldin������ and Krivine�������

In Kleene and Rosser ������ it is proved that all recursive functions can
be represented in the lambda calculus� On the other hand� in Turing����
�
it is shown that exactly the functions computable by a Turing machine can
be represented in the lambda calculus� Representing computable functions
as �
terms� i�e� as expressions in the lambda calculus� gives rise to so
called
functional programming� See Barendregt������ for an introduction and
references�

The lambda calculus� as treated in the references cited above� is usu

ally referred to as a type�free theory� This is so� because every expression
�considered as a function� may be applied to every other expression �con

sidered as an argument�� For example� the identity function I � �x�x may
be applied to any argument x to give as result that same x� In particular
I may be applied to itself�

There are also typed versions of the lambda calculus� These are intro

duced essentially in Curry ������ �for the so
called combinatory logic� a
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variant of the lambda calculus� and in Church ������� Types are usually
objects of a syntactic nature and may be assigned to lambda terms� If M
is such a term and� a type A is assigned to M � then we say �M has type
A� or �M in A�� the notation used for this is M � A� For example in most
systems with types one has I � �A�A�� that is� the identity I may get as
type A�A� This means that if x being an argument of I is of type A� then
also the value Ix is of type A� In general A�B is the type of functions
from A to B�

Although the analogy is not perfect� the type assigned to a term may be
compared to the dimension of a physical entity� These dimensions prevent
us from wrong operations like adding � volts to 	 amp�eres� In a similar
way types assigned to lambda terms provide a partial speci�cation of the
algorithms that are represented and are useful for showing partial correct

ness�

Types may also be used to improve the e�ciency of compilation of
terms representing functional algorithms� If for example it is known �by
looking at types� that a subexpression of a term �representing a functional
program� is purely arithmetical� then fast evaluation is possible� This is
because the expression then can be executed by the ALU of the machine
and not in the slower way in which symbolic expressions are evaluated in
general�

The two original papers of Curry and Church introducing typed versions
of the lambda calculus give rise to two di�erent families of systems� In the
typed lambda calculi �a la Curry terms are those of the type
free theory�
Each term has a set of possible types� This set may be empty� be a singleton
or consist of several �possibly in�nitely many� elements� In the systems �a
la Church the terms are annotated versions of the type
free terms� Each
term has a type that is usually unique �up to an equivalence relation� and
that is derivable from the way the term is annotated�

The Curry and Church approaches to typed lambda calculus correspond
to two paradigms in programming� In the �rst of these a program may be
written without typing at all� Then a compiler should check whether a
type can be assigned to the program� This will be the case if the program
is correct� A well
known example of such a language is ML� see Milner
������� The style of typing is called �implicit typing�� The other paradigm
in programming is called �explicit typing� and corresponds to the Church
version of typed lambda calculi� Here a program should be written together
with its type� For these languages type
checking is usually easier� since no
types have to be constructed� Examples of such languages are ALGOL
�� and PASCAL� Some authors designate the Curry systems as �lambda
calculi with type assignment� and the Church systems as �systems of typed
lambda calculus��

Within each of the two paradigms there are several versions of typed
lambda calculus� In many important systems� especially those �a la Church�
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it is the case that terms that do have a type always possess a normal
form� By the unsolvability of the halting problem this implies that not all
computable functions can be represented by a typed term� see Barendregt
������� theorem ��	���� This is not so bad as it sounds� because in order
to �nd such computable functions that cannot be represented� one has to
stand on one�s head� For example in �	� the second
order typed lambda
calculus� only those partial recursive functions cannot be represented that
happen to be total� but not provably so in mathematical analysis �second

order arithmetic��

Considering terms and types as programs and their speci�cations is not
the only possibility� A type A can also be viewed as a proposition and a
term M in A as a proof of this proposition� This so
called propositions
as

types interpretation is independently due to de Bruijn ���
�� and Howard
������ �both papers were conceived in ������ Hints in this direction were
given in Curry and Feys ������ and in L�auchli ���
��� Several systems of
proof checking are based on this interpretation of propositions
as
types and
of proofs
as
terms� See e�g� de Bruijn ������ for a survey of the so
called
AUTOMATH proof checking system� Normalization of terms corresponds
in the formulas
as
types interpretation to normalisation of proofs in the
sense of Prawitz ������� Normal proofs often give useful proof theoretic
information� see e�g� Schwichtenberg ���

�� In this chapter several typed
lambda calculi will be introduced� both �a la Curry and �a la Church� Since
in the last two decades several dozens of systems have appeared� we will
make a selection guided by the following methodology�

Only the simplest versions of a system will be consid�
ered� That is� only with ��reduction� but not with e�g�
��reduction� The Church systems will have types built up
using only � and  � not using e�g� � or !� The Curry
systems will have types built up using only �� � and ��

�For this reason we will not consider systems of constructive type theory
as developed e�g� in Martin
L�of ������� since in these theories ! plays an
essential role�� It will be seen that there are already many interesting
systems in this simple form� Understanding these will be helpful for the
understanding of more complicated systems� No semantics of the typed
lambda calculi will be given in this chapter� The reason is that� especially
for the Church systems� the notion of model is still subject to intensive
investigation� Lambek and Scott ������ and Mitchell ������� a chapter
on typed lambda calculus in another handbook� do treat semantics but
only for one of the systems given in the present chapter� For the Church
systems several proposals for notions of semantics have been proposed�
These have been neatly uni�ed using �bred categories in Jacobs ������� See
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also Pavlovi"c ������� For the semantics of the Curry systems see Hindley
����	�� ������ and Coppo ������� A later volume of this handbook will
contain a chapter on the semantics of typed lambda calculi�

Barendregt and Hemerik ������ and Barendregt ������ are introductory
versions of this chapter� Books including material on typed lambda calculus
are Girard et al� ������ �treats among other things semantics of the Church
version of �	�� Hindley and Seldin ������ �Curry and Church versions of
���� Krivine ������ �Curry versions of �	 and ���� Lambek and Scott
������ �categorical semantics of ��� and the forthcoming Barendregt and
Dekkers ����
� and Nerode and Odifreddi ����
��

Section 	 of this chapter is an introduction to type
free lambda
calculus
and may be skipped if the reader is familiar with this subject� Section �
explains in more detail the Curry and Church approach to lambda calculi
with types� Section � is about the Curry systems and Section � is about
the Church systems� These two sections can be read independently of each
other�

� Type�free lambda calculus

The introduction of the type
free lambda calculus is necessary in order to
de�ne the system of Curry type assignment on top of it� Moreover� al

though the Church style typed lambda calculi can be introduced directly�
it is nevertheless useful to have some knowledge of the type
free lambda
calculus� Therefore this section is devoted to this theory� For more infor

mation see Hindley and Seldin �����# or Barendregt �����#�

��� The system

In this chapter the type
free lambda calculus will be called ��
calculus� or
simply �� We start with an informal description�

Application and abstraction

The �
calculus has two basic operations� The �rst one is application� The
expression

F�A

�usually written as FA� denotes the data F considered as algorithm applied
to A considered as input� The theory � is type�free� it is allowed to consider
expressions like FF � that is� F applied to itself� This will be useful to
simulate recursion�

The other basic operation is abstraction� If M �M �x# is an expression
containing ��depending on�� x� then �x�M �x# denotes the intuitive map
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x ��M �x#�

i�e� to x one assigns M �x#� The variable x does not need to occur actually
in M � In that case �x�M �x# is a constant function with value M �

Application and abstraction work together in the following intuitive
formula�

��x�x� $ ��� � �� $ � �� ����

That is� ��x�x� $ ��� denotes the function x �� x� $ � applied to the
argument � giving �� $ � �which is ���� In general we have

��x�M �x#�N �M �N #�

This last equation is preferably written as

��x�M �N �M �x �� N #� ���

where �x �� N # denotes substitution of N for x� This equation is called
�
conversion� It is remarkable that although it is the only essential axiom
of the �
calculus� the resulting theory is rather involved�

Free and bound variables

Abstraction is said to bind the free variable x in M � For example� we say
that �x�yx has x as bound and y as free variable� Substitution �x �� N # is
only performed in the free occurrences of x�

yx��x�x��x �� N # � yN ��x�x��

In integral calculus there is a similar variable binding� In
R b
a
f�x� y�dx the

variable x is bound and y is free� It does not make sense to substitute 
 for
x� obtaining

R a
b
f�
� y�d
� but substitution for y does make sense� obtainingR a

b
f�x� 
�dx�
For reasons of hygiene it will always be assumed that the bound vari


ables that occur in a certain expression are di�erent from the free ones�
This can be ful�lled by renaming bound variables� For example� �x�x be

comes �y�y� Indeed� these expressions act the same way�

��x�x�a � a � ��y�y�a

and in fact they denote the same intended algorithm� Therefore expressions
that di�er only in the names of bound variables are identi�ed� Equations
like �x�x � �y�y are usually called �
conversion�
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Functions of several arguments

Functions of several arguments can be obtained by iteration of application�
The idea is due to Sch�on�nkel ���	�� but is often called �currying�� after
H�B� Curry who introduced it independently� Intuitively� if f�x� y� depends
on two arguments� one can de�ne

Fx � �y�f�x� y�

F � �x�Fx�

Then
�Fx�y � Fxy � f�x� y�� ���

This last equation shows that it is convenient to use association to the left
for iterated application�

FM� � � �Mn denotes �����FM��M�� � � �Mn��

The equation ��� then becomes

Fxy � f�x� y��

Dually� iterated abstraction uses association to the right�

�x� � � �xn�f�x�� � � � � xn� denotes �x����x���� � � ��xn�f�x�� � � � � xn�������

Then we have for F de�ned above

F � �xy�f�x� y�

and ��� becomes
��xy�f�x� y��xy � f�x� y��

For n arguments we have

��x� � � �xn�f�x�� � � � � xn��x� � � �xn � f�x�� � � � � xn��

by using ��� n times� This last equation becomes in convenient vector
notation

���x�f��x���x � f��x��

more generally one has

���x�f��x�� �N � f� �N ��

Now we give the formal description of the �
calculus�
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De�nition ������ The set of ��terms� notation %� is built up from an
in�nite set of variables V � fv� v�� v��� � � �g using application and �function�
abstraction�

x � V � x � %�
M�N � % � �MN � � %�
M � %� x� V � ��xM � � %�

Using abstract syntax one may write the following�

V ��� v j V �

% ��� V j �%%� j ��V %�

Example ������ The following are �
terms�

v�
�vv����
��v�vv�����
���v�vv����v���
���v����v�vv����v���v�����

Convention ������

�� x� y� z� � � � denote arbitrary variables�
M�N�L� � � � denote arbitrary �
terms�

	� As already mentioned informally� the followingabbreviations are used�

FM� � � �Mn stands for �����FM��M�� � � �Mn�

and

�x� � � �xn�M stands for ��x���x��� � � ��xn�M ��������

�� Outermost parentheses are not written�

Using this convention� the examples in 	���	 now may be written as follows�

x�xz��x�xz�
��x�xz�y�
��y���x�xz�y�w�

Note that �x�yx is ��x�yx�� and not ���xy�x��
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Notation ������ M � N denotes thatM and N are the same term or can
be obtained from each other by renaming bound variables� For example�

��x�x�z � ��x�x�z�
��x�x�z � ��y�y�z�
��x�x�z 	� ��x�y�z�

De�nition ������

�� The set of free variables of M � �notation FV �M ��� is de�ned induc

tively as follows�

FV �x� � fxg�
FV �MN � � FV �M � 
 FV �N ��
FV ��x�M � � FV �M �� fxg�

	� M is a closed �
term �or combinator� if FV �M � � �� The set of
closed �
terms is denoted by %��

�� The result of substitution of N for �the free occurrences of� x in M �
notation M �x �� N #� is de�ned as follows� Below x 	� y�

x�x �� N # � N �

y�x �� N # � y�

�PQ��x �� N # � �P �x �� N #��Q�x �� N #��

��y�P ��x �� N # � �y��P �x �� N #�� provided y 	� x�

��x�P ��x �� N # � ��x�P ��

In the �
term
y��xy�xyz�

y and z occur as free variables� x and y occur as bound variables� The
term �xy�xxy is closed�

Names of bound variables will be always chosen such that they di�er
from the free ones in a term� So one writes y��xy� �xy�z� for y��xy�xyz��
This so
called �variable convention� makes it possible to use substitution
for the �
calculus without a proviso on free and bound variables�

Proposition ����	 
Substitution lemma�� Let M�N�L � %� Suppose
x 	� y and x 	� FV �L�� Then

M �x �� N #�y �� L# �M �y �� L#�x �� N �y �� L##�

Proof� By induction on the structure of M �

Now we introduce the �
calculus as a formal theory of equations between
�
terms�
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De�nition ������

�� The principal axiom scheme of the �
calculus is

��x�M �N �M �x �� N # ���

for allM�N � %� This is called ��conversion�

	� There are also the �logical� axioms and rules�

M �M �

M � N � N �M �

M � N�N � L � M � L�

M �M � � MZ �M �Z�

M �M � � ZM � ZM ��

M �M � � �x�M � �x�M �� �
�

�� If M � N is provable in the �
calculus� then we write � 
 M � N or
sometimes just M � N �

Remarks ����
�

�� We have identi�ed terms that di�er only in the names of bound vari

ables� An alternative is to add to the �
calculus the following axiom
scheme of ��conversion�

�x�M � �y�M �x �� y#� ���

provided that y does not occur in M � The axiom ��� above was
originally the second axiom� hence its name� We prefer our version of
the theory in which the identi�cations are made on a syntactic level�
These identi�cations are done in our mind and not on paper�

	� Even if initially terms are written according to the variable conven

tion� �
conversion �or its alternative� is necessary when rewriting
terms� Consider e�g� � � �x�xx and � � �yz�yz� Then

�� � ��x�xx���yz�yz�

� ��yz�yz���yz�yz�

� �z���yz�yz�z

� �z���yz��yz��z
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� �zz��zz�

� �yz�yz

� ��

�� For implementations of the �
calculus the machine has to deal with
this so called �
conversion� A good way of doing this is provided by
the �name
free notation� of N�G� de Bruijn� see Barendregt �������
Appendix C� In this notation �x��y�xy� is denoted by ���	��� the 	
denoting a variable bound �two lambdas above��

The following result provides one way to represent recursion in the �

calculus�

Theorem ����� 
Fixed point theorem��

�� �F�XFX � X�
�This means that for allF�% there is anX�% such that � 
 FX � X��

�� There is a �xed point combinator

Y � �f���x�f�xx����x�f�xx��

such that
�F F �YF � � YF�

Proof� �� De�ne W � �x�F �xx� and X � WW � Then
X � WW � ��x�F �xx��W � F �WW � � FX�

	� By the proof of ���� Note that
YF � ��x�F �xx����x�F �xx��� X�

Corollary ������� Given a term C � C�f� x# possibly containing the dis�
played free variables� then

�F�X FX � C�F�X#�

Here C�F�X# is of course the substitution result C�f �� F #�x �� X#�

Proof� Indeed� we can construct F by supposing it has the required prop

erty and calculating back�

�X FX � C�F�X#
� Fx � C�F� x#
� F � �x�C�F� x#
� F � ��fx�C�f� x#�F
� F � Y��fx�C�f� x#��

This also holds for more arguments� �F��x F�x � C�F��x#�
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As an application� terms F and G can be constructed such that for all
terms X and Y

FX � XF�

GXY � Y G�Y XG��

��� Lambda de�nability

In the lambda calculus one can de�ne numerals and represent numeric
functions on them�

De�nition ������

�� Fn�M � with n � N �the set of natural numbers� and F�M � %� is
de�ned inductively as follows�

F ��M � � M �

Fn���M � � F �Fn�M ���

	� The Church numerals c�� c�� c�� � � � are de�ned by

cn � �fx�fn�x��

Proposition ����� 
J� B� Rosser�� De�ne

A� � �xypq�xp�ypq��

A� � �xyz�x�yz��

Aexp � �xy�yx�

Then one has for all n�m �N

�� A�cncm � cn�m�

�� A�cncm � cn�m�

	� Aexpcncm � c�nm�� except for m � � �Rosser starts at �
�

Proof� We need the following lemma�
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Lemma ������

�� �cnx�m�y� � xn�m�y��

	� �cn�m�x� � c�nm��x�� for m � ��

Proof� �� By induction on m� If m � �� then LHS � y � RHS� Assume
��� is correct for m �Induction Hypothesis� IH�� Then

�cnx�m���y� � cnx��cnx�m�y��
�IH cnx�xn�m�y��
� xn�xn�m�y��
� xn�n�m�y�
� xn��m����y��

	� By induction on m � �� If m � �� then LHS � cnx � RHS� If �	� is
correct for m� then

cm��
n �x� � cn�c

m
n �x��

�IH cn�c�nm��x��
� �y��c�nm��x��

n�y�
���� �y�xn

m�n�y�
� c�nm���x�

Now the proof of the proposition�

�� By induction on m�

	� Use the lemma ����

�� By the lemma �	� we have for m � �

Aexpcncm � cmcn � �x�cn
m�x� � �x�c�nm�x � c�nm��

since �x�Mx �M if M � �y�M ��y# and x 	� FV �M �� Indeed�

�x�Mx � �x���y�M ��y#�x

� �x�M ��x#

� �y�M ��y#

� M�

We have seen that the functions plus� times and exponentiation on N
can be represented in the �
calculus using Church�s numerals� We will show
that all computable �recursive� functions can be represented�
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Boolean truth values and a conditional can be represented in the �

calculus�

De�nition ����� 
Booleans� conditional��

�� true � �xy�x� false � �xy�y�

	� If B is a Boolean� i�e� a term that is either true� or false� then

if B then P else Q

can be represented by BPQ� Indeed� truePQ � P and falsePQ �
Q�

De�nition ����� 
Pairing�� For M�N � % write

�M�N # � �z�zMN�

Then
�M�N # true� M

�M�N # false� N

and hence �M�N # can serve as an ordered pair�

De�nition ����	�

�� A numeric function is a map f � Np�N for some p�

	� A numeric function f with p arguments is called ��de
nable if one
has for some combinator F

Fcn� � � �cnp � cf�n������np� ���

for all n�� � � � � np � N� If ��� holds� then f is said to be ��de
ned by
F �

De�nition ������

�� The initial functions are the numeric functions U i
r � S

�� Z de�ned by�

U i
r�x�� � � � � xr� � xi� � � i � r�

S��n� � n $ ��

Z�n� � ��

	� Let P �n� be a numeric relation� As usual

�m�P �m�

denotes the least number m such that P �m� holds if there is such a
number� otherwise it is unde�ned�

As we know from Chapter 	 in this handbook� the class R of recur

sive functions is the smallest class of numeric functions that contains all
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initial functions and is closed under composition� primitive recursion and
minimalization� So R is an inductively de�ned class� The proof that all re

cursive functions are �
de�nable is by a corresponding induction argument�
The result is originally due to Kleene �������

Lemma ����
� The initial functions are ��de�nable�

Proof� Take as de�ning terms

U
i
p � �x� � � �xp�xi�

S
� � �xyz�y�xyz� �� A�c���

Z � �x�c��

Lemma ������ The ��de
nable functions are closed under composition�

Proof� Let g� h�� � � � � hm be �
de�ned byG�H�� � � � �Hm respectively� Then

f��n� � g�h���n�� � � � � hm��n��

is �
de�ned by

F � ��x�G�H��x� � � � �Hm�x��

Lemma ������� The ��de
nable functions are closed under primitive re�
cursion�

Proof� Let f be de�ned by

f��� �n� � g��n�
f�k $ �� �n� � h�f�k� �n�� k� �n�

where g� h are �
de�ned by G�H respectively� We have to show that f is �

de�nable� For notational simplicity we assume that there are no parameters
�n �hence G � cf����� The proof for general �n is similar�

If k is not an argument of h� then we have the scheme of iteration�
Iteration can be represented easily in the �
calculus� because the Church
numerals are iterators� The construction of the representation of f is done
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in two steps� First primitive recursion is reduced to iteration using ordered
pairs� then iteration is represented� Here are the details� Consider

T � �p��S��ptrue��H�pfalse��ptrue�#�

Then for all k one has

T ��ck� cf�k�#� � �fS�ck�Hcf�k�ck#
� �ck��� cf�k���#�

By induction on k it follows that

�ck� cf�k�# � T k�c�� cf���#�

Therefore
cf�k� � ckT �c�� cf���# false�

and f can be �
de�ned by

F � �k�kT �c�� G# false�

Lemma ������� The ��de�nable functions are closed under minimaliza�
tion�

Proof� Let f be de�ned by f��n� � �m�g��n�m� � �#� where �n � n�� � � � � nk
and g is �
de�ned by G� We have to show that f is �
de�nable� De�ne

zero � �n�n�true false�true�

Then
zero c� � true�
zero cn�� � false�

By Corollary 	����� there is a term H such that

H�ny � if �zero�G�ny�� then y else H�n�S�y��

Set F � ��n�H�xc�� Then F �
de�nes f �

Fc�x � Hc�nc�
� c�� if Gc�nc� � c��
� Hc�nc� else�
� c�� if Gc�nc� � c��
� Hc�nc� else�
� c�� if � � �
� � � �

Here c�n stands for cn� � � �cnk�

Theorem ������� All recursive functions are ��de
nable�
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Proof� By 	�	��
	�	����

The converse also holds� The idea is that if a function is �
de�nable�
then its graph is recursively enumerable because equations derivable in the
�
calculus can be enumerated� It then follows that the function is recur

sive� So for numeric functions we have f is recursive i� f is �
de�nable�
Moreover also for partial functions a notion of �
de�nability exists and one
has 
 is partial recursive i� 
 is �
de�nable� The notions �
de�nable and
recursive both are intended to be formalizations of the intuitive concept of
computability� Another formalization was proposed by Turing in the form
of Turing computable� The equivalence of the notions recursive� �
de�nable
and Turing computable �for the latter see besides the original Turing� ���
�
e�g�� Davis ����� Davis provides some evidence for the Church&Turing the

sis that states that �recursive� is the proper formalization of the intuitive
notion �computable��

We end this subsection with some undecidability results� First we
need the coding of �
terms� Remember that the collection of variables
is fv� v�� v��� � � �g�

De�nition �������

�� Notation� v��� � v� v�n��� � v�n���

	� Let h � i be a recursive coding of pairs of natural numbers as a natural
number� De�ne

��v�n�� � h�� ni�
��MN � � h	� h��M �� ��N �ii�
���x�M � � h�� h��x�� ��M �ii�

�� Notation
pMq � c�M �

De�nition ������� Let A � %�

�� A is closed under � if

M �A� � 
M � N � N �A�

	� A is non�trivial if A 	� � and A 	� %�

�� A is recursive if �A � f�M jM �Ag is recursive�

The following result due to Scott is quite useful for proving undecidability
results�
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Theorem ������� Let A � % be non�trivial and closed under �� Then A
is not recursive�

Proof� �J� Terlouw� De�ne

B � fM jMpMq �Ag�

Suppose A is recursive� then by the e�ectiveness of the coding also B is
recursive �indeed� n � �B � h	� hn� �cnii � �A�� It follows that there is an
F � %� with

M � B � FpMq � c��
M 	� B � FpMq � c��

Let M� �A�M� 	�A� We can �nd a G �% such that

M � B � GpMq �M� 	�A�
M 	� B � GpMq �M� �A�

�Take Gx � if zero�Fx� thenM� elseM�� with zero de�ned in the proof
of 	�	����# In particular

G � B � GpGq 	�A �Def G 	� B�
G 	� B � GpGq�A �Def G � B�

a contradiction�

The following application shows that the lambda calculus is not a de

cidable theory�

Corollary �����	 
Church�� The set

fM jM � trueg

is not recursive�

Proof� Note that the set is closed under � and is nontrivial�

��� Reduction

There is a certain asymmetry in the basic scheme ���� The statement

��x�x� $ ��� � ��

can be interpreted as ��� is the result of computing ��x�x� $ ����� but not
vice versa� This computational aspect will be expressed by writing

��x�x� $ ��� �� ��

which reads ���x�x� $ ��� reduces to ����
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Apart from this conceptual aspect� reduction is also useful for an ana

lysis of convertibility� The Church&Rosser theorem says that if two terms
are convertible� then there is a term to which they both reduce� In many
cases the inconvertibility of two terms can be proved by showing that they
do not reduce to a common term�

De�nition ������

�� A binary relation R on % is called compatible �w�r�t� operations� if

M R N � �ZM � R �ZN ��

�MZ� R �NZ�� and

��x�M � R ��x�N ��

	� A congruence relation on % is a compatible equivalence relation�

�� A reduction relation on % is a compatible� re�exive and transitive
relation�

De�nition ������ The binary relations ������ and �� on % are de�ned
inductively as follows�

�� �a� ��x�M �N �� M �x �� N #�

�b� M �� N � ZM �� ZN� MZ �� NZ and �x�M �� �x�N�

	� �a� M ��� M �

�b� M �� N � M ��� N �

�c� M ��� N�N ��� L � M ��� L�

�� �a� M ��� N � M �� N �

�b� M �� N � N �� M �

�c� M �� N�N �� L � M �� L�

These relations are pronounced as follows�

M ��� N � M ��reduces to N �

M �� N � M ��reduces to N in one step�

M �� N � M is ��convertible to N�

By de�nition�� is compatible� The relation��� is the re�exive transitive
closure of �� and therefore a reduction relation� The relation �� is a
congruence relation�
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Proposition ������ M �� N � � 
M � N�

Proof� ��� By induction on the generation of 
� ��� By induction one
shows

M �� N � � 
M � N �
M ��� N � � 
M � N �
M �� N � � 
M � N�

De�nition ������

�� A �
redex is a term of the form ��x�M �N � In this case M �x �� N # is
its contractum�

	� A �
termM is a ��normal form ��
nf� if it does not have a �
redex
as subexpression�

�� A term M has a �
normal form ifM �� N and N is a �
nf� for some
N �

Example ������ ��x�xx�y is not a �
nf� but has as �
nf the term yy�

An immediate property of nf�s is the following�

Lemma ����	� Let M�M �� N� L � %�

�� Suppose M is a ��nf� Then

M ��� N � N �M�

�� If M �� M
�� then M �x �� N #�� M

��x �� N #�

Proof� �� IfM is a �
nf� thenM does not contain a redex� Hence never
M �� N � Therefore ifM ��� N � then this must be because M � N �

	� By induction on the generation of ���
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Theorem ����� 
Church�Rosser theorem�� If M ��� N��M ��� N��
then for some N� one has N� ��� N� and N� ��� N�� in diagram

M

���
�
�
� �

�
�
�RR

N� N�������������RR ����
��
��
��
��
��

N�

The proof is postponed until 	����
�

Corollary ����
� If M �� N � then there is an L such that M ��� L and
N ��� L�

Proof� Induction on the generation of ���

Case �� M �� N because M ��� N � Take L � N �

Case �� M �� N because N �� M � By the IH there is a common
�
reduct L� of N�M� Take L � L��

Case �� M �� N because M �� N �� N � �� N � Then

M
�IH�

N �

�IH�
N

��
��RR ����

�� ��
��RR ����

��

L� CR L�����������RR ����
���
���
��

L

Corollary ������

�� If M has N as ��nf� then M ��� N �

�� A ��term has at most one ��nf�
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Proof� �� Suppose M �� N with N in �
nf� By corollary 	���� one has
M ��� L and N ��� L for some L� But then N � L� by Lemma
	����� so M ��� N �

	� Suppose M has �
nf�s N�� N�� Then N� �� N� ��� M �� By Corol

lary 	���� one has N� ��� L�N� ��� L for some L� But then
N� � L � N� by Lemma 	��������

Some consequences�

�� The �
calculus is consistent� i�e� � 	
 true � false� Otherwise true
�� false by Proposition 	����� which is impossible by Corollary 	����
since true and false are distinct �
nf�s� This is a syntactical consis

tency proof�

	� ' � ��x�xx���x�xx� has no �
nf� Otherwise ' ��� N with N in
�
nf� But ' only reduces to itself and is not in �
nf�

�� In order to �nd the �
nf of a term� the various subexpressions of
it may be reduced in di�erent orders� If a �
nf is found� then by
Corollary 	���� �	� it is unique� Moreover� one cannot go wrong�
every reduction of a term can be continued to the �
nf of that term
�if it exists�� See also Theorem 	���	��

Proof of the Church�Rosser theorem

This occupies 	����� 
 	����
� The idea of the proof is as follows� In order
to prove the theorem� it is su�cient to show the following strip lemma�

M

���
� �� �

�
�
� �

�
�
�
�RR

N� �����������
�
�����������RR

N�

�����
�� �
���
��

N�

In order to prove this lemma� let M �� N� be a one step reduction
resulting from changing a redex R in M in its contractum R� in N�� If
one makes a bookkeeping of what happens with R during the reduction
M �� N�� then by reducing all �residuals� of R in N� the term N� can be
found� In order to do the necessary bookkeeping an extended set % � %
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and reduction � is introduced� The underlining is used in a way similar to
�radioactive tracing isotopes� in experimental biology�

De�nition ������ 
Underlining��

�� % is the set of terms de�ned inductively as follows�

x � V � x � %�
M�N � % � �MN � � %�

M � %� x� V � ��x�M � � %�
M�N � %� x� V � ���x�M �N �� %�

	� Underlined �one step� reduction ��� and� ��� are de�ned starting
with the contraction rules

��x�M �N�M �x �� N #�

��x�M �N�M �x �� N #�

Then � is extended to the compatible relation �� �also w�r�t� �


abstraction� and ��� is the transitive re�exive closure of ���

�� If M � %� then jM j�% is obtained fromM by leaving out all under

linings� For example� j��x�x����x�x���x�x��j � I�II��

�� Substitution for % is de�ned by adding to the schemes in de�nition
	������� the following�

���x�M �N ��y �� L# � ��x�M �y �� L#��N �y �� L#��

De�nition ������� A map ��%�% is de�ned inductively as follows�

��x� � x�
��MN � � ��M ���N �� if M�N � %�
���x�M � � �x���M ��

����x�M �N � � ��M ��x �� ��N �#�

In other words� the map � contracts all redexes that are underlined� from
the inside to the outside�

Notation ������� If jM j � N or ��M � � N � then this will be denoted
by respectively
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M
j j

� N or M
�

� N�

Lemma �������

M � �������������� �
�
����������������� N �

j j

� �

j j

M
�

�� N

M �� N � � %�
M�N � %�

Proof� First supposeM �� N � ThenN is obtained by contracting a redex
in M and N � can be obtained by contracting the corresponding redex in
M �� The general statement follows by transitivity�

Lemma ������� Let M�M �� N� L � % � Then

�� Suppose x 	� y and x 	�FV �L�� Then

M �x �� N #�y �� L# �M �y �� L#�x �� N �y �� L##�

	�

��M �x �� N #� � ��M ��x �� ��N �#�

��
M

�

�� N

�

� �

�

��M � ������������ �
�
��������������� ��N �

M�N � %�

Proof� �� By induction on the structure of M �

	� By induction on the structure of M � using ��� in case M � ��y�P �Q�
The condition of ��� may be assumed to hold by our convention about
free variables�

�� By induction on the generation of ��� � using �	��
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Lemma �������

M

��
�
�
j j �
�
� �

�
� �

�
�
�R

N �������������� �
�
����������������� L

M � %�
N� L � %�

Proof� By induction on the structure of M�

Lemma �����	 
Strip lemma��

M

���
� �� �

�
�
� �

�
�
�
�RR

N� �����������
�
�����������RR

N�

����
��� �
���
��

N�

M�N�� N�� N� � %�

Proof� Let N� be the result of contracting the redex occurrence R �
��x�P �Q in M � Let M � � % be obtained from M by replacing R by R� �
��x�P �Q� Then jM �j � M and ��M �� � N�� By Lemmas 	����	� 	�����
and 	����� we can construct the following diagram which proves the strip
lemma�

M

���
� ��

HHHHHHH �
HHHHHHHjj

I�� j j
��

N�
�

�
M �

����������������������
�
����������������������jj

��������������������������������������������jj

� N�

�����
��
� ���

�� I�� j j

��
N�
�

�
N �

�
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Theorem ������ 
Church�Rosser theorem�� IfM ��� N��M ��� N��
then for some N� one has N� ��� N� and N� ��� N��

Proof� If M ��� N�� then M � M� �� M� �� � � �Mn � N�� Hence the
CR property follows from the strip lemma and a simple diagram chase�

M

��
� �

�
�
�
�
�
�
�
�
�
�
�RR

M�

��
�

������������������������������������RR

�

� �
� ������������������������������������RR

�

��
�

������������������������������������RR

N� N�������������������������������������RR

�����
���

�

�����
���

�

� �
�

�

�����
���

�

Normalization

De�nition �����
� ForM�% the reduction graph ofM � notation G��M ��
is the directed multigraph with vertices fN j M ��� Ng and directed by
��� We have a multigraph because contractions of di�erent redexes are
considered as di�erent edges�

Example ������� G��I�Ia�� is

I�Ia�

��
Ia

�
a

or simply

�

��
�

�
�
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A lambda term M is called strongly normalizing i� all reduction se

quences starting with M terminate �or equivalently i� G��M � is �nite��
There are terms that do have an nf� but are not strongly normalizing be

cause they have an in�nite reduction graph� Indeed� let� � ��x�xx���x�xx��
Then

��� ��� ��� ��� � � � �

Now KI� �� I� but the left hand side also has an in�nite reduction graph�
Therefore a so
called strategy is necessary in order to �nd normal forms�

We state the following theorem due to Curry� for a proof see Barendregt
������� theorem ���	�	�

Theorem ������ 
Normalization theorem�� If M has a normal form�
then iterated contraction of the leftmost redex �i�e� with its main lambda
leftmost
 leads to that normal form�

In other words� the leftmost reduction strategy is normalizing �
The functional language �pure� Lisp uses an eager or applicative eval


uation strategy� i�e� whenever an expression of the form FA has to be
evaluated� A is reduced to normal form �rst� before �calling� F � In the �

calculus this strategy is not normalizing as is shown by the two reduction
paths for KI� above� There is� however� a variant of the lambda calculus�
called the �I
calculus� in which the eager evaluation strategy is normalizing�
See Barendregt �����#� Ch �� and x����� In this �I
calculus terms like K�
�throwing away� � in the reduction KI� �� I� do not exist� The �ordinary�
�
calculus is sometimes referred to as �K
calculus�

In several lambda calculi with types one has that typable terms are
strongly normalizing� see subsections ��� and ����

B
ohm trees and approximation

We end this subsection on reduction by introducing B�ohm trees� a kind of
�in�nite normal form��

Lemma ������� Each M � % is either of the following two forms�

�� M � �x� � � �xn�yN� � � �Nm� with n�m � �� and y a variable�

�� M � �x� � � �xn���y�N��N� � � �Nm� with n � ��m � ��

Proof� By de�nition a �
term is either a variable� or of the form PQ �an
application� or �x�P �an abstraction��

If M is a variable� then M is of the form ��� with n � m � ��
If M is an application� then M � P�P� � � �Pm with P� not an applica


tion� Then M is of the form ��� or �	� with n � �� depending on whether
P� is a variable �giving ���� or an abstraction �giving �	���



�� H�P� Barendregt

IfM is an abstraction� then a similar argument shows that M is of the
right form�

De�nition �������

�� A �
term M is a head normal form �hnf� if M is of the form ��� in
Lemma 	���	�� In that case y is called the head variable of M �

	� M has an hnf if M �� N for some N that is an hnf�

�� If M is of the form �	� in 	���	�� then ��y�N��N� is called the head
redex of M �

Lemma ������� If M �� M � and

M has hnf M� � �x� � � �xn�yN� � � �Nm�

M � has hnf M �
� � �x� � � �xn��y

�N �
� � � �N

�
m� �

then n � n�� y � y��m � m� and N� �� N
�
�� � � � � Nm �� N

�
m� �

Proof� By the corollary to the Church&Rosser theorem 	���� M� and M �
�

have a common reduct L� But then the only possibility is that

L � �x� � � �xn�� �y
��N ��

� � � �N
��
m��

with

n � n� � n�� y � y�� � y�� m � m�� � m� and N� �� N
��
� �� N

�
�� � � � �

The following de�nitions give the �avour of the notion of B�ohm tree�
The de�nitions are not completely correct� because there should be an or

dering in the direct successors of a node� However� this ordering is displayed
in the drawings of the trees� For a precise de�nition� covering this order�
see Barendregt ������� Ch����

De�nition �������

�� A tree has the form depicted in the following �gure�
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�

�
� �

�
� �

�
� �

�
� �

�

�
� �

�

That is� a tree is a partially ordered set such that

�a� there is a root�

�b� each node �point� has �nitely many direct successors�

�c� the set of predecessors of a node is �nite and is linearly ordered�

	� A labeled tree is a tree with symbols at some of its nodes�

De�nition ������� Let M � %� The B
ohm tree of M � notation BT �M ��
is the labeled tree de�ned as follows�

BT �M � � �x� � � �xn� y � if M has as hnf

��
�� ��

��
�x� � � �xn�yN� � � �Nm�

BT �N�� � � � BT �Nm�

� �� if M has no hnf�

Example �����	�

��
BT ��abc�ac�bc�� � �abc� a �

�
� �

�
c b

c

	�
BT ���x�xx���x�xx�� � ��
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��
BT �Y� � �f� f �

f

���

This is because Y � �f��f�f with �f � �x�f�xx��
Therefore Y � �f�f��f�f � and

BT �Y� � �f� f �

BT ��f�f �

now �f�f � f��f�f � so

BT ��f�f � � f � f �

BT ��f�f � f

���

Remark ������� Note that De�nition 	���	� is not an inductive de�nition
of BT �M �� The N�� � � � � Nm in the tail of an hnf of a term may be more
complicated than the term itself� See again Barendregt ������� Ch����

Proposition �����
� BT �M � is well de
ned and

M �� N � BT �M � � BT �N ��

Proof� What is meant is that BT �M � is independent of the choice of the
hnf�s� This and the second property follow from Lemma 	���	��

De�nition �������

�� �� is the extension of the lambda calculus de�ned as follows� One of
the variables is selected for use as a constant and is given the name
�� Two contraction rules are added�

�x�����

�M���
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The resulting reduction relation is called ��
 reduction and is de

noted by ���� �

	� A ��� normal form is such that it cannot be ��
reduced

�� B�ohm trees for �� are de�ned by requiring that a ��
term

�x� � � �xn�yN� � � �Nm

is only in ��
hnf if y 	� � or if n � m � ��

Note that if M has a �
nf or �
hnf� then M also has a ��
hnf� This is
because an hnf �x� � � �xn�yN� � � �Nm is also a ��
hnf unless y � �� But
in that case �x� � � �xn�yN� � � �Nm ���� � and hence M has a �
hnf�

De�nition �������

�� Let A and B be B�ohm trees of some ��
terms� Then A is included in
B� notation A � B� if A results from B by cutting o� some subtrees�
leaving an empty node� For example�

�ab� a � �ab� a

�
� �

� �
� �

�
� b a b

b

	� Let P�Q be ��
 terms� Then P approximates Q� notation P � Q� if
BT �P � � BT �Q��

�� Let P be a ��
term� The set of approximate normal forms �anf�s�
of P � is de�ned as

A�P � � fQ � P jQ is a ��
nfg�

Example ������� The set of anf�s of the �xedpoint operator Y is

A�Y� � f�� �f�f�� �f�f��� � � �g�

Without a proof we mention the following �continuity theorem�� due to
Wadsworth ���
���
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Proposition ������� Let F�M � % be given� Then

�P �A�FM � �Q �A�M � P �A�FQ��

See Barendregt ������� proposition �������� for the proof and a topo

logical explanation of the result�

� Curry versus Church typing

In this section the system �� of simply typed lambda calculus will be
introduced� Attention is focused on the di�erence between typing �a la
Curry and �a la Church by introducing �� in both ways� Several other
systems of typed lambda calculus exist both in a Curry and a Church
version� However� this is not so for all systems� For example� for the
Curry system �� �the system of intersection types� introduced in ���� it
is not clear how to de�ne a Church version� And for the Church system
�C �calculus of constructions� it is not clear how to de�ne a Curry version�
For the systems that exist in both styles there is a clear relation between
the two versions� as will be explained for ���

��� The system ���Curry

Originally the implicit typing paradigm was introduced in Curry ������
for the theory of combinators� In Curry and Feys ������� Curry et al�
���
	� the theory was modi�ed in a natural way to the lambda calculus
assigning elements of a given set Tof types to type free lambda terms� For
this reason these calculi �a la Curry are sometimes called systems of type
assignment� If the type � �T is assigned to the term M � % one writes

 M � �� often with a subscript under 
 to denote the particular system�
Usually a set of assumptions ( is needed to derive a type assignment and
one writes ( 
 M � � �pronounce this as �( yields M in ���� A particular
Curry type assignment system depends on two parameters� the set Tand
the rules of type assignment� As an example we now introduce the system
��
Curry�

De�nition ������ The set of types of ��� notation Type����� is induc

tively de�ned as follows� We write T� Type�����

�� ��� � � ��T �type variables��
�� � �T� ���� � �T �function space types��

Such de�nitions will occur more often and it is convenient to use the
following abstract syntax to form T�
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T�VjT�T

with Vde�ned by

V� � jV� �type variables��

Notation ������

�� If ��� � � � � �n �Tthen

������� � ���n

stands for

��������� � ����n����n������

that is� we use association to the right�

	� �� �� �� � � � denote arbitrary type variables�

De�nition ����� 
���Curry��

�� A statement is of the form M � � with M � % and � � T� This
statement is pronounced as �M � ��� The type � is the predicate and
the term M is the subject of the statement�

	� A declaration is a statement with as subject a �term� variable�

�� A basis is a set of declarations with distinct variables as subjects�

De�nition ������ A statementM � � is derivable from a basis ( � notation

( 
���Curry M � �

�or

( 
�� M � �

or

(
M � �

if there is no danger for confusion� if ( 
 M � � can be produced by the
following rules�
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��
Curry �version ��

�x��� � ( � ( 
 x � ��

( 
M � ���� �� ( 
 N � � � ( 
 �MN � � � �

(� x�� 
 M � � � ( 
 ��x�M � � ���� ��

Here (� x�� stands for ( 
 fx��g� If ( � fx����� � � � � xn��ng �or ( � ��
then instead of ( 
M � � one writes x����� � � � � xn��n 
M � � �or 
M � ���
Pronounce 
 as �yields��

The rules given in De�nition ����� are usually notated as follows�

��
Curry �version ��

�axiom� ( 
 x � �� if �x��� � (�

��
elimination�
( 
 M � ���� � ( 
 N � �

�
( 
 �MN � � �

��
introduction�
(� x�� 
M � �

�
( 
 ��x�M � � ���� �

Another notation for these rules is the natural deduction formulation�

��
Curry �version 	�
Elimination rule Introduction rule

x � �
���

M � ���� � N � �

MN � �

M � �

��x�M � � ���� �

In this version the axiom of version � or � is considered as implicit and is
not notated� The notation

x � �
���

M � �
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means that from the assumption x�� �together with a set ( of other state

ments� one can derive M � � � The introduction rule in the table states that
from this one may infer that ��x�M � � ����� is derivable even without the
assumption x�� �but still using (�� This process is called cancellation of an
assumption and is indicated by striking through the statement �x����

Examples ������

�� Using version � of the system� the derivation

x��� y�� 
 x � �

x�� 
 ��y�x� � �����


 ��xy�x� � �������

shows that 
 ��xy�x� � ������� for all �� � �T�

A natural deduction derivation �for version 	 of the system� of the
same type assignment is

x�� 	 y�� �

x��
�

��y�x� � �����
	

��xy�x� � �������

The indices � and 	 are bookkeeping devices that indicate at which
application of a rule a particular assumption is being cancelled�

A more explicit way of dealing with cancellations of statements is
the ��ag
notation� used by Fitch ����	� and in the languages AU

TOMATH of de Bruijn ������� In this notation the above derivation
becomes as follows�

y��

x��

��xy�x� � �������

��y�x� � �����

x��
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As one sees� the bookkeeping of cancellations is very explicit� on the
other hand it is less obvious how a statement is derived from previous
statements�

	� Similarly one can show for all � �T


 ��x�x� � ������

�� An example with a non
empty basis is the following

y�� 
 ��x�x�y � ��

In the rest of this chapter we usually will introduce systems of typed
lambda calculi in the style of version � of ��
Curry�

Pragmatics of constants

In applications of typed lambda calculi often one needs constants� For
example in programming one may want a type constant nat and term
constants � and suc representing the set of natural numbers� zero and the
successor function� The way to do this is to take a type variable and two
term variables and give these the names nat� � and suc� Then one forms
as basis

(� � f��nat� suc��nat�nat�g�

This (� will be treated as a so called �initial basis�� That is� only bases
( will be considered that are extensions of (�� Moreover one promises not
to bind the variables in (� by changing e�g�

��nat� suc��nat�nat� 
M � �

into


 ����suc�M � � �nat��nat�nat�����

�If one does not keep the promise no harm is done� since then � and suc
become ordinary bound variables��

The programming language ML� see Milner �����#� is essentially ��

Curry extended with a constant Y and type assignment Y � ���������
for all ��

Properties of ���Curry

Several properties of type assignment in �� are valid� The �rst one anal

yses how much of a basis is necessary in order to derive a type assignment�
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Properties of ���Curry

Several properties of type assignment in �� are valid� The �rst one anal

yses how much of a basis is necessary in order to derive a type assignment�

De�nition ����	� Let ( � fx����� � � � � xn��ng be a basis�

�� Write dom�(� � fx�� � � � � xng� �i � (�xi�� That is� ( is considered
as a partial function�

	� Let V� be a set of variables� Then ( � V� � fx�� j x�V� ) � � (�x�g�

�� For �� � �Tsubstitution of � for � in � is denoted by ��� �� � #�

Proposition ����� 
Basis lemma for ���Curry��
Let ( be a basis�

�� If (� � ( is another basis� then
( 
M � � � (� 
 M � ��

�� ( 
M � � � FV �M � � dom (�

	� ( 
M � � � ( � FV �M � 
M � ��

Proof� �� By induction on the derivation of M � �� Since such proofs
will occur frequently we will spell it out in this simple situation in
order to be briefer later on�

Case �� M � � is x�� and is element of (� Then also x�� � (� and hence
(� 
M � ��

Case 	� M � � is �M�M�� � � and follows directly fromM� � ����� and
M� � � for some � � By the IH one has (� 
 M� � ����� and
(� 
M� � � � Hence (� 
 �M�M�� � ��

Case �� M � � is ��x�M�� � ������� and follows directly from (� x��� 

M� � ��� By the variable convention it may be assumed that
the bound variable x does not occur in dom (�� Then (�� x��� is
also a basis which extends (� x���� Therefore by the IH one has
(�� x��� 
M� � �� and so (� 
 ��x�M�� � ��������

	� By induction on the derivation ofM � �� We only treat the case that
M � � is ��x�M�� � ������� and follows directly from (� x��� 
M� �
��� Let y �FV ��x�M��� then y �FV �M�� and y 	� x� By the IH one
has y�dom�(� x���� and therefore y� dom (�

�� By induction on the derivation of M � �� We only treat the case
that M � � is �M�M�� � � and follows directly fromM� � ����� and
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M� � � for some � � By the IH one has ( � FV �M�� 
M� � ����� and
( � FV �M�� 
 M� � � � By ��� it follows that ( � FV �M�M�� 
 M� �
�����and ( � FV �M�M�� 
 M� � � and hence ( � FV �M�M�� 

�M�M�� � ��

The second property analyses how terms of a certain form get typed� It
is useful among other things to show that certain terms have no types�

Proposition ����
 
Generation lemma for ���Curry��

�� ( 
 x � � � �x��� � (�

�� ( 
MN � � � �� �( 
M � ���� � ) ( 
 N � �#�

	� ( 
 �x�M � �� ��� � �(� x�� 
 M � � ) � � ���� �#�

Proof� By induction on the length of derivation�

Proposition ����� 
Typability of subterms in ���Curry�� Let M �

be a subterm of M � Then ( 
 M � � � (� 
 M � � �� for some (� and ���
The moral is� if M has a type� i�e� ( 
M � � for some ( and �� then every
subterm has a type as well�

Proof� By induction on the generation of M �

Proposition ������ 
Substitution lemma for ���Curry��

�� ( 
M � � � (�� �� � # 
M � ��� �� � #�

�� Suppose (� x�� 
 M � � and ( 
 N � �� Then ( 
M �x �� N # � � �

Proof� �� By induction on the derivation of M � ��

	� By induction on the generation of (� x�� 
M � � �

The following result states that the set of M � % having a certain type
in �� is closed under reduction�
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Proposition ������ 
Subject reduction theorem for ���Curry��
Suppose M ��� M

�� Then

( 
M � � � ( 
M � � ��

Proof� Induction on the generation of ��� using Propositions ����� and
������� We treat the prime case� namely that M � ��x�P �Q and M � �
P �x �� Q#� Well� if

( 
 ��x�P �Q � ��

then it follows by the generation lemma ����� that for some � one has

( 
 ��x�P � � ����� and ( 
 Q � ��

Hence once more by Proposition ����� that

(� x�� 
 P � � and ( 
 Q � �

and therefore by the substitution lemma ������

( 
 P �x �� Q# � ��

Terms having a type are not closed under expansion� For example


 I � ������ but 	
 KI��x�xx� � ������

See Exercise ������� One even has the following stronger failure of subject
expansion� as is observed in van Bakel �������

Observation ������� There areM�M ��% and �� ���Tsuch thatM � ���

M and

M � ��


M � � ���

but
	
M � � ��

Proof� Take M � �xy�y�M � � SK� � � �������
and �� � ������������ do Exercise �������

Exercises �������

� Let I � �x�x�K � �xy�x and S � �xyz�xz�yx��

� Show that for all �� �� � �Tone has
� S � �������������������
� SK � ����������
� KI � �������

� Show that �� SK � ��������

� Show that �x�xx and KI��x�xx� have no type in ���
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��� The system ���Church

Before we give the formal de�nition� let us explain right away what is the
di�erence between the Church and Curry versions of the system ��� One
has


Curry ��x�x� � ������

but on the other hand


Church ��x���x� � ������

That is� the term �x�x is annotated in the Church system by ����� The
intuitive meaning is that �x���x takes the argument x from the type �set�
�� This explicit mention of types in a term makes it possible to decide
whether a term has a certain type� For some Curry systems this question
is undecidable�

De�nition ������ Let T be some set of types� The set of T�annotated
��terms �also called pseudoterms�� notation %T� is de�ned as follows�

%T� V j %T%Tj �x�T%T

Here V denotes the set of term variables�

The same syntactic conventions for %Tare used as for %� For example

�x���� � � �xn��n�M � ��x������x���� � � � ��xn��n�M ����

This term may also be abbreviated as

��x����M�

Several systems of typed lambda calculi �a la Church consist of a choice of
the set of types Tand of an assignment of types � �Tto terms M � %

T
�

However� as will be seen in Section �� this is not the case in all systems �a
la Church� In systems with so
called �term� dependent types the sets of
terms and types are de�ned simultaneously� Anyway� for ��
Church the
separate de�nition of the types and terms is possible and one has as choice
of types the same set T� Type ���� as for ��
Curry�

De�nition ������ The typed lambda calculus ��
Church is de�ned as
follows�

�� The set of types T� Type ���� is de�ned by

T�VjT�T�
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	� A statement is of the form M � � with M �%
T
and � �T�

�� A basis is again a set of statements with only distinct variables as
subjects�

De�nition ������ A statement M � � is derivable from the basis (� nota

tion ( 
M � �� if M � � can be produced using the following rules�

��
Church

�axiom� ( 
 x � �� if �x��� � (�

��
elimination�
( 
 M � ���� � ( 
 N � �

�
( 
 �MN � � �

��
introduction�
(� x�� 
M � �

�
( 
 ��x���M � � ���� �

As before� derivations can be given in several styles� We will not need
to be explicit about this�

De�nition������ The set of �legal� ���terms� notation %����� is de�ned
by

%���� � fM � %
T
j �(� � ( 
M � �g�

In order to refer speci�cally to ��
Church� one uses the notation

( 
��Church M � ��

If there is little danger of ambiguity one uses also 
���
Church or just 
�

Examples ������ In ��
Church one has

�� 
 ��x���x� � ������

	� 
 ��x���y���x� � ��������

�� x�� 
 ��y���x� � ������

As for the type
free theory one can de�ne reduction and conversion on the
set of pseudoterms %

T
�
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De�nition����	� On %
T
the binary relations one�step ��reduction�many�

step ��reduction and ��convertibility � notations �� � ��� and �� respec

tively� are generated by the contraction rule

��x���M �N � M �x �� N # ���

For example one has

��x���x���y���yy� �� �y���yy�

Without a proof we mention that the Church&Rosser theorem 	���
 for
��� also holds on %T� The proof is similar to that for %� see Barendregt
and Dekkers �to appear� for the details� The following results for ��

Church are essentially the same as Propositions ����
 
 ������ for ��
Curry�
Therefore proofs are omitted�

Proposition ����� 
Basis lemma for ���Church�� Let ( be a basis�

�� If (� � ( is another basis� then ( 
M � � � (� 
M � ��

�� ( 
M � � � FV �M � � dom �(��

	� ( 
M � � � ( � FV �M � 
M � ��

Proposition ����
 
Generation lemma for ���Church��

�� ( 
 x � � � �x��� � (�

�� ( 
MN � � � �� �( 
M � ���� � and ( 
 N � �#

	� ( 
 ��x���M � � �� �� �� � ���� � and (� x�� 
M � � #�

Proposition ����� 
Typability of subterms in ���Church�� If M
has a type� then every subterm of M has a type as well�

Proposition ������ 
Substitution lemma for ���Church��

�� ( 
M � � � (�� �� � # 
M �� �� � # � ��� �� � #�

�� Suppose (� x�� 
 M � � and ( 
 N � �� Then ( 
M �x �� N # � ��

Proposition ������ 
Subject reduction theorem for ���Church��
Let M ��� M

�� Then

( 
M � � � ( 
M � � ��

This proposition implies that the set of legal expressions is closed under
reduction� It is not closed under expansion or conversion� Take for example
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I �� KI� annotated with the appropriate types� it follows from proposition
��	�� that KI� has no type� On the other hand convertible legal terms have
the same type with respect to a given basis�

Proposition ������ 
Uniqueness of types lemma for ���Church��

�� Suppose ( 
M � � and ( 
M � ��� Then � � ���

�� Suppose ( 
M � �� ( 
M � � �� and M �� M
�� Then � � ���

Proof� �� Induction on the structure of M �

	� By the Church&Rosser theorem for %
T
� the subject reduction theorem

��	��� and ����

As observed in �����	 this proposition does not hold for ��
Curry�

Original version of ��

Church de�ned his �� in a slightly di�erent� but essentially equivalent�
way� He de�ned the set of �legal� terms directly and not as a subset of the
pseudoterms %T� Each variable carries its own type� The set of terms of
type �� notation %	���� or simply %	� is de�ned inductively as follows�
Let V be the set of variables�

� �T� x � V � x	 � %	�
M � %	�
 � N � %	 � �MN � � %
 �
M � %
 � ��x	 �M �� %	�
 �

Then Church�s de�nition of legal terms was

%���� � 

	�T

%	�����

The following example shows that our version is equivalent to the original
one�

Example ������� The statement in ��
Church

x�� 
 ��y���x� � �����

becomes in the original system of Church

��y
 �x	� � %
�	�

It turns out that this original notation is not convenient for more compli

cated typed lambda calculi� The problem arises if types themselves become
subject to reduction� Then one would expect that
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� ��� � � x	 ��� x



� �x	 �x	 ��� �x
	�x
 �

However� in the last term it is not clear how to interpret the binding
e�ect of �x	 �is x
 bound by it*�� Therefore we will use the notation of
de�nition ��	���

Relating the Curry and Church systems

For typed lambda calculi that can be described both �a la Curry and �a la
Church� there is often a simple relation between the two versions� This will
be explained for ���

De�nition ������� There is a �forgetful� map j � j � %T�% de�ned as
follows�

jxj � x�

jMN j � jM jjN j�

j�x���M j � �x�jM j�

The map j � j just erases all type ornamentations of a term in %T� The
following result states that ornamented legal terms in the Church version
�project� to legal terms in the Curry version of ��� conversely� legal terms
in ��
Curry can be �lifted� to legal terms in ��
Church�

Proposition �������

�� Let M �%T� Then

( 
Church M � � � ( 
Curry jM j � ��

�� Let M �%� Then

( 
Curry M � � � �M � � %
T
�( 
Church M

� � � ) jM �j �M #�

Proof� ���� �	�� By induction on the given derivation�

Corollary �����	� In particular� for a type � �Tone has

� is inhabited in ���Curry � � inhabited in ���Church�

Proof� Immediate�
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� Typing �a la Curry

��� The systems

In this subsection the main systems for assigning types to type
free lambda
terms will be introduced� The systems to be discussed are ��� �	� �� and
��� Moreover� there are also two extra derivation rules EQ and A that can
be added to each of these systems� In Figure � the systems are represented
in a diagram�

b
b
b
b
b
bb

�
�
�
�
�
��

��

�	

��

��

$EQ

$A

Fig� �� The systems �a la Curry

The systems �	� �� and �� are all extensions of ��
Curry� Several
stronger systems can be de�ned by forming combinations like �	� or ����
However� such systems will not be studied in this chapter�

Now we will �rst describe the rules EQ and A and then the systems �	�
�� and ���

De�nition ������

�� The equality rule� notation EQ is the rule

M � � M �� N

N � �

	� The approximation rule� notation A� consists of the following two
rules� These rules are de�ned for �� introduced in De�nition 	���	��
The constant � plays a special role in the rule A�
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Rule A

( 
 P � � for all P �A�M �
�

( 
M � �

�
( 
 � � �

See 	����� for the de�nition of A�M �� Note that in these rules the
requirements M �� N and P � A�M � are not statements� but are� so to
speak� side conditions� The last rule states that � has any type�

Notation ������

�� ��� is �� extended by rule EQ�

	� ��A is �� extended by rule A�

So for example �	� � �	 $ EQ and ��A � �� $A�

Examples ������

�� One has


��� ��pq���r�p��qp�� � �������

since �pq���r�p��qp� � �pq�p� Note� however� that this statement is
in general not provable in �� itself� The term has in �� only types
of the form ������ ���� as follows form the generation lemma�

	� Let Y be the �xed point operator �f���x�f�xx����x�f�xx��� Then


��A Y � ����������

Indeed� the approximants of Y are

f�� �f�f�� � � � � �f�fn�� � � �g

and these all have type ���������� Again� this statement is not
derivable in �� itself� �In �� all typable terms have a normal form
as will be proved in Section ��	�

Now it will be shown that the rule EQ follows from the rule A� So in
general one has ��A� � ��A�
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Proposition ������ In all systems of type assignment �
A one has the
following�

�� ( 
M � � and P �A�M � � ( 
 P � ��

�� Let BT �M � � BT �M ��� Then

( 
M � � � ( 
M � � �

	� Let M �� M �� Then

( 
M � � � ( 
M � � ��

Proof� �� If P is an approximation of M � then P results from BT �M �
by replacing some subtrees by � and writing the result as a �
term�
Now � may assume arbitrary types� by one of the rules A� Therefore
P has the same type as M � �Example� Let M � Y� the �xedpoint
combinator and let P � �f�f�f�� be an approximant� We have

 Y � �������� By choosing � as type for �� one obtains 
 P �
��������#

	� Suppose BT �M � � BT �M ��� then A�M � � A�M ��� Hence

( 
M � � � �P �A�M � � A�M �� ( 
 P � �� by ����

� ( 
M � � �� by rule A

�� IfM �� M � � then BT �M � � BT �M ��� by proposition 	���	�� Hence
the result follows from �	��

The system �	

The system �	 was introduced independently in Girard ���
	� and Reynolds
���
��� In these papers the system was introduced in the Church paradigm�
Girard�s motivation to introduce �	 was based on proof theory� He ex

tended the dialectica translation of G�odel� see Troelstra ���
��� to analysis�
thereby relating provability in second
order arithmetic to expressibility in
�	� Reynolds� motivation to introduce �	 came from programming� He
wanted to capture the notion of explicit polymophism�

Other names for �	 are

� polymorphic typed lambda calculus

� second
order typed lambda calculus

� second
order polymorphic typed lambda calculus

� system F �

Usually these names refer to �	
Church� In this section we will introduce
the Curry version of �	� leaving the Church version to Section ����
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The idea of polymorphism is that in ��

��x�x� � �����

for arbitrary �� So one stipulates in �	

��x�x� � ����������

to indicate that �x�x has all types ����
As will be seen later� the mechanism is rather powerful�

De�nition ������ The set of types of �	� notation T� Type��	�� is de

�ned by the following abstract grammar�

T�Vj T�Tj �VT

Notation ����	�

�� ��� � � ��n�� stands for �������� � � � ���n���� � � ����

	� � binds more strongly than ��

So ����� � ������� � but ������ � ������ ��

De�nition ������ Type assignment in �	
Curry is de�ned by the follow

ing natural deduction system�

�	

�start rule�
�x��� � (

�
( 
 x � �

��
elimination�
( 
M � ���� � ( 
 N � �

�
( 
 �MN � � �

��
introduction�
(� x � � 
M � �

�
( 
 ��x�M � � ���� �

��
elimination�
( 
M � ������

�
( 
M � ���� �� � #�

��
introduction�
( 
M � �

� � 	� FV �(��
( 
M � ������
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Examples ����
� In �	
Curry one has the following�

�� 
 ��x�x� � ���������
	� 
 ��xy�y� � ������������
�� 
 ��fx�fnx� � ���������������
�� 
 ��x�xx� � �����������
�� 
 ��x�xx� � ���������������
�� 
 ��x�xx� � ������������

Example ��� shows that the Church numerals cn � �fx�fnx have type
������������� This type is sometimes called �polynat�� One reason for
the strength of �	 is that the Church numerals may not only be used as
iterators for functions of a �xed type ���� but also for iteration on ���
for arbitrary �� This makes it possible to represent in �	 the term R for
primitive recursion of G�odel�s T and many other computable functions� see
subsection ����

In subsection ��� it will be shown that only strongly normalizing terms
have a type in �	�

The system ��

The system �� is that of recursive types� These come together with an
equivalence relation � on them� The type assignment rules are such that
if M � � and � � ��� then M � ��� A typical example of a recursive type is
a �� such that

�� � ������ ���

This �� can be used to type arbitrary elements M � %� For example

x��� 
 x � �����
x��� 
 xx � ��

 �x�xx � �����

 �x�xx � ��

 ��x�xx���x�xx� � ��

A proof in natural deduction notation of the last statement is the following�

x � ��
�

x � ����� x � ��

�xx� � ��
�

��x�xx� � �����

��x�xx� � ����� ��x�xx� � ��

��x�xx���x�xx� � ��

In fact� equation ��� is like a recursive domain equation D �� �D�D# that
enables us to interpret elements of %� In order to construct a type ��
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satisfying ���� there is an operator � such that putting �� � ������
implies ����

De�nition ������

�� The set of types of ��� notation T� Type����� is de�ned by the
following abstract grammar�

T�VjT�Tj �V�T

	� Let � � T � The tree of �� notation T ���� is de�ned as follows�

T ��� � �� if � a is type variable�
T ���� � � � �

�
� �

�
T ��� T �� �

T ������ � �� if � � ��� � � ���n��
for some n � ��

� T ���� �� ����#�� else�

�� For �� � �Tone de�nes

��� � T ��� � T �� ��

Examples �������

�� If � � ������� then

T �� � � � � � �

�
� �

� �
� �

�
T �� � � � �

�
� �

�
� �

�
� �

�
� � � �

	� If � � ���������������� then
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T �� � � � �

�
� �

�
� �

�
� �

�
� �

�
� �

�
� � � �

�� �������� � ������������

�� ���� � ��� �� ����# for all �� even if � � ������

De�nition ������� The type assignment system �� is de�ned by the nat

ural deduction system shown in the following �gure�

��

�start rule�
�x��� � (

�
( 
 x � �

��
elimination�
( 
M � ���� � ( 
 N � �

�
( 
 �MN � � �

��
introduction�
(� x�� 
M � �

�
( 
 ��x�M � � ���� �

��
rule�
( 
M � � � � �

�
( 
M � �

The following result is taken from Coppo�������

Proposition �������
Let � be an arbitrary type of ��� Then one can derive in ��

�� 
 Y � ��������

�� 
 � � ��

Proof� �� Let � � ������� Then � � ����
Then the following is a derivation for



�� H�P� Barendregt

Y � �f���x�f�xx����x�f�xx�� � ��������

f � ����

x � ��

x � ��� x � �

xx � �

f�xx� � �
�

�x�f�xx� � ���

�x�f�xx� � ��� �x�f�xx� � �

��x�f�xx����x�f�xx�� � �
	

Y � �f���x�f�xx����x�f�xx�� � �������

	� Note that YI��� � and prove and use the subject reduction theorem
for ��� or show 
 � � � directly�

The System ��

The system �� of intersection types is sometimes called the Torino system�
since the initial work on this system was done in that city� for example by
Coppo� Dezani and Venneri �����#� Barendregt� Coppo and Dezani �����#�
Coppo� Dezani� Honsell and Longo �����#� Dezani and Margaria ����
# and
Coppo� Dezani and Zacchi ����
#� See also Hindley ����	#�

The system makes it possible to state that a variable x has two types
� and � at the same time� This kind of polymorphism is to be con

trasted to that which is present in �	� In that system the polymorphism is
parametrized� For example the type assignment

��x�x� � ��������

states that �x�x has type ��� uniformly in �� The assignment x � � � �
states only that x has both type � and type � �

De�nition �������

�� The set of types of ��� notation T� Type����� is de�ned as follows�

T�VjT�TjT�T

	� One of the type variables will be selected as a constant and is notated
as ��

In order to de�ne the rules of type assignment� it is necessary to introduce
a preorder on T�
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De�nition �������

�� The relation � is de�ned on Tby the following axioms and rules�
� � ��
� � �� � � � � � � �
� � ��
� � ����
����� � ���� � � ����� � � ���
� � � � �� � � � � � �
� � �� � � � � � � � � ��
� � ��� � � � � � ���� � ��� ��

	� � � � � � � � ) � � ��

For example one has

� � ������

����� � � ����� �� � ��� � ����� ��

De�nition ������� The system of type assignment �� is de�ned by the
following axioms and rules�

��

�start rule�
�x��� � (

�
( 
 x � �

��
elimination�
( 
M � ���� � ( 
 N � �

�
( 
 �MN � � �

��
introduction�
(� x�� 
 M � �

�
( 
 ��x�M � � ���� �

��
elimination�
( 
M � �� � � �

�
( 
M � � ( 
M � �

��
introduction�
( 
M � � ( 
M � �

�
( 
M � �� � � �

��
introduction� �
( 
M � �

��
rule�
( 
M � � � � �

�
( 
M � �
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Examples �����	� In �� one has

�� 
 �x�xx � ����� � � ����

	� 
 � � �

�� 
 ��pq���r�p��qp�� � ����������

Proof� �� The following derivation proves the statement�

x � ���� � � ��

x � ��� x � �

�xx� � �
�

��x�xx� � ����� � � ����

	� Obvious� In fact it can be shown that M has no head normal form
i� only � is a type for M � see Barendregt� et al� �������

��

q��� p��� r���

�
��r�p� � ����� �qp� � �

��r�p��qp� � �
	

��q���r�p��qp�� � �����
�

��pq���r�p��qp�� � ���������

In van Bakel ������ it is observed that assignment ��� in Example ������
is not possible in ���

Also for �� there are some variants for the system� For example one
can delete the rule �axiom� that assigns � to any term� In van Bakel ������
several of these variants are studied� see theorem �����	�

Combining the systems �a la Curry

The system �	� �� and �� are all extensions of ��� An extension �	��
including all these systems and moreover cartesian products and direct
sums is studied in MacQueen et al� �������
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Basic Properties

The Curry systems ��� �	� �� and �� enjoy several properties� The
most immediate ones� valid for all four systems� will be presented now� In
subsection ��	 it will be shown that subject reduction holds for all systems�
Some other properties like strong normalization are valid for only some of
these systems and will be presented in subsections ��	� ��� and ����

In the following 
 refers to one of the Curry systems ��� �	� �� and
��� The following three properties are proved in the same way as is done
in section ��� for ���

Proposition ������ 
Basis lemma for the Curry systems�� Let ( be
a basis�

�� If (� � ( is another basis� then ( 
M � � � (� 
M � ��

�� ( 
M � � � FV �M � � dom�(��

	� ( 
M � � � ( � FV �M � 
M � ��

Proposition �����
 
Subterm lemma for the Curry systems�� Let
M � be a subterm of M � Then

( 
M � � � (� 
M � � �� for some (� and ���

The moral is� If M has a type� then every subterm has a type as well�

Proposition ������ 
Substitution lemma for the Curry systems��

�� ( 
M � � � (�� �� � # 
M � ��� �� � #�

�� Suppose (� x�� 
 M � � and ( 
 N � �� Then

( 
M �x �� N # � ��

Exercise ������� Show that for each of the systems ��� �	� �� and ��
one has 	
 K � ����� in that system�

��� Subject reduction and conversion

In this subsection it will be shown that for the main systems of type as

signment �a la Curry� viz� ��� �	� �� and �� with or without the extra
rules A and EQ� the subject reduction theorem holds� That is�

( 
M � � and M ��� M
� � ( 
M � � ��
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Subject conversion or closure under the rule EQ is stronger and states that

( 
M � � and M �� M
� � ( 
M � � ��

This property holds only for the systems including �� or rule A �or trivially
if rule EQ is included��

Subject reduction

We start with proving the subject reduction theorem for all the systems�
For �� this was already done in ������� In order to prove the result for
�	 some de�nitions and lemmas are needed� This is because for example
Proposition ����� is not valid for �	� So for the time being we focus on �	
and T� Type��	��

De�nition ������

�� Write � � � if either

� � ����� for some ��

or
� � ����� and � � ���� �� �# for some � �T�

	� � is the re�exive and transitive closure of ��

�� A map o �T�T is de�ned by

�o � �� if � is a type variable�
���� �o � ��� �
������o � �o�

Note that there are exactly two deduction rules for �	 in which the
subject does not change� the � introduction and elimination rules� Several
of these rules may be applied consecutively� obtaining

M � �
���
���

M � �

The de�nition of � is such that in this case � � � � Also one has the
following�
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Lemma ������ Let � � � and suppose no free type variable in � occurs
in (� Then

( 
 M � � � ( 
M � �

Proof� Suppose ( 
 M � � and � � � � Then � � �� � � � � � �n � � for
some ��� � � � � �n� By possibly renaming some variables it may be assumed
that for � � i � n one has

�i�� � ����i � � 	� FV �(�

By de�nition of the relation � and the rules of �	 it follows that for all
i � n one has ( 
M � �i � ( 
 M � �i��� Therefore ( 
M � �n � � �

Lemma ����� 
Generation lemma for �	�Curry��

�� ( 
 x � � � ��� � � �x���� � (�

�� ( 
 �MN � � � � ���� � � � �( 
M � ��� � and ( 
 N � �#�

	� ( 
 ��x�M � � � � ��� � �(� x�� 
M � � and ��� � �#�

Proof� By induction on derivations�

Lemma ������

�� Given �� � there exists a � � such that ���� �� � #�o � �o�� �� � �#�

�� �� � �� � ��� ��� �o� � �o���� �� �� #�

	� ����� � ������� � ��� ��� ����� � �������� �� �� #�

Proof� �� Induction on the structure of ��

	� It su�ces to show this for �� � ���
Case �� �� � ������ Then �o� � �o��
Case 	� �� � ���� and �� � ��� �� � #�
Then by ��� one has �o� � �o�� �� � �# � �o��� �� � �#�

�� By �	� we have

������� � �������o � �����o��� �� �� # � �������� �� �� #�

Theorem ����� 
Subject reduction theorem for �	�Curry��
Let M ��� M

�� Then for �	�Curry one has ( 
M � � � ( 
M � � ��
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Proof� Induction on the derivation of M ��� M
�� We will treat only the

case that M � ��x�P �Q and M � � P �x �� Q#� Now

( 
 ���x�P �Q� � �
� ����� � � �( 
 ��x�P � � ������) ( 
 Q � �#
� ������� � � �(� x��� 
 P � ���) ������ � ����) ( 
 Q � �#

by Lemma ��	�� ��� it follows that

������ � ����������� �� �� #

and hence by Lemma ������ ���

� (� x�� 
 P � ��� ( 
 Q � � and �� � ��
� ( 
 P �x �� Q# � �� and �� � �� by Lemma ������ �	�
� ( 
 P �x �� Q# � �� by Lemma ��	�	�

In Mitchell ������ a semantic proof of the subject reduction theorem for
�	 is given�

The proof of the subject reduction theorem for �� is somewhat easier
than for �	�

Theorem ����	 
Subject reduction theorem for ����
Let M ��� M

�� Then for �� one has

( 
M � � � ( 
M � � ��

Proof� As for �	� but using the relation � instead of ��

The subject reduction theorem holds also for ��� This system is even
closed under the rule EQ as we will see soon�

Subject conversion

For the systems �� and �&A we will see that the subject conversion theorem
holds� It is interesting to understand the reason why �� is closed under
�
expansion� This is not so for ��� �	 and ��� Let M � ��x�P �Q and
M � � P �x �� Q#� Suppose ( 
�� M � � � in order to show that ( 
�� M � ��
Now Q occurs n � � times in M � � each occurrence having type �i� say�
for � � i � n� De�ne � � �� � � � � � �n if n � � and � � � if n � ��
Then ( 
 Q � � and (� x � � 
 P � �� Hence ( 
 ��x�P � � ����� and
( 
 ��x�P �Q � ��
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In ��� �	 and �� it may not be possible to �nd a common type for the
di�erent occurrences of Q� Note also that the type � is essential in case
x 	� FV �P ��

Theorem ����� 
Subject conversion theorem for ���� LetM �� M ��
Then for �� one has

( 
M � � � ( 
M � � ��

Proof� See Barendregt et al� ������� corollary ����

Exercise ����
� Let M � �pq���r�p��qp��

� Show that although M �� �pq�p � ������� in ��� the term M does not
have ����� as type in ��� �	 or �	�

� Give a derivation in �� of �M � ��������

��� Strong normalization

Remember that a lambda term M is called strongly normalizing i� all re

duction sequences starting with M terminate� For example KIK is strongly
normalizing� while KI� not� In this subsection it will be examined in which
systems of type assignment �a la Curry one has that the terms that do have
a type are strongly normalizing� This will be the case for �� and �	 but of
course not for �� and �� �since in the latter systems all terms are typable��
However� there is a variant ��� of �� such that one even has

M is strongly normalizing � M is typable in ����

Turing proved that all terms typable in �� are normalizing� this proof
was only �rst published in Gandy ������� As was discussed in Section
	� normalization of terms does not imply in general strong normalization�
However� for �� and several other systems one does have strong normal

ization of typable terms� Methods of proving strong normalization from
�weak� normalization due to Nederpelt ���
�� and Gandy ������ are de

scribed in Klop �������

Also in Tait ����
� it is proved that all terms typable in �� are nor

malizing� This proof uses the so called method of �computable terms� and
was already presented in the unpublished �Stanford Report� by Howard et
al� �����#� In fact� using Tait�s method one can also prove strong normal

ization and applies to other systems as well� in particular to G�odel�s T � see
Troelstra ���
�#�
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Girard ���
	� gave an �impredicative twist� to Tait�s method in order to
show normalization for terms typable in �the Church version of� �	 and in
the system �� to be discussed in Section �� Girard�s proof was reformulated
in Tait ���
�� and we follow the general �avour of that paper�

We start with the proof of SN for ���

De�nition ������

�� SN � fM � % jM is strongly normalizingg�

	� Let A�B � %� De�ne A�B a subset of % by

A�B � fF � % j �a �A Fa�Bg�

�� For every �� Type���� a set ���## � % is de�ned as follows�

���## � SN� where � is a type variable�

����� ## � ���##���� ##�

De�nition ������

�� A subset X � SN is called saturated if

�a� �n � � �R�� � � � � Rn � SN x�R�X�
where x is any term variable�

�b� �n � � �R�� � � � � Rn � SN�Q � SN

P �x �� Q#�R�X � ��x�P �Q�R�X�

	� SAT � fX � % j X is saturatedg�

Lemma ������

�� SN � SAT�

�� A�B � SAT � A�B � SAT�

	� Let fAigi�I be a collection of members of SAT� then
T
i�I Ai� SAT�

�� For all �� Type���� one has ���##� SAT�

Proof� �� One has SN � SN and satis�es condition �a� in the de�nition
of saturation� As to condition �b�� suppose

P �x �� Q#�R� SN and Q� �R� SN ���

We claim that also
��x�P �Q�R� SN �	�

Indeed� reductions inside P�Q or the �R must terminate since these
terms are SN by assumption �P �x �� Q# is a subterm of a term in
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SN� by ���� hence itself SN� but then P is SN�� so after �nitely many

steps reducing the term in �	� we obtain ��x�P ��Q� �R� with P ��� P
�

etcetera� Then the contraction of ��x�P ��Q� �R� gives

P ��x �� Q�# �R�� ���

This is a reduct of P �x �� Q#�R and since this term is SN also ��� and
the term ��x�P �Q are SN�

	� Suppose A�B � SAT� Then by de�nition x � A for all variables x�
Therefore

F �A�B � Fx �B
� Fx � SN
� F � SN�

So indeed A�B � SN� As to condition � of saturation� let �R � SN�
We must show for a variable x that x�R �A�B� This means

�Q �A x�RQ �B�

which is true since A � SN and B is saturated�

�� Similarly�

�� By induction on the generation of �� using ��� and �	��

De�nition ������

�� A valuation in % is a map ��V�%� where V is the set of term vari

ables�

	� Let � be a valuation in %� Then

��M ##� �M �x� �� ��x��� � � � � xn �� ��xn�#�

where �x � x�� � � � � xn is the set of free variables in M �

�� Let � be a valuation in %� Then � satis
es M � �� notation � � M � ��
if ��M ##� � ���##�
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If ( is a basis� then � satis
es (� notation � � (� if � � x � � for all
�x��� � (�

�� A basis ( satis
es M � �� notation ( � M � �� if

�� �� � (� � � M � �#�

Proposition ����� 
Soundness��

( 
 ��M � � � ( � M � ��

Proof� By induction on the derivation of M � ��

Case �� ( 
M � � with M � x follows from �x��� � (�
Then trivially ( � x � ��

Case 	� ( 
M � � with M �M�M� is a direct consequence of ( 
M� �
��� and ( 
M� � � �
Suppose � � ( in order to show � � M�M� � �� Then � � M� � ���
and � � M� � �� i�e� ��M�##� � �����## � ��� ##����## and ��M�##� � ��� ##�
But then ��M�M�##� � ��M�##���M�##� � ���##� i�e� � � M�M� � ��

Case �� ( 
 M � � with M � �x�M � and � � ����� is a direct conse

quence of (� x��� 
 M � � ���
By the IH one has

(� x � �� � M � � �� ���

Suppose � � ( in order to show � � �x�M � � ������ That is� we
must show

���x�M �##�N � ����## for all N � ����##�

So suppose that N � ����##� Then ��x �� N � � (� x � ��� and hence

��M �##��x�	N� � ����##�

by ���� Since

���x�M �##�N � ��x�M ����y �� ���y�#N
�� M ���y �� ���y�� x �� N #
� ��M �##��x�	N��

it follows from the saturation of ����## that ���x�M
�##�N � ����##�

Theorem ����	 
Strong normalization for ���Curry�� Suppose
( 
�� M � �� Then M is strongly normalizing�
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Proof� Suppose ( 
 M � �� Then ( � M � �� De�ne �o�x� � x for all
x� Then �o � ( �since x � ��� ## holds because ��� ## is saturated�� Therefore
�o � M � �� hence M � ��M ##�o � ���## � SN�

The proof of SN for �� has been given in such a way that a simple
generalization of the method proves the result for �	� This generalization
will be given now�

De�nition ������

�� A valuation in SAT is a map


 �V�SAT

where V is the set of type variables�

	� Given a valuation 
 in SAT one de�nes for every ��Type��	� a set
���##� � % as follows�

���##� � 
���� where � �V�
����� ##� � ���##����� ##��
������##� �

T
X�SAT���##��
�	X�

Lemma ����
� Given a valuation 
 in SAT and a � in Type��	�� then
���##� � SAT�

Proof� As for Lemma �������� using also that SAT is closed under arbi

trary intersections�

De�nition ������

�� Let � be a valuation in % and 
 be a valuation in SAT� Then

�� 
 �M � � � ��M ##� � ���##��

	� For such �� 
 one writes

�� 
 � ( � �� 
 � x � � for all x�� in (�

�� ( �M � � � ��� 
 ��� 
 � ( � �� 
 � M � �#�

Proposition �������

( 
�� M � � � ( � M � ��
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Proof� As for Proposition ����� by induction on the derivation of ( 
M �
�� There are two new cases corresponding to the �
rules�

Case �� ( 
 M � � with � � ���� �� � # is a direct consequence of
( 
M � ������ By the IH one has

( � M � ������ ���

Now suppose �� 
 � ( in order to show that �� 
 � M � ���� �� � #�
By ��� one has

��M ##� � �������##� �
�

X�SAT

����##�
�	X��

Hence
��M ##� � ����##��
�	


 ��� ��

We are done since

����##��
�	


 ��� � � ������ �� � ###�

as can be proved by induction on ��� Type��	� �some care is
needed in case �� � �������

Case �� ( 
M � � with � � ����� and � 	� FV �(� is a direct consequence
of ( 
M � ��� By the IH one has

( � M � ��� �	�

Suppose �� 
 � ( in order to show �� 
 � ������ Since � 	� FV �(�
one has for all X� SAT that also �� 
�� �� X� � (� Therefore

��M ##� � ����##��
�	X� for all X � SAT�

by �	�� hence
��M ##� � �������##��

i�e� �� 
 � M � ������

Theorem ������ 
Strong normalization for �	�Curry��

( 
�� M � ��M is strongly normalizing�

Proof� Similar to the proof of Theorem �����

Although the proof of SN for �	 follows the same pattern as for ���
there is an essential di�erence� The proof of SN���� can be formalized in
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Peano arithmetic� However� as was shown in Girard ���
	�� the proof of
SN��	� cannot even be formalized in the rather strong system A� of �math

ematical analysis� �second order arithmetic�� see also Girard et al� �������
The reason is that SN��	� implies �within Peano arithmetic� the consis

tency of A� and hence G�odel�s second incompleteness theorem applies� An
attempt to formalize the given proof of SN��	� breaks down at the point
trying to formalize the predicate �M � ���##��� The problem is that SAT is a
third
order predicate�

The property SN does not hold for the systems �� and ��� This is ob

vious� since all lambda terms can be typed in these two systems� However�
there is a restriction of �� that does satisfy SN�

Let ��� be the system �� without the type constant �� The following
result is an interesting characterization of strongly normalizing terms�

Theorem ������ 
van Bakel� Krivine��

M can be typed in ��� � M is strongly normalizing�

Proof� See van Bakel ������� theorem ������ or Krivine ������� p� ���

��� Decidability of type assignment

For the various systems of type assignment several questions may be asked�
Note that for ( � fx����� � � � � xn��ng one has

( 
M � � � 
 ��x���� � � � �xn��n�M � � ���� � � ���n����

therefore in the following one has taken ( � �� Typical questions are

�� Given M and �� does one have 
 M � �*

	� Given M � does there exists a � such that 
M � �*

�� Given �� does there exists an M such that 
M � �*

These three problems are called type checking� typability and inhabitation
respectively and are denoted by M � �*� M � * and * � ��

In this subsection the decidability of these three problems will be ex

amined for the various systems� The results can be summarized as follows�
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Decidability of type checking� typability and inhabitation

M � �* M � * * � �
�� yes yes yes
�� ** ** no
�� yes yes� always yes� always
�� no yes� always **
��� no no yes
��� no no no
��� no yes� always yes� always
��A no no yes� always
��A no no yes� always
��A no yes� always yes� always
��A no yes� always yes� always

Remarks ������ The system ��� is the same as �� and therefore it is
not mentioned� The two question marks for �	 indicate�to quote Robin
Milner��embarrassing open problems�� For partial results concerning �	
and related systems see Pfenning ������� Giannini and Ronchi ������� Hen

glein ������� and Kfoury et al� ������� In ������ it will be shown that for �	
the decidability of type checking implies that of typability� It is generally
believed that both problems are undecidable for �	�

Sometimes a question is trivially decidable� simply because the property
always holds� Then we write �yes� always�� For example in �� every term
M has � as type� For this reason it is more interesting to ask whether
termsM are typable in a weaker system ���� However� by theorem �����	
this question is equivalent to the strong normalization of M and hence
undecidable�

We �rst will show the decidability of the three questions for ��� This
occupies ����	 
 ������ and in these items Tstands for Type���� and 
 for

���Curry�

De�nition ������

�� A substitutor is an operation

� �T�T

such that
����� � � �������� ��

	� We write �� for �����

�� Usually a substitution � has a �nite support� that is� for all but
�nitely many type variables � one has �� � � �the support of �
being sup��� � f� j �� 	� �g��
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In that case we write

���� � ���� �� ���� � � � � �n �� ��n#�

where f��� � � � � �ng is the support of �� We also write

� � ��� �� ���� � � � � �n �� ��n#�

De�nition ������

�� Let �� ��T � A uni
er for � and � is a substitutor � such that �� � ���

	� The substitutor � is a most general uni�er for � and � if

�a� �� � ��

�b� ��� � ��� � � �� �� � �� � ��

�� Let E � f�� � ��� � � � � �n � �ng be a �nite set of equations between
types� The equations do not need to be valid� A uni
er for E is
a substitutor � such that ��� � ��� ) � � � ) ��n � ��n� In that case
one writes � j� E� Similarly one de�nes the notion of a most general
uni�er for E�

Examples ������ The types ������� and ������� have a uni�er� For
example � � �� �� ���� � �� �������# or �� � �� �� ���� � �� ����
� �� ���������#� The uni�er � is most general� �� is not�

De�nition ������ � is a variant of � if for some �� and �� one has

� � ��� and � � ��� �

Example ����	� ����� is a variant of ����� but not of ������

Note that if �� and �� are both most general uni�ers of say � and � �
then ��� and ��� are variants of each other and similarly for � �

The following result due to Robinson ������ states that uni�ers can be
constructed e�ectively�

Theorem ����� 
Uni�cation theorem��

�� There is a recursive function U having �after coding
 as input a pair
of types and as output either a substitutor or fail such that

� and � have a uni�er � U ��� � � is a most general uni�er
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for � and � �

� and � have no uni�er � U ��� � � � fail�

�� There is �after coding
 a recursive function U having as input �nite
sets of equations between types and as output either a substitutor or
fail such that

E has a uni�er � U �E� is a most general uni�er for E�

E has no uni�er � U �E� � fail�

Proof� Note that ����� � ����� holds i� �� � �� and �� � �� hold�

�� De�ne U ��� � � by the following recursive loop� using case distinction�

U ��� � � � �� �� � #� if � 	� FV�� ��

� Id� the identity� if � � ��

� fail� else�

U ������� �� � U ��� �������

U ������� ������ � U ��
U�	��
��
� � �

U�	��
��
� � � U ���� ����

where this last expression is considered to be fail if one of its parts is�
Let +var��� � � ��the number of variables in ��� � and +���� � ���the
number of arrows in ��� �� By induction on �+var��� � ��+���� � ��
ordered lexicographically one can show that U ��� � � is always de�ned�
Moreover U satis�es the speci�cation�

	� If E � f�� � ��� � � � � �n � �ng� then de�ne U �E� � U ��� � �� where
� � ���� � ���n and � � ���� � ���n�

See Section 
 in Klop�s chapter in this handbook for more on uni�cation�
The following theorem is essentially due to Wand ����
� and simpli�es the
proof of the decidability of type checking and typability for ���

Proposition ����
� For every basis (� term M � % and � �T such that
FV�M � � dom�(� there is a �nite set of equations E � E�(�M� �� such
that for all substitutors � one has

� j� E�(�M� �� � (� 
M � ��� ���
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(� 
M � �� � �� j� E�(�M� ��� �	�

for some �� such that � and �� have the same

e�ect on the type variables in ( and ��

Proof� De�ne E�(�M� �� by induction on the structure of M �

E�(� x� �� � f� � (�x�g�

E�(�MN� �� � E�(�M� ���� 
 E�(� N� ���

where � is a fresh variable�

E�(� �x�M� �� � E�( 
 fx��g�M� �� 
 f��� � �g�

where �� � are fresh�

By induction onM one can show �using the generation lemma �������� that
��� and �	� hold�

De�nition ������

�� Let M �%� Then �(� �� is a principal pair �pp� for M if

��� ( 
 M � ��

�	� (� 
M � �� � �� �(� � (� ) �� � ��#�

Here fx����� � � �g� � fx������ � � �g�

	� Let M �% be closed� Then � is a principal type �pt� for M if

��� 
M � �

�	� 
M � �� � �� ��� � ��#�

Note that if �(� �� is a pp forM � then every variant �(�� ��� of �(� ��� in
the obvious sense� is also a pp for M � Conversely if �(� �� and �(�� ��� are
pp�s for M � then �(�� ��� is a variant of �(� ��� Similarly for closed terms
and pt�s� Moreover� if �(� �� is a pp for M � then FV�M � � dom�(��

The following result is independently due to Curry ������� Hindley
������ and Milner ���
��� It shows that for �� the problems of type
checking and typability are decidable�

Theorem ������ 
Principal type theorem for ���Curry��

�� There exists �after coding
 a recursive function pp such that one has

M has a type � pp�M � � �(� ��� where �(� �� is a pp for M �
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M has no type � pp�M � � fail�

�� There exists �after coding
 a recursive function pt such that for closed
terms M one has

M has a type � pt�M � � �� where � is a pt for M �

M has no type � pt�M � � fail�

Proof� �� Let FV�M � � fx�� � � � � xng and set (� � fx����� � � � � xn��ng
and �� � �� Note that

M has a type � �( �� ( 
M � �

� � � (�� 
M � ���
� � � � j� E�(��M� ����

De�ne

pp�M � � �(��� �
�
��� if U �E�(��M� ���� � ��

� fail� if U �E�(��M� ���� � fail�

Then pp�M � satis�es the requirements� Indeed� ifM has a type� then
U �E�(��M� ���� � � is de�ned and (�� 
M � ��� by ��� in proposition
������ To show that �(��� �

�
�� is a pp� suppose that also (

� 
 M � ���

Let e( � (� � FV�M �� write e( � (��� and �� � ���� � Then also
(��� 
M � ���� � Hence by �	� in proposition ����� for some �� �acting
the same as �� on (�� ��� one has �� j� E�(��M� ���� Since � is a
most general uni�er �proposition ����
� one has �� � �� � � for some
��� Now indeed

�(���
�� � (��� � (��� � e( � (�

and

�����
�� � ���� � ���� � ���

If M has no type� then �� � � j� E�(��M� ��� hence

U �(��M� ��� � fail � pp�M ��

	� Let M be closed and pp�M � � �(� ��� Then ( � � and we can put
pt�M � � ��
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Corollary ������� Type checking and typability for �� are decidable�

Proof� As to type checking� let M and � be given� Then


M � � �� �� �� � pt�M ��#�

This is decidable �as can be seen using an algorithm�pattern matching�
similar to the one in Theorem ����
��

As to the question of typability� let M be given� Then M has a type i�
pt�M � 	� fail�

Theorem ������� The inhabitation problem for ��� i�e�

�M � % 
�� M � �

is a decidable property of ��

Proof� One has by Corollary ��	��� that

� inhabited in ��
Curry �� � inhabited in ��
Church

�� � provable in PROP�

where PROP is the minimal intuitionistic proposition calculus with only
� as connective and � is considered as an element of PROP� see Section
���� Using �nite Kripke models it can be shown that the last statement is
decidable� Therefore the �rst statement is decidable too�

Without a proof we mention the following result of Hindley �������

Theorem ������ 
Second principal type theorem for ���Curry��
Every type � �Tthere exists a basis ( and term M �% such that �(� �� is
a pp for M�

Now we consider �	� The situation is as follows� The question whether
type checking and typability are decidable is open� However� one has the
following result by Malecki �������

Proposition ������� In �	 the problem of typability can be reduced to
that of type checking� In particular

f�M � �� j 
�� M � �g is decidable � fM j �� 
�� M � �g is decidable�

Proof� One has

�� 
M � � � 
 ��xy�y�M � ������

The implication� is obvious� since 
 ��xy�y� � ������� for all �� The
implication� follows from Proposition �������

Theorem ������� The inhabitation problem for �	 is undecidable�
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Proof� As for �� one can show that

� inhabited in �	
Curry �� � inhabited in �	
Church

�� � provable in PROP	�

where PROP	 is the constructive second
order proposition calculus� In
L�ob ���
�� it is proved that this last property is undecidable�

Proposition �����	� For �� one has the following�

�� Type checking is decidable�

�� Typability is trivially decidable� every ��term has a type�

	� The inhabitation problem for �� is trivially decidable� all types are
inhabited�

Proof� �� See Coppo and Cardone �to appear� who use the samemethod
as for �� and the fact that T ��� � T �� � is decidable�

	� Let �� � ������� Then every M � % has type ��� see the example
before ����

�� All types are inhabited by �� see �����	 �	��

Lemma ������� Let �� be a system of type assignment that satis�es
subject conversion� i�e�

( 
�� M � � ) M �� N � ( 
�� N � ��

�� Suppose some closed terms have type ���� others not�
Then the problem of type checking is undecidable�

�� Suppose some terms have a type� other terms not�
Then the problem of typability is undecidable�

Proof� �� If the set f�M��� j 
M � �g is decidable� then so is
fM j 
M � ���g� But this set is by assumption closed under � and
non
trivial� contradicting Scott�s theorem 	�	����

	� Similarly�



Lambda Calculi with Types 
�

Proposition �����
� For �� one has the following�

�� Type checking problem is undecidable�

�� Typability is trivially decidable� all terms have a type�

Proof� �� Lemma �����
��� applies by ��	�
� the fact that 
 I � ���
and Exercise ����	��

	� For allM one has M � ��

It is not known whether inhabitation in �� is decidable�

Lemma ������� Let �� be one of the systems �a la Curry� Then

�� ( 
��� M � � � �M � �M ��� M
� ) ( 
�� M � � �#�

�� � is inhabited in ��� � � is inhabited in ���

Proof� �� ��� Trivial� since M ��� M � implies M �� M �� ��� By
induction on the derivation of M � �� The only interesting case is
when the last applied rule is an application of rule EQ� So let it be

M� � � M� � M

M � �
�

The induction hypothesis says that for some M �
� with M� ��� M �

�

one has ( 
 ��M
�
� � �� By the Church&Rosser theorem 	���
M �

� and
M have a common reduct� sayM �� But then by the subject reduction
theorem one has ( 
�� M � � � and we are done�

	� By ����

Proposition ������� For the systems ��� one has the following�

�� Type checking is undecidable�

�� Typability is undecidable for ��� and �	�� but trivially decidable
for ��� and ����

	� The status of the inhabitation problem for ��� is the same as for
���

Proof� �� By de�nition subject conversion holds for the systems ����
In all systems I � ���� From Lemma ��������� and Exercise ����	�
it follows that Lemma �����
��� applies�

	� By Theorems ����� and ������ terms without an nf have no type in
�� or �	� Hence by Lemma ��������� these terms have no type in
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��� or �	�� Since for these systems there are terms having a type
lemma �����
�	� applies�

In ��� and ��� all terms have a type�

�� By Lemma �������	��

Lemma ������� Let M be a term in nf� Then


��A M � � � 
�� M � ��

Proof� By induction on the given derivation� using that M �A�M ��

Proposition ������� For the systems �� A the situation is as follows�

�� The problem of type checking is undecidable for the systems ��A�
�	A� ��A and ��A�

�� The problem of typability is undecidable for the system ��A and
�	A but trivially decidable for the systems ��A and ��A �all terms
are typable
�

	� The problem of inhabitation is trivially decidable for all four systems
including rule A �all types are inhabited
�

Proof� �� By Lemma ����	� and Exercise ����	� one has 	
 K � ����
Hence �����
��� applies�

	� Similarly�

�� The inhabitation problem becomes trivial� in all four systems one has


 � � �

for all types �� This follows from Example ������	� and the facts that
YI �� � and �� A is closed under the rule EQ�

The results concerning decidability of type checking� typability and in

habitation are summarised in the table at the beginning of this subsection�
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� Typing �a la Church

In this section several systems of typed lambda calculus will be described
in a uniform way� Church versions will be given for the systems �� and �	�
already encountered in the Curry style� Then a collection of eight lambda

calculi �a la Church is given� the so called ��cube� Two of the cornerstones
of this cube are essentially �� and �	 and another system is among the
family of AUTOMATH languages of de Bruijn ������� The �
cube forms a
natural �ne structure of the calculus of constructions of Coquand and Huet
������ and is organized according to the possible �dependencies� between
terms and types� This will be done in ����

The description method of the systems in the �
cube is generalized
in subsection ��	� obtaining the so called �pure type systems� �PTSs�� In
preliminary versions of this chapter PTSs were called �generalized type
systems� �GTSs�� Several elementary properties of PTS�s are derived�

In subsection ��� it is shown that all terms in the systems of the �

cube are strongly normalizing� However in ��� it turns out that this is not
generally true in PTS�s�

In subsection ��� a cube of eight logical systems will be described� Each
logical system Li corresponds to one of the systems �i on the �
cube� One
has for sentences A


Li A � �M ( 
�i M � ��A##

where ( depends on the similarity type of the language of Li and ��A## is a
canonical interpretation of A in �i� Moreover� the term M can be found
uniformly from the proof ofA in Li� The map ���## is called the propositions�
as�types interpretation� It turns out also that the logical systems can be
described as PTSs and that in this way the propositions
as
type interpre

tation becomes a very simple forgetful map from the logical cube into the
�
cube�

As an application of the propositions
as
types interpretation one can
represent in a natural way data types in �	� Data types correspond to
inductively de�ned sets and these can be naturally represented in second

order predicate logic� one of the systems on the logical cube� Then� by
means of a map from predicate to proposition logic and by the propositions

as
types interpretation one obtains an interpretation of data types in �	�

	�� The cube of typed lambda calculi

In this subsection we introduce in a uniform way the eight typed lambda
calculi ��� �	� ��� ��� �P� �P	� �P�� and �P�� �The system �P� is
often called �C�� The eight systems form a cube as follows�
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�� � �P�

� �

�
�
�
�
�
�	

�
�
�
�
�
�	

�	 � �P	

� �

�� � �P�

�
�
�
�
�
�	

�
�
�
�
�
�	

�� � �P

Fig� �� The �
cube�

where each edge � represents the inclusion relation �� This cube will be
referred to as the ��cube�

The system �� is the simply typed lambda calculus� already encoun

tered in section ��	� The system �	 is the polymorphic or second order
typed lambda calculus and is essentially the system F of Girard ���
	��
the system has been introduced independently in Reynolds ���
��� The
Curry version of �	 was already introduced in Section ���� The system ��
is essentially the system F� of Girard ���
	�� The system �P reasonably
corresponds to one of the systems in the family of AUTOMATH languages�
see de Bruijn ������� �A more precise formulation of several AUTOMATH
systems can be given as PTSs� see subsection ��	�� This system �P ap

pears also under the name LF in Harper et al� ����
�� The system �P	
is studied in Longo and Moggi ������ under the same name� The system
�C � �P� is one of the versions of the calculus of constructions introduced
by Coquand and Huet ������� The system �� is related to a system stud

ied by Renardel de Lavalette ������� The system �P� seems not to have
been studied before� �For �� and �P� read� �weak ��� and �weak �P��
respectively��

As we have seen in Section �� the system �� and �	 can be given also
�a la Curry� A Curry version of �� appears in Giannini and Ronchi ������
and something similar can probably be done for ��� On the other hand� no
natural Curry versions of the systems �P� �P	� �P� and �C seem possible�

Now �rst the systems �� and �	 �a la Church will be introduced in the
usual way� Also �� and �P will be de�ned� Then the �
cube will be de�ned
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in a uniform way and two of the systems on it turn out to be equivalent to
�� and �	�

���Church

Although this system has been introduced already in subsection ��	� we will
repeat its de�nition in a stylistic way� setting the example for the de�nition
of the other systems�

De�nition ������ The system ��
Church consists of a set of types T�
type����� a set of pseudoterms %T� a set of bases� a conversion �and
reduction� relation on %Tand a type assignment relation 
�

The sets Tand %Tare de�ned by an abstract syntax� bases are de�ned
explicitly� the conversion relation is de�ned by a contraction rule and 
 is
de�ned by a deduction system as follows�

�� Types T�VjT�T�
	� Pseudoterms %T� V j %T%Tj �V �T�%�
�� Bases ( � fx��A�� � � � � xn�Ang�

with all xi distinct and all Ai �T�
�� Contraction rule ��x�A�M �N��M �x �� N #�
�� Type assignment ( 
M � A is de�ned as follows�

��

�start
rule�
�x�A� � (

�
( 
 x�A

��
elimination�
( 
M � �A�B� ( 
 N � A

�
( 
 �MN � � B

��
introduction�
(� x�A 
M �B

�
( 
 ��x�A�M � � �A�B�

Remarks ������

�� In � the character Vdenotes the syntactic category of type variables�
Similarly in 	 the character V denotes the category of term vari

ables� In � the letter x denotes an arbitrary term variable� In � the
x�� � � � � xn are distinct term variables� In � and � the letters A�B
denote arbitrary types and M�N arbitrary pseudoterms� The basis
(� x�A stands for (
fx�Ag� where it is necessary that x is a variable
that does not occur in (�

	� A pseudotermM is called legal if for some ( and A one has ( 
M �A�
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Typical examples of type assignments in �� are the following� Let
A�B �T�


 ��a�A�a� � �A�A��
b�B 
 ��a�A�b� � �A�B��
b�A 
 ���a�A�a�b� � A�

c�A� b�B 
 ��a�A�b�c � B�

 ��a�A��b�B�a� � �A�B�A��

The system �T

Type and term constants are not o�cially introduced in this chapter� How

ever� these are useful to make axiomatic extensions of �� in which certain
terms and types play a special role� We will simulate constants via vari

ables� For example one may select a type variable � and term variables �� S
and R	 for each � in Tas constants� one postulates in an initial context
the following�

� � ��

S � ����

R	 � ����������������

Further one extends the de�nitional equality by adding to the �
contraction
rule the following contraction rule for R	�

R	MN� � M �

R	MN �Sx� � N �R	MNx�x�

This extension of �� is called �T or G
odel�s theory T of primitive recursive
functionals ��G�odel�s T ��� The type � stands for the natural numbers with
element � and successor function S� the R	 stand for the recursion operator
creating recursive functionals of type ���� In spite of the name� more than
just the primitive recursive functions are representable� This is because
recursion is allowed on higher functionals� see e�g� Barendregt �������
appendix A�	��� and Terlouw ����	� for an analysis�

�	�Church

De�nition ������ The system �	
Church is de�ned as follows�
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�� Types T�VjT�Tj �VT�
	� Pseudoterms %

T
� V j %

T
%
T
j %
T
Tj �V �T%

T
j %V%

T
�

�� Bases ( � fx��A�� � � � � xn�Ang�

with �x distinct and �A �T�
�� Contraction rules ��a�A�M �N��M �a �� N #

�%��M �A��M �� �� A#
�� Type assignment ( 
M � A is de�ned as follows�

�	

�start
rule�
�x�A� � (

�
( 
 x � A

��
elimination�
( 
M � �A�B� ( 
 N � A

�
( 
 �MN � � B

��
introduction�
(� a�A 
M � B

�
( 
 ��a�A�M � � �A�B�

��
elimination�
( 
M � ����A�

�
( 
MB � A��� � B#

B �T�

��
introduction�
( 
 M � A

� � 	� FV�(��
( 
 �%��M � � ����A�

Typical assignments in �	 are the following�


 ��a���a� � ������

 �%��a���a� � ���������

 �%��a���a�A � �A�A��

b�A 
 �%��a���a�Ab � A�

fof course the following reduction holds�

�%��a���a�Ab���a�A�a�b�b� g

 �%��a��������a����������a� � ��������������

ffor this last example one has to think twice to see that it is correct� a
simpler term of the same type is the followingg


 �%��a��������a�� � ��������������

Without a proof we mention that the Church&Rosser property holds for
reduction on pseudoterms in �	�
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Dependency

Types and terms are mutually dependent� there are

terms depending on terms�
terms depending on types�
types depending on terms�
types depending on types�

The �rst two sorts of dependency we have seen already� Indeed� in ��
we have

F � A�B M � A � FM � B�

Here FM is a term depending on a term �e�g� on M�� For �	 we saw

G � ������ A a type � GA � A�A�

Hence for G � %��a���a one has that GA is a term depending on the type
A�

In �� and �	 one has also function abstraction for the two dependen

cies� For the two examples above

�m�A�Fm � A�B�

%��G� � �������

Now we shall de�ne two other systems �� and �P with types FA �FM
resp� depending on types �respectively terms�� We will also have function
abstraction for these dependencies in �� and �P�

Types depending on types� the system ��

A natural example of a type depending on another type is ��� that de

pends on �� In fact it is natural to de�ne f � �� � T���� such that
f��� � ���� This will be possible in the system ��� Another feature of
�� is that types are generated by the system itself and not in the informal
metalanguage� There is a constant � such that � � � corresponds to � �T�
The informal statement

�� � �T� ����� �T

now becomes the formal

���� ��� 
 ����� � ��

For the f above we then write f � ��� � ����� The question arises
where this f lives� Neither on the level of the terms� nor among the types�
Therefore a new category K �of kinds� is introduced

K � � j K�K�

That is K � f�� ���� ������ � � �g� A constant � will be introduced such
that k � � corresponds to k � K� If 
 k � � and 
 F � k� then F is called a
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constructor of kind k� We will see that 
 ���� � ����� � ������ i�e� our f
is a constructor of kind ���� Each element of Twill be a constructor of
kind ��

Although types and terms of �� can be kept separate� we will consider
them as subsets of one general set T of pseudo expressions� This is a
preparation to ������ ����� and ������ in which it is essential that types and
terms are being mixed�

De�nition ����� 
Types and terms of ����

�� A set of pseudo
expressions T is de�ned as follows

T � V j C j T T j �V �T �T j T �T

where V is an in�nite collection of variables and C of constants�

	� Among the constants C two elements are selected and given the
names � and �� These so called sorts � and � are the main rea

son to introduce constants�

Because types and terms come from the same set T � the de�nition of a
statement is modi�ed accordingly� Bases have to become linearly ordered�
The reason is that in �� one wants to derive

���� x�� 
 x � ��
��� 
 ��x���x� � �����

but not
x��� ��� 
 x � ��

x�� 
 ���� � �x� � �����

in which � occurs both free and bound�

De�nition ����� 
Contexts for ����

�� A statement of �� is of the form M � A with M�A � T �

	� A context is a �nite linearly ordered set of statements with distinct
variables as subjects� (�,� � � � range over contexts�

�� �� denotes the empty context� If ( � �x��A�� � � � � xn�An� then
(� y�B � �x��A�� � � � � xn�An� y�B��

De�nition ����	 
Typing rules for ���� The notion ( 
�� M � A is
de�ned by the following axiom and rules� The letter s ranges over f���g�
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��

�axiom� �� 
 � � ��

�start
rule�
( 
 A � s

�
(� x�A 
 x � A

x 	� (�

�weakening rule�
( 
 A � B ( 
 C � s

�
(� x�C 
 A � B

x 	� (�

�type�kind formation�
( 
 A � s ( 
 B � s

�
( 
 �A�B� � s

�application rule�
( 
 F � �A�B� ( 
 a � A

�
( 
 Fa � B

�abstraction rule�
(� x�A 
 b � B ( 
 �A�B� � s

�
( 
 ��x�A�b� � �A�B�

�conversion rule�
( 
 A � B ( 
 B� � s B �� B

�

�
( 
 A � B�

Example ������

���� ��� 
�� ����� � ��
���� ���� x������ 
�� x � ������

���� ��� 
�� ��x�������x� � ��������������

Write D � ��� � ����� Then the following hold�


�� D � ������
��� 
�� ��x�D��x� � D�D���

Types depending on terms� the system �P

An intuitive example of a type depending on a term is An�B with n a
natural number� In order to formalize the possibility of such �dependent
types� in the system �P� the notion of kind is extended such that if A is
a type and k is a kind� then A�k is a kind� In particular A�� is a kind�
Then if f � A�� and a � A� one has fa � �� This fa is a term dependent
type� Moreover one has function abstraction for this dependency�
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Another idea important for a system with dependent types is the for

mation of cartesian products� Suppose that for each a � A a type Ba is
given and that there is an element ba � Ba� Then we may want to form the
function

�a�A�ba

that should have as type the cartesian product

 a�A�Ba

of the Ba�s� Once these product types are allowed� the function space type
of A and B can be written as

�A�B� �  a�A�B�� BA� informally��

where a is a variable not occurring in B� This is analogous to the fact that
a product of equal numbers is a power�

nY
i	�

bi � bn

provided that bi � b for � � i � n� So by using products� the type
constructor � can be eliminated�

De�nition ����
 
Types and terms of �P��

�� The set of pseudo
expressions of �P� notation� T is de�ned as follows

T � V j C j T T j �V �T �T j  V �T �T

where V is the collection of variables and C that of constants� No
distinction between type
 and term
variables is made�

	� Among the constants C two elements are called � and ��

De�nition ����� 
Assignment rules for �P�� Statements and contexts
are de�ned as for �� �statements are of the form M �A with M�A � T �
contexts are �nite linearly ordered statements��
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The notion 
 is de�ned by the following axiom and rules� Again the letter
s ranges over f���g�

�P

�axiom� �� 
 � � ��

�start
rule�
( 
 A � s

�
(� x�A 
 x � A

x 	� (�

�weakening rule�
( 
 A � B ( 
 C � s

�
(� x�C 
 A � B

x 	� (�

�type�kind formation�
( 
 A � � (� x�A 
 B � s

�
( 
 � x�A�B� � s

�application rule�
( 
 F � � x�A�B� ( 
 a � A

�
( 
 Fa � B�x �� a#

�abstraction rule�
(� x�A 
 b � B ( 
 � x�A�B� � s

�
( 
 ��x�A�b� � � x�A�B�

�conversion rule�
( 
 A � B ( 
 B� � s B �� B

�

�
( 
 A � B�

Typical assignments in �P are the following�

A�� 
 �A��� � ��
A��� P �A��� a�A 
 Pa � ��
A��� P �A��� a�A 
 Pa�� � ��

A��� P �A�� 
 � a�A�Pa��� � ��
A��� P �A�� 
 ��a�A�x�Pa�x� � � a�A��Pa�Pa��

Pragmatics of �P

Systems like �P have been introduced by N�G� de Bruijn ���
��� ������ in
order to represent mathematical theorems and their proofs� The method
is as follows� One assumes there is a set prop of propositions that is closed
under implication� This is done by taking as context (� de�ned as

prop��� Imp�prop�prop�prop�

Write � � 
 for Imp�
� In order to express that a proposition is valid
a variable T � prop�� is declared and � � prop is de�ned to be valid if
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T� is inhabited� i�e� M � T� for some M � Now in order to express that
implication has the right properties� one assumes �e and �i such that

�e�
 � T�� � 
��T��T
�

�i�
 � �T��T
��T�� � 
��

So for the representation of implicational proposition logic one wants to
work in context (prop consisting of (� followed by

T � prop��
�e �  ��prop 
�prop�T�� � 
��T��T

�i �  ��prop 
�prop��T��T
��T�� � 
��

As an example we want to formulate that � � � is valid for all propositions�
The translation as type is T�� � �� which indeed is inhabited

(prop 
�P ��i����x�T��x�� � T�� � ���

�Note that since 
 T� � � one has 
 ��x�T��x� � �T��T����
Having formalized many valid statements de Bruijn realized that it was

rather tiresome to carry around the T� He therefore proposed to use � itself
for prop� the constructor � for � and the identity for T� Then for �e�

one can use

�x����
��y���xy

and for �i�

�x����
��x�

In this way the f�� �g fragment of �manysorted constructive� predicate
logic can be interpreted too� A predicate P on a set �type� A can be
represented as a P ��A��� and for a�A one de�nes Pa to be valid if it
is inhabited� Quanti�cation �x � A�Px is translated as  x�A�Px� Now a
formula like

��x �A�y �A�Pxy#���x�A�Pxx#

can be seen to be valid because its translation is inhabited

A��� P �A�A�� 
 ��z�� x�A y�A�Pxy��x�A�zxx� �

�� x�A y�A�Pxy#�� x�A�Pxx#��

The system �P is given that name because predicate logic can be inter

preted in it� The method interprets propositions �or formulas� as types
and proofs as inhabiting terms and is the basis of several languages in the
family AUTOMATH designed and implemented by de Bruijn and cowork

ers for the automatic veri�cation of proofs� Similar projects inspired by
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AUTOMATH are described in Constable et al������� �NUPRL�� Harper et
al�����
� �LF� and Coquand and Huet ������ �calculus of constructions��
The project LF uses the interpretation of formulas using T��prop��� like
the original use in AUTOMATH� In Martin
L�of ������ the proposition
as

types paradigm is used for formulating results in the foundation of mathe

matics�

The ��cube

We will now introduce a cube of eight systems of typed lambda calculi�
This so called ��
cube� forms a natural framework in which several known
systems �a la Church� including ��� �	� �� and �P are given in a uniform
way� It provides a �nestructure of the calculus of constructions� which is
the strongest system in the cube� The di�erentiation between the systems
is obtained by controlling the way in which abstractions are allowed�

The systems �� and �	 in the �
cube are not given in their original
version� but in a equivalent variant� Also for some of the other known sys

tems the versions on the cube are only in essence equivalent to the original
ones� The point is that there are some choices for the precise formulation
of the systems and in the cube these choices are made uniformly�

De�nition ������ 
Systems of the ��cube��

�� The systems of the �
cube are based on a set of pseudo
expressions
T de�ned by the following abstract syntax�

T � V j C j T T j �V �T �T j  V �T �T

where V and C are in�nite collections of variables and constants re

spectively� No distinction between type
 and term
variables is made�

	� On T the notions of �
conversion and �
reduction are de�ned by the
following contraction rule�

��x�A�B�C�B�x �� C#�

�� A statement is of the form A � B with A�B �T � A is the subject and
B is the predicate of A � B� A declaration is of the form x�A with
A�T and x a variable� A pseudo�context is a �nite ordered sequence of
declarations� all with distinct subjects� The empty context is denoted
by ��� If ( �� x��A�� � � � � xn�An �� then

(� x�B �� x��A�� � � � � xn�An� x�B � �

Usually we do not write the �� �
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�� The rules of type assignment will axiomatize the notion

( 
 A � B

stating that A � B can be derived from the pseudo
context (� in that
case A and B are called �legal� expressions and ( is a �legal� context�

The rules are given in two groups�

�a� the general axiom and rules� valid for all systems of the �
cube�

�b� the speci�c rules� di�erentiating between the eight systems� the

se are parametrized  
introduction rules�

Two constants are selected and are given the names � and �� These
two constants are called sorts� Let S � f���g and s� s�� s� range over
S�

Systems in the ��cube

�� General axiom and rules�

�axiom� �� 
 � � ��

�start rule�
( 
 A � s

�
(� x�A 
 x � A

x 	� (�

�weakening rule�
( 
 A � B ( 
 C � s

�
(� x�C 
 A � B

x 	� (�

�application rule�
( 
 F � � x�A�B� ( 
 a � A

�
( 
 Fa � B�x �� a#

�abstraction rule�
(� x�A 
 b � B ( 
 � x�A�B� � s

�
( 
 ��x�A�b� � � x�A�B�

�conversion rule�
( 
 A � B ( 
 B� � s B �� B

�

�
( 
 A � B�

	� The speci�c rules

�s�� s�� rule
( 
 A � s�� (� x�A 
 B � s�

�
( 
 � x�A�B� � s�
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We use A�B�C� a� b� � � � for abitrary pseudo
terms and x� y� z� � � � for
arbitrary variables�

�� The eight systems of the �
cube are de�ned by taking the general rules
plus a speci�c subset of the set of rules f��� ��� ������ ��� ��� �����g�

System Set of speci�c rules
�� ��� ��
�	 ��� �� ��� ��
�P ��� �� �����
�P	 ��� �� ��� �� �����
�� ��� �� �����
�� ��� �� ��� �� �����
�P� ��� �� ����� �����
�P���C ��� �� ��� �� ����� �����

The �
cube will usually be drawn in the standard orientation displayed as
follows� the inclusion relations are often left implicit�

�� �C

�
�
�
�
�
�

�
�
�
�
�
�

�	 �P	

�� �P�

�
�
�
�
�
�

�
�
�
�
�
�

�� �P

Remark ������� Most of the systems in the �
cube appear elsewhere in
the literature� often in some variant form�
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System related system�s� names and references

�� �
 simply typed lambda calculus�
Church �������
Barendregt ������� Appendix A�
Hindley and Seldin ������� Ch ���

�	 F scond order �typed� lambda calculus�
Girard ���
	��
Reynolds ���
���

�P AUT
QE� LF de Bruijn ���
���
Harper et al� ����
��

�P	 Longo and Moggi �������
�� POLYREC Renardel de Lavalette �������
�� F� Girard ���
	��
�P� � �C CC calculus of constructions�

Coquand and Huet �������

Remarks �������

�� The expression � ���������� in �	 being a cartesian product of
types will also be a type� so � ���������� � �� But since it is a
product over all possible types �� including the one in statu nascendi
�i�e� � ���������� itself is among the types in ��� there is an essential
impredicativity here�

	� Note that in �� one has also in some sense terms depending on types
and types depending on types�

�x�A�x is a term depending on the type A�
A�A is a type depending on the type A�

But in �� one has no function abstraction for these dependencies�
Note also that in �� �and even in �	 and ��� one has no types
depending on terms� The types are given beforehand� The right

hand side of the cube is essentially more di�cult then the left
hand
side because of the mixture of types and terms�

The two versions of �� and �	

Now we have given the de�nition of the �
cube� we want to explain why
�� and �	 in the cube are essentially the same as the systems with the
same name de�ned in ����� and ����� respectively�
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De�nition ������� In the systems of the �
cube we use the following
notation�

A�B �  x�A�B� where x is fresh �not in A�B��

Lemma ������� Consider �� in the ��cube� If ( 
 A � � in this system�
then A is built up from the set fB j �B � �� � (g using only � �as de�ned
in �����	
�

Proof� By induction on the generation of 
�

Notice that the application rule implies the �
elimination rule�

( 
 F � �A�B���  x�A�B� ( 
 a � A
�

( 
 �Fa� � B�x �� a# � B

since x does not occur in B� It follows that if e�g� in �� in the �
cube one
derives

A��� B��� a�A� b�B 
M � C � �

then
a�A� b�B 
 M � C

is derivable in the system �� as de�ned in ������
Similarly one shows that both variants of �	 are the same by �rst de�n


ing in the �
cube
���A �  ����A�

%��M � �����M�

Of course the use of the greek letter � is only suggestive� after all� it is a
bound variable and its name is irrelevant�

Some derivable type assignments in the ��cube

We end this subsection by giving some examples of type assignment for
the systems in the �
cube� The examples for �� and �	 given before are
essentially repeated in the new style of the systems�

The reader is invited to carefully study these examples in order to gain
some intuition in the systems of the �
cube� Some of the examples are
followed by a comment fin curly bracketsg� In order to understand the
intended meaning for the systems on the right plane in the �
cube �i�e� the
rule pair ����� is present�� some of the elements of � have to be considered
as sets and some as propositions� The examples show that the systems
in the �
cube are related to logical systems and form a preview of the
propositions
as
type interpretation described in subsection ���� Names of
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variables are chosen freely as either Roman or Greek letters� in order to
follow the intended interpretation� The notation ( 
 A � B � C stands for
the conjunction of ( 
 A � B and ( 
 B � C�

Examples �������

�� In �� the following can be derived�

A�� 
 � x�A�A� � ��
A�� 
 ��a�A�a� � � x�A�A��

A��� B��� b�B 
 ��a�A�b� � �A�B��
where �A�B� � � x�A�B��

A��� b�A 
 ���a�A�a�b� � A�
A��� B��� c�A� b�B 
 ���a�A�b�c� � B�

A��� B�� 
 ��a�A�b�B�a� � �A��B�A�� � ��

	� In �	 the following can be derived�

��� 
 ��a���a� � ������

 ������a���a� � � ���������� � ��

A�� 
 ������a���a�A � �A�A��
A��� b�A 
 ������a���a�Ab � A�

of course the following reduction holds�

������a���a�Ab � ��a�A�a�b
� b�

The following two examples show a connection with second
order
proposition logic�


 ������a�� �������a�� ���������a� � � ����� ����������

fFor this last example one has to think twice to see that it is correct�
a simpler term of the same type is the following� write � � � �������
which is the second
order de�nition of falsum�g


 ������a���a�� � � ���������

fThe type considered as proposition says� ex falso sequitur quodlibet �
i�e� anyting follows from a false statement� the term in this type is its
proof�g

�� In �� the following can be derived
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 ���������� � ����� � �

f���������� is a constructor mapping types into typesg�

��� 
 ����������� � ��
���� x�� 
 ��y���x� � �����������

fnote that ��y���x� has type ��� in the given contextg�

���� f ���� 
 f�f�� � ��
��� 
 ��f �����f�f��� � �������

fin this way higher
order constructors are formedg�

�� In �P the following can be derived�

A�� 
 �A��� � �

fif A is a type considered as set� then A�� is the kind of predicates
on Ag�

A��� P ��A���� a�A 
 Pa � �

fif A is a set� a � A and P is a predicate on A� then Pa is a type
considered as proposition �true if inhabited� false otherwise�g�

A��� P ��A�A��� 
 � a�A�Paa� � �

fif P is a binary predicate on the set A� then �a�A Paa is a propo

sitiong�

A��� P �A��� Q�A�� 
 � a�A��Pa�Qa�� � �

fthis proposition states that the predicate P considered as a set is
included in the predicate Qg�

A��� P �A�� 
 � a�A��Pa�Pa�� � �

fthis proposition states the re�exivity of inclusiong�

A��� P �A�� 
 ��a�A�x�Pa�x� � � a�A��Pa�Pa�� � �

fthe subject in this assignment provides the �proof� of re�exivity of
inclusiong�

A��� P �A��� Q�� 
 �� a�A�Pa�Q��� a�A�Pa��Q� � �

A��� P �A��� Q��� a��A 
 ��x�� a�A�Pa�Q��y�� a�A�Pa��xao�yao�� �
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� x�� a�A�Pa�Q� y�� a�A�Pa��Q� �
� a�A�Pa�Q��� a�A�Pa��Q

fthis proposition states that the proposition

��a �A�Pa�Q����a �A�Pa��Q

is true in non
empty structures A� notice that the lay out explains
the functioning of the ��rule� in this type assignment the subject is
the �proof� of the previous true proposition� note that in the context
the assumption a��A is needed in this proof�g

�� In �� the following can be derived�
Let �)� �  �������������� then

���� ��� 
 �)� � �

fthis is the �second
order de�nition of )� and is de�nable already in
�	g�

Let AND � ����������)� and K � ���������x���y���x� then


 AND � ��������

 K � � ��� �����������

fNote that �)� and K can be derived already in �	� but the term
AND cannotg�

���� ��� 
 ��x�AND���x��K���� � � AND����� � �

fthe subject is a proof that AND���� is a tautologyg�

�� In �P	 fcorresponding to second
order predicate logicg the following
can be derived�

A��� P �A�� 
 ��a�A�Pa��� � �A���

A��� P �A�A�� 
 �� a�A b�A�Pab�Pba���

�� a�A�Paa���# � �

fthe proposition states that a binary relation that is asymmetric is
irre�exiveg


� In �P� the following can be derived�

A�� 
 ��P �A�A���a�A�Paa� � ��A�A�����A���� � �
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fthis constructor assigns to a binary predicate P on A its �diagona

lization�g�


 ��A���P �A�A���a�A�Paa� � � A�� P �A�A�� a�A��� � �

fthe same is done uniformly in Ag�

�� In �P� � �C the following can be derived�


 ��A���P �A���a�A�Pa��� � � A����A�����A���� � �

fthis constructor assigns to a type A and to a predicate P on A the
negation of Pg�

Let ALL � ��A���P �A��� a�A�Pa�� then

A��� P �A�� 
 ALLAP � � and �ALLAP � �� � a�A�Pa�

funiversal quanti�cation done uniformlyg�

Exercise �����	�


� De�ne 	 � �������
� Construct a term M such that in �


� � �� � � � �M � ��������	��	����

	� Find an expression M such that in �P	

A��� P ��A�A��� �

M � ��
a�A
b�A�Pab�Pba�
���
a�A�Paa�
�� � ��

�� Find a term M such that in �C

A��� P �A��� a�A �M � �ALLAP�Pa��

	�� Pure type systems

The method of generating the systems in the �
cube has been generalized
independently by Berardi ������ and Terlouw ������� This resulted in the
notion of pure type system �PTS�� Many systems of typed lambda calculus
�a la Church can be seen as PTSs� Subtle di�erences between systems can
be described neatly using the notation for PTSs�

One of the successes of the notion of PTS�s is concerned with logic�
In subsection ��� a cube of eight logical systems will be introduced that
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is in a close correspondence with the systems on the �
cube� This result
is the so called �propositions
as
types� interpretation� It was observed by
Berardi ������ that the eight logical systems can each be described as a
PTS in such a way that the propositions
as
types interpretation obtains a
canonical simple form�

Another reason for introducing PTSs is that several propositions about
the systems in the �
cube are needed� The general setting of the PTSs
makes it nicer to give the required proofs� Most results in this subsection
are taken formGeuvers and Nederhof ������ and also serve as a preparation
for the strong normalization proof in Section ����

The pure type systems are based on the set of pseudo
terms T for the
�
cube� We repeat the abstract syntax for T �

T � V j C j T T j�V �T T j  V �T T

De�nition ������ The speci
cation of a PTS consists of a triple
S � �S� A� R� where

�� S is a subset of C� called the sorts�

	� A is a set of axioms of the form

c � s

with c � C and s � S�

�� R is a set of rules of the form

�s�� s�� s��

with s�� s�� s� � S�

It is useful to divide the set V of variables into disjoint in�nite subsets Vs
for each sort s� S� So V � 
fVs j s �Sg� The members of Vs are denoted
by sx� sy� sz� � � �� Arbitrary variables are often still denoted by x� y� z� � � � �
however if necessary one writes x � sx to indicate that x � Vs� The �rst
version of �	 introduced in ����� can be understood as x� y� z� � � � ranging
over V� and �� �� �� � � � over V�� For reasons of hygiene it will be useful to
assume that if s�x� and

s�x� occur both in a pseudo
term M� then

s� 	� s� � x� � x��

If this is not the case� then a simple renaming can establish this�

De�nition������ The PTS determined by the speci�cation S � �S�A�R��
notation �S���S�A�R�� is de�ned as follows� Statements and contexts are
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de�ned as for the �
cube� The notion of type derivation ( 
�S A � B �we
just write ( 
 A � B� is de�ned by the following axioms and rules�

��S�A�R�

�axioms� ��
 c � s� if �c � s� �A�

�start�
( 
 A � s

�
(� x � A 
 x � A

if x � sx 	� (�

�weakening�
( 
 A � B ( 
 C � s

�
(� x � C 
 A � B

if x � sx 	� (�

�product�
( 
 A � s� (� x�A 
 B � s�

�
( 
 � x�A�B� � s�

if �s�� s�� s�� �R�

�application�
( 
 F � � x�A�B� ( 
 a � A

�
( 
 Fa � B�x �� a#

�abstraction�
(� x�A 
 b � B ( 
 � x�A�B� � s

�
( 
 ��x�A�b� � � x�A�B�

�conversion�
( 
 A � B ( 
 B� � s B �� B

�

�
( 
 A � B�

In the above we use the following conventions�
s ranges over S� the set of sorts�
x ranges over variables�

The proviso in the conversion rule �B �� B�� is a priori not decidable�
However it can be replaced by the decidable condition

B� �� B or B �� B
�

without changing the set of derivable statements�

De�nition ������

�� The rule �s�� s�� is an abbreviation for �s�� s�� s��� In the �
cube only
systems with rules of this simpler form are used�

	� The PTS ��S�A�R� is called full if
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R � f�s�� s�� j s�� s� � Sg�

Examples ������

�� �	 is the PTS determined by�

S � f���g

A � f� � �g

R � f��� ��� ��� ��g�

Speci�cations like this will be given more stylistically as follows�

�	
S ���
A � � �
R ��� ��� ��� ��

	� �C is the full PTS with

�C
S ���
A � � �
R ��� ��� ��� ��� ������ �����

�� A variant �C� of �C is the full PTS with

�C�
S �t� �p��
A �t � �� �p � �
R S�� i�e� all pairs

�� �� is the PTS determined by

��
S ���
A � � �
R ��� ��

�� A variant of ��� called �
 in Barendregt ������ Appendix A� is the
PTS determined by

�

S �
A � � �
R ��� ��
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The di�erence with �� is that in �
 no type variables are possible
but only has constant types like �� ���� ������ � � ��

�� The system �� in which � is the sort of all types� including itself� is
speci�ed by

��
S �
A � � �
R ��� ��

In subsection ��� it will be shown that the system �� is �inconsis

tent�� in the sense that all types are inhabited� This result is known
as Girard�s paradox� One may think that the result is caused by
the circularity in � � �� however Girard ���
	� showed that also the
following system is inconsistent in the same sense� see Section ����

�U
S ����,
A � � ��� � ,
R ��� ��� ��� ��� ������ �,���� �,� ��


� �Geuvers �������� The system of higher
order logic in Church ������
can be described by the following PTS� see Ssection ��� for its use�

�HOL
S ����,
A � � ��� � ,
R ��� ��� ��� ��� �����

�� �van Benthem Jutting �������� So far none of the rules has been of
the form �s�� s�� s��� Several members of the AUTOMATH family� see
van Daalen ������ and de Bruijn ������� can be described as PTSs
with such rules� The sort , serves as a �parking place� for certain
terms�

�AUT
��

S ����,
A � � �
R ��� ��� �����,�� ��� ��,�

�����,�� ���,�,�� ���,�,�

This system is a strengthening of �� in which there are more pow

erful contexts�

�AUT
QE

S ����,
A � � �
R ��� ��� ������ ��� ��,�

�����,�� ���,�,�� ���,�,�
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This system corresponds to �P�

�PAL

S ����,
A � � �
R ��� ��,�� �����,�� ��� ��,�

�����,�� ���,�,�� ���,�,�

This system is a subsystem of ��� An interesting conjecture of de
Bruijn states that mathematics from before the year ���� can all be
formalized in �PAL�

In subsection ��� we will encounter rules of the form �s�� s�� s�� in order
to represent �rst
order but not higher
order functions�

Properties of arbitrary PTSs

Now we will state and prove some elementary properties of PTSs� In ��	�� 

��	��
 the notions of context� derivability etc� refer to �S � ��S�A�R�� an
arbitrary PTS� The results are taken from Geuvers and Nederhof �������

Notation ������

�� ( 
 A � B � C means ( 
 A � B)( 
 B � C�

	� Let , � u��B�� � � � � un�Bn with n � � be a pseudocontext� Then
( 
 , means ( 
 u��B� ) � � � ) ( 
 un�Bn�

De�nition ����	� Let ( be a pseudocontext and A be a pseudoterm�

�� ( is called legal if �P�Q� T ( 
 P � Q�

	� A is called a (�term if �B � T �( 
 A � B or ( 
 B � A#�

�� A is called a (�type if �s � S�( 
 A � s#�

�� If ( 
 A � s� then A is called a (�type of sort s�

�� A is called a (�element if �B � T �s � S�( 
 A � B � s#�

�� If ( 
 A � B � s then A is called a (�element of type B and of sort s�


� A � T is called legal if �(� B �( 
 A � B or ( 
 B � A#�

De�nition ������ Let ( � x��A�� � � � � xn�An and , � y��B�� � � � � ym�Bm

be pseudo
contexts�
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�� A statement x�A is in (� notation �x�A� � (� if x � xi and A � Ai

for some i�

	� ( is part of ,� notation ( � ,� if every x�A in ( is also in ,�

�� Let � � i � n $ �� Then the restriction of ( to i� notation ( � i� is
x��A�� � � � � xi���Ai���

�� ( is an initial segment of ,� notation ( � ,� if for some j � m $ �
one has ( � , � j�

Lemma ����
 
Free variable lemma for PTS�s��
Let ( � x��A�� � � � � xn�An be a legal context� say ( 
 B � C� Then the
following hold�

�� The x�� � � � � xn are all distinct�

�� FV �B�� FV �C� � fx�� � � � � xng�

	� FV �Ai� � fx�� � � � � xi��g for � � i � n�

Proof� ���� �	�� ���� By induction on the derivation of ( 
 B � C�

The following lemmas show that legal contexts behave as expected�

Lemma ����� 
Start lemma for PTS�s�� Let ( be a legal context�
Then

�� �c � s� is an axiom � ( 
 c � s�

�� �x�A� � ( � ( 
 x � A�

Proof� ���� �	�� By assumption ( 
 B � C for some B and C� The result
follows by induction on the derivation of ( 
 B � C�

Lemma ������ 
Transitivity lemma for PTS�s�� Let ( and , be
contexts of which ( is legal� Then

�( 
 , ) , 
 A � B#� ( 
 A � B�

Proof� By induction on the derivation of , 
 A � B�
We treat two cases�

Case �� , 
 A � B is �� 
 c � s with c � s an axiom� Then by the start
lemma ��	�� ��� we have ( 
 c � s� since ( is legal� �Note that
trivially ( 
 ��� so one needs to postulate that ( is legal��

Case 	� , 
 A � B is , 
 � x�A��A�� � s� and is a direct consequence of
, 
 A� � s� and ,� x�A� 
 A� � s� for some �s�� s�� s���R� It may
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be assumed that x does not occur in (� Write (� � (� x�A�� Then
by the induction hypothesis ( 
 A� � s�� so (� 
 ,� x�A�� Hence

(� x�A� 
 A� � s�

and hence by the product rule

( 
 � x��A��A���s�

i�e� ( 
 A � B�

Lemma ������ 
Substitution lemma for PTS�s�� Assume

(� x�A�, 
 B � C ���

and
( 
 D � A� �	�

Then
(�,�x �� D# 
 B�x �� D# � C�x �� D#�

Proof� By induction on the derivation of ���� We treat two cases� Write
M� for M �x �� D#�

Case �� The last rule used to obtain ��� is the start rule�

Subcase ���� , ���� Then the last step in the derivation of ��� is

( 
 A � s
�

(� x�A 
 x � A

so in this subcase �B � C� � �x � A�� We have to show

( 
 �x � A�� � �D � A�

which holds by assumption �	��

Subcase ��	� , � ,�� y�E and the last step in the derivation of ��� is

(� x�A�,� 
 E � s
�

(� x�A�,�� y�E 
 y � E

We have to show
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(�,�
�� y�E

� 
 y � E��

but this follows directly from the induction hypothesis (�,�
� 


E� � s�

Case 	� The last applied rule to obtain ��� is the application rule� i�e�

(� x�A�,�
 B� � � y�C��C�� (� x�A�, 
 B� � C�
�

(� x�A�, 
 �B�B�� � C��y �� B�#

By the induction hypothesis one has

(�,� 
 B�
� � � y�C

�
� �C

�
�� and (�,

� 
 B�
� � C

�
�

and hence
(�,� 
 �B�

�B
�
� � � �C

�
� �y �� B�

� #�

so by the substitution lemma for terms� 	����� one has

(�,� 
 �B�B��
� � �C��y �� B�#�

��

Lemma ������ 
Thinning lemma for PTS�s�� Let ( and , be legal
contexts such that ( � ,� Then

( 
 A � B � , 
 A � B�

Proof� By induction on the length of derivation of ( 
 A � B� We treat
two cases�
Case �� ( 
 A � B is the axiom �� 
 c � s� Then by the start lemma ��	��
one has , 
 c � s�
Case 	� ( 
 A � B is an ( 
 � x�A��A�� � s� and follows from ( 
 A� � s�
and (� x�A� 
 A� � s�� By the IH one has , 
 A� � s� and since it may
be assumed that x does not occur in , it follows that ,� x�A� 
 x � A��i�e�
,� x�A� is legal� But then again by the IH ,� x�A� 
 A� � s� and hence
, 
 � x�A��A�� � s��

The following result analyses how a type assignment ( 
 A � B can be
obtained� according to whether A is a variable� a constant� an application�
a �
abstraction or a  
abstraction�
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Lemma ������ 
Generation lemma for PTS�s��

�� ( 
 c � C � �s � S �C �� s ) �c � s� is an axiom#�
	� ( 
 x � C � �s � S�B �� C �( 
 B � s ) �x�B� � (

) x � sx#�
�� ( 
 � x�A�B� � C � ��s�� s�� s�� �R �( 
 A � s� )

(� x�A 
 B � s� ) C �� s�#�
�� ( 
 ��x�A�b� � C � �s � S�B �( 
 � x�A�B��s )

(� x�A 
 b � B ) C �� � x�A�B�#�
�� ( 
 �Fa� � C � �A�B �( 
 F � � x�A�B� )

( 
 a � A ) C �� B�x �� a##�

Proof� Consider a derivation of ( 
 A � C in one of the cases� The rules
weakening and conversion do not change the term A� We can follow the
branch of the derivation until the term A is introduced the �rst time� This
can be done by

� an axiom for ��

� the start rule for 	

� the product
rule for ��

� the application rule for ��

� the abstraction
rule for ��

In each case the conclusion of the axiom or rule is (� 
 A � B� with (� � (
and B� �� B� The statement of the lemma follows by inspection of the
used axiom or rule and the thinning lemma ��	��	 �

The following corollary states that every (
term is a sort� a (
type or a
(
element� Note however that the classes of sorts� (
types and (
elements
overlap� For example� in �� with context ( � � � � one has that ��� is
both a (
type and a (
element� indeed�

( 
 ��x���x� � ����� � � and ( 
 ����� � � � ��

Also it follows that subexpressions of legal terms are again legal� Subex

pressions are de�ned as usual� �M sub A i� M�Sub�A�� where Sub�A��
the set of subexpressions of A� is de�ned as follows�

Sub�A� � fAg� if A is one of the constants
�including the sorts� or variables�

� fAg
 Sub�P �
 Sub�Q�� if A is of the form
 x�P�Q� �x�P�Q or PQ��
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Corollary ������� In every PTSone has the following�

�� ( 
 A � B � �s�B � s or ( 
 B � s#

�� ( 
 A � � x�B��B��� �s�� s��( 
 B� � s� ) (�� x � B� 
 B� � s�#�

	� If A is a (�term� then A is a sort� a (�type or a (�element�

�� If A is legal and B sub A� then B is legal�

Proof� �� By induction on the derivation of ( 
 A � B�

	� By ��� and ��� of the generation lemma �notice that � x�B��B�� 	� s��

�� By ���� distinguishing the cases ( 
 A � C and ( 
 C � A�

�� Let A be legal� By de�nition either ( 
 A � C or ( 
 C � A� for
some ( and C� If the �rst case does not hold� then by ��� it follows
that A � s� hence B � A is legal� So suppose ( 
 A � B� It follows
by induction on the structure of A� using the generation lemma� that
any subterm of A is also legal�

Theorem ������ 
Subject reduction theorem for PTS�s��

( 
 A � B ) A��� A
� � ( 
 A� � B�

Proof� Write (��(� i� ( � x��A�� � � � � xn�An�(� � x��A��� � � � � xn�A
�
n and

for some i one has Ai�A�i and Aj � A�j for j 	� i� Consider the statements

( 
 A � B ) A�� A
� � ( 
 A� � B� �i�

( 
 A � B ) (�� (
� � (� 
 A � B� �ii�

These will be proved simultaneously by induction on the generation of
( 
 A � B� We treat two cases�

Case �� The last applied rule is the product rule� Then ( 
 A � B is
( 
 � x�A��A�� � s� and is a direct consequence of ( 
 A� � s�
and (� x�A� 
 A� � s� for some rule �s�� s�� s��� Then �i� and
�ii� follow from the IH �for �i� and �ii�� and �ii�� respectively��

Case 	� The last applied rule is the application rule� Then ( 
 A � B
is ( 
 A�A� � B��x �� A�# and is a direct consequence of
( 
 A� � � x�B��B�� and ( 
 A� � B�� The correctness of �ii�
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follows directly from the IH� As to �i�� by Corollary ��	��� ���
it follows that for some sort s

( 
 � x�B��B�� � s�

hence by the generation lemma

( 
 B� � s��

(� x�B� 
 B� � s��

-From this it follows with the substitution lemma that

( 
 B��x �� A�# � s� ���

Subcase 	��� A� � A��A
�
� and A��A�� or A��A��� The IH and the applica


tion rule give
( 
 A��A

�
� � B��x �� A��#

Therefore by ��� and the conversion rule

( 
 A��A
�
� � B��x �� A�#

which is ( 
 A� � B�

Subcase 	�	� A� � �x�A���A�� and A
� � A���x �� A�#� Then we have

( 
 ��x�A���A��� � � x�B��B�� �	�

( 
 A� � B�� ���

By the generation lemma applied to �	� we get

( 
 A�� � s� ���

(� x�A�� 
 A�� � B
�
� ���

(� x�A�� 
 B
�
� � s�

 x�B��B� �  x�A���B
�
� ���

for some B�
� and rule �s�� s�� s��� From ��� and the Church&

Rosser property� we obtain
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B� � A�� and B� � B�
� �
�

By ���� ��� and �
� it follows from the conversion rule

( 
 A� � A���

hence by ��� and the substitution lemma

( 
 �A���x �� A�#� � �B
�
��x �� A�#��

From this ��� and the conversion rule we �nally obtain

( 
 �A���x �� A�#� � �B��x �� A�#�

which is ( 
 A� � B�

Corollary �����	� In every PTSone has the following�

�� �( 
 A � B ) B ��� B
�# � ( 
 A � B��

�� If A is a (�term and A��� A
�� then A� is a (�term�

Proof� �� If ( 
 A � B� then by Corollary ��	��� ��� B � s or ( 
 B � s�
for some sort s� In the �rst case also B� � s and we are done� In
the second case one has� by the subject reduction theorem� ��	����
( 
 B� � s and hence by the conversion rule ( 
 A � B��

	� By ��	��� and ����

The following result is proved in van Benthem Jutting ������ extending
in a nontrivial way a result of Luo ������ for a particular type system� The
proof for arbitrary PTSs is somewhat involved and will not be given here�

Lemma ������ 
Condensing lemma for PTS�s�� In every PTS one
has the following�

(� x�A�, 
 B � C ) x 	�,� B�C � (�, 
 B � C�

Here x 	�,� � � � means that x is not free in , etc�

Corollary �����
 
Decidability of type checking and typability for
normalizing PTS�s�� Let �S � ��S�A�R�� with S �nite� be a PTS that
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is �weakly or stongly
 normalizing� Then the questions of type checking
and typability �in the sense of subsection ���
 are decidable�

Proof� This is proved in van Benthem Jutting ������ as a corollary to the
method of lemma ��	��
� not to the result itself�

On the other hand Meyer ������ shows that for �� these questions are not
decidable�

In ��	��� 
 ��	�		 we will consider results that hold only in special PTS�s�

De�nition ������� Let �S � ��S�A�R� be a given PTS�
�S is called singly sorted if

�� �c � s��� �c � s�� �A � s� � s��

	� �s�� s�� s��� �s�� s�� s��� �R � s� � s���

Examples �������

�� All systems in the �
cube and �� and �U as well are singly sorted�

	� The PTS speci�ed by

S ����,
A � � �� � � ,
R ��� ��� �����

is not singly sorted�

Lemma ������ 
Uniqueness of types lemma for singly sorted PTS�s��
Let �S be a PTSthat is singly sorted� Then

( 
 A � B� ) ( 
 A � B� � B� �� B��

Proof� By induction on the structure of A� We treat two cases� Assume
( 
 A � Bi for i � �� 	�
Case �� A � c� a constant� By the generation lemma it follows that

�si � Bi �c � si� is an axiom

for i � �� 	� By the assumption that �S is singly sorted we can conclude
that s� � s�� hence B� � B��
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Case 	� A �  x�A��A�� By the generation lemma it follows that

( 
 A� � s� ) (� x � A� 
 A� � s� ) B� � s�

( 
 A� � s
�
� ) (� x�A� 
 A� � s

�
� ) B� � s��

for some rules �s�� s�� s�� and �s��� s
�
�� s

�
��� By the induction hypothesis it

follows that s�� � s� and s�� � s� hence s�� � s� and s�� � s�� Hence by
the fact that �S is singly sorted we can conclude that s�� � s�� Therefore
B� � B�

Corollary ������� Let �S be a singly sorted PTS�

�� Suppose ( 
 A � B and ( 
 A� � B�� Then

A �� A
� � B �� B

��

�� Suppose ( 
 B � s� B �� B� and ( 
 A� � B�� Then ( 
 B� � s�

Proof� �� If A �� A�� then by the Church&Rosser theorem A ��� A��

and A� ��� A
�� for some A��� Hence by the subject reduction theorem

��	���
( 
 A�� � B and ( 
 A�� � B��

But then by uniqueness of types B �� B��

	� By the assumption and Corollary ��	��� it follows that ( 
 B� � s� or
B� � s� for some sort s��

Case �� ( 
 B� � s�� Since B and B� have a common reduct B��� it follows
by the subject reduction theorem that ( 
 B�� � s and ( 
 B�� � s�� By
uniqueness of types one has s � s� and hence ( 
 B� � s�
Case 	� B� � s�� Then B ��� s

�� hence by subject reduction ( 
 s� � s� i�e�
( 
 B� � s�

Now we introduce a classi�cation of pseudoterms that is useful for the
analysis of legal terms in systems of the �
cube�

De�nition ������� A map � � T �f�� �� 	� �g is de�ned as follows�

���� � �� ���� � 	� ���x� � �� ���x� � ��

��s� � ��sx� � arbitary� say �� if s 	� �� ��

���x�A�B� � �� x�A�B� � ��BA� � ��B��

For A � T the value ��A� is called the degree of A�
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It will be shown for all systems in the �
cube that if ( 
 A � B� then
��A� $ � � ��B�� This is a folklore result for AUTOMATH
like systems
and the proof below is due to van Benthem Jutting� First some lemmas�

Lemma ������� In �C and hence in all systems of the ��cube one has the
following�

�� ( 	
 � � A�

�� ( 	
 �AB� � ��

	� ( 	
 ��x�A�b� � ��

Proof� �� By induction on derivations one shows

( 
 B � A� B 	� �

	� Similarly one shows ( 
 �AB� � C � C 	� ��
We treat the case that the application rule is used last�

( 
 A � � x�P�Q� ( 
 B � P

( 
 �AB� � Q�x �� B#�� C�

By ��	��� ��� one has ( 
 � x�P�Q� � s� hence by the generation
lemma (� x�P 
 Q � s� Therefore by ( 
 B � P and the substitution
lemma

( 
 C � Q�x �� B# � s

By ��� it follows that C 	� ��

�� If ( 
 ��x�A�b� � �� then by the generation lemma for some B one
has � x�A�B� �� �� contradicting the Church&Rosser theorem�

Lemma �������

�� ( 
�C A � �� ��A� � 	�

�� ( 
�C A � B ) ��A� � f	� �g � B � ��

Proof� �� By induction on derivations�

	� Similarly� We treat two cases �that turn out to be impossible��

Case �� The abstraction rule is used last�
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(� x�A� 
 b � B� ( 
 � x�A��B�� � s
�

( 
 ��x�A��b� � � x�A��B��

Since ��b� � ���x�A��b� � f	� �g one has by the IH that B� � ��
By the generation lemma it follows that (� x�A� 
 B� � s

�� which
is impossible by ��	�	� ����

Case 	� The conversion rule is used last�

( 
 A � b� ( 
 B� � s B� �� B
�

( 
 A � B

By the IH one has B� � �� But then B ��� � so by subject
reduction ( 
 � � s� Again this contradicts ��	�	� �i��

Lemma �����	� If ��x� � ��Q�� Then ��P �x �� Q#� � ��P ��

Proof� Induction in the structure of P �

De�nition �������

�� A statement A � B is ok if ��A� $ � � ��B��

	� A statement A � B is hereditarily ok� notation hok� if it is ok and
moreover all substatements y � P �occurring just after a symbol ���
or � �� in A and B are ok�

Proposition �����
� Let ( 

�C A � B� Then A � B and all statements in

( are hok�

Proof� By induction on the derivation of ( 
 A � B� We treat four cases�

Case �� �axiom�� The statement in ��
 � � � is hok�

Case 	� �start rule�� Suppose all statements in ( 
 A � s are hok�
Then also in (� sx�A 
 sx�A� since ��sx� � ��s�� 	 and ��A� �
��s� � ��

Case �� �application rule�� Suppose that the statements in ( 
 F �
� x�A�B� and ( 
 a � A are hok� We have to show that
�Fa� � �B�x �� a#� is hok� This statement is ok since

��Fa� $ � � ��F � $ � � �� x�A�B� � ��B� � ��B�x �� a#�

by Lemma ��	�	� and the fact that x � A and a � A are ok �so
that ��x� � ��a��� The statement is also hok since all parts
y � P occur already in (� F� � x�A�B� or a�

Case �� �conversion rule�� Suppose that all statements in ( 
 A �
B�( 
 B� � s are hok and that B �� B

�� If we can show that
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��B� � ��B�� it follows that also A � B� is hok and we are
done� By Lemma ��	�		 �	� one has ( 
 B � s�

Subcase ���� s � �� Then ��B� � 	 � ��B�� by Lemma ��	�	����

Subcase ��	� s � �� Then ( 
 B � � and hence by Lemma ��	�	��	� one
has ��B� 	� f	� �g� Since A � B is ok� we must have ��B� � ��
Moreover B� � s � � is ok� hence also ��B�� � ��

Corollary ������� ( 
�C A � B � ��A� $ � � ��B��

Proposition �������

�� Let ��x�A�b�a be legal in �C� Then ��x� � ��a��

�� Let A be legal in �C� Then

A��� B � ��A� � ��B��

Proof� �� By Corollary ��	������ one has ( 
 ��x�A�b�a � B for some (
and B� Using the generation lemma once it follows that

( 
 ��x�A�b� � � x�A��B�� and ( 
 a � A��

and using it once more that ( 
 A � s and � x�A�B��� �� � x�A��B���
for some s and B��� Then A �� A�� by the Church
Rosser theorem�
Hence by the conversion rule ( 
 a � A� Therefore a � A is ok� But
also x � A is ok� Thus it follows that ��x� � ��a��

	� By induction on the generation of A ��� B� using ��� and lemma
��	�	��

Finally we show that PTS�s extending �	 the type � � � �� � ��� can
be inhabited only by non normalizing terms� Hence� if one knows that
the system is normalizing�as is the case for e�g� �	 and �C�then this
implies that � is not inhabited� On the other hand if in a PTS the type
� is inhabited�as is the case for e�g� ���then not all typable terms are
normalizing�

Proposition ������� Let �S be a PTS extending �	� Suppose 
�S M � ��
Then M has no normal form�
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Proof� Suppose towards a contradiction that M has a nf N � Then by the
subject reduction theorem ��	��� one has 
�S N � �� By the generation
lemma N cannot be constant or a term starting with  � since both kinds
of terms should belong to a sort� but � is not a sort� Moreover N is not
a variable since the context is empty� Suppose N is an application� write
N � N�N� � � �Nk� where N� is not an application anymore� By a reasoning
as before N� cannot be a variable or a term starting with  � But then
N� � ��x�A�P �� hence N contains the redex ��x�A�P �N�� contradicting the
fact that N is a nf� Therefore N neither can be an application� The only
remaining possibility is that N starts with a �� Then N � �a� � �B and
since 
 N � � one has a�� 
 B � a� Again by the generation lemma B
cannot be a constant nor a term starting with  or �� The only remaining
possibility is that B � xC� � � �Ck� But then x � a and k � �� Hence
a�� 
 a � a which implies a � �� a contradiction� �The sets V and C are
disjoint��

	�� Strong normalization for the ��cube

Recall that a pseudo
termM is called strongly normalizing� notation SN�M ��
if there is no in�nite reduction starting fromM �

De�nition ������ Let �S be a PTS� Then �S is strongly normalizing�
notation

�S � SN� if all legal terms of �S are SN� i�e�

( 
 A � B � SN�A� ) SN�B��

In this subsection it will be proved that all systems in the �
cube satisfy
SN� For this it is su�cient to show �C � SN� This was �rst proved by
Coquand ������� We follow a proof due to Geuvers and Nederhof ������
which is modular� �rst it is proved that

�� � SN � �C � SN ���

and then
�� � SN �	�

The proof of �	� is due to Girard ���
	� and is a direct generalization
of his proof of �	 � SN as presented in subsection ���� Although the proof
is relatively simple� it is ingenious and cannot be carried out in higher

order arithmetic� On the other hand the proof of ��� can be carried out
in Peano arithmetic� This has as consequence that �� � SN and �C � SN
are provably equivalent in Peano arithmetic� a fact that was �rst shown by
Berardi ������ using proof theoretic methods� The proof of Geuvers and
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Nederhof uses a translation between �C and �� preserving reduction� This
translation is inspired by the proof of Harper et al� ����
� showing that

�� � SN � �P � SN

using a similar translation� Now ��� and �	� will be proved� The proof is
rather technical and the readers may skip it when �rst reading this chapter�

Proof of �� � SN � �C � SN

This proof occupies ����	 & ������� Two partial maps � �T �T and �� ##�T �T
will be de�ned� Then � will be extended to contexts and it will be proved
that

( 
�C A � B � � �(� 
�� ��A## � � �B�

and
A��A

� � ��A##��		� ��A
�##�

�M ��		� N means that M ��� N in at least one reduction step� Then
assuming that �� � SN one has

( 
�C A � B � SN���A##�
� SN�A��

as is not di�cult to show� This implies that we are done since by Corollary
��	��� it follows that also

( 
�C A � B � SN�B��

In order to ful�ll this program� next to � and �� ## another partial map � is
needed�

De�nition ������

�� Write Ti� fM � T j ��M � � ig and Ti�j� Ti 
 Tj� similarly Ti�j�k is
de�ned�

	� Let A � T � In �C one uses the following terminology�

A is a kind � �(�( 
 A � �#�
A is a constructor � �(� B�( 
 A � B � �#�
A is a type � �(�( 
 A � �#�
A is an object � �(� B�( 
 A � B � �#�

Note that types are constructors and that for A legal in �C one has

A is kind � ��A� � 	�
A is constructor or type � ��A� � ��
A is object � ��A� � ��

Moreover for legal A one has ��A� � � i� A � ��
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De�nition ������ A map ��T����T is de�ned as follows�

���� � ��
���� � ��

�� x�A�B� � ��A����B�� if ��A� � 	�
� ��B�� if ��A� 	� 	�

���x�A�B� � ��B��
��BA� � ��B��

It is clear that if ��A��f	� �g� then ��A� is de�ned and moreover FV ���A��
� ��

Lemma ������

�� ( 
�C A � � � 
�� ��A� � ��

�� Let A � T��� and ��a� � ��x�� Then ��A�x �� a#� � ��A��

	� Let A � T��� be legal and A��� B� Then ��A� � ��B��

�� Let ( 
�C Ai � �� i � �� 	� Then

A� �� A� � ��A�� � ��A���

Proof� �� By induction on the generation of A � �� We treat two cases�
Case �� ( 
�C A � � is (�� x�C 
�C A � � and follows directly from
(� 
�C A � � and (� 
�C C � s� By the induction hypothesis one has

�� ��A� � ��
Case 	� ( 
�C A � � is ( 
�C �A�A�� � B�x �� A�# and follows
directly from ( 
�C A� � � x�C�B� and ( 
�C A� � C� Then either
B � �� which is impossible by Lemma ��	�	��	�� or B � x and
A� � �� But also ( 
�C � � C is impossible�

	� By induction on the structure of A�

�� By induction on the relation��� using �	� and Proposition ��	��� for
the case A � ��x�D�P �Q and B � P �x �� Q#�

�� By ����

A special variable � with � � � will be used in the de�nition of �� More

over� in order to de�ne the required map from �C to �� �canonical� con

stants in types are needed� For this reason a �xed context (� will be
introduced from which it follows that every type has an inhabitant�
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De�nition ������

�� (� is the �� context
���� c���

where � �  x���x�

	� If ( 
�� B � �� then cB is de�ned as cB�

�� If ( 
�� B � �� then cB is de�ned inductively as follows� note that
if B 	� �� then it follows from the generation Lemma ��	��� that
B � B��B�� Therefore we can de�ne

c� � ��

cB��B� � �x�B��c
B� �

Lemma ����	� If ( 
�� B � s� then (��( 
�� cB � B�

Proof� If s � �� then cB � cB and the conclusion clearly holds� If s � ��
then the result follows by induction on B�

De�nition ������

�� A map � �T������T is de�ned as follows�

� ��� � ��
� ��� � ��
� ��x� � �x�
� � x�A�B� �  x���A��� �A��� �B�� if ��A� � 	�

�  x�� �A��� �B�� if ��A� � ��
� � �B�� else�

� ��x�A�B� � �x���A��� �B�� if ��A� � 	�
� � �B�� else�

� �BA� � � �B�� if ��A� � ��
� � �B�� �A�� else�

	� The map � is extended to pseudo
contexts as follows�

� ��x�A� � �x�� �A�� � ��x�A� � �x���A�� �x�� �A��

Let ( � x��A�� � � � � xn�An be a pseudo
context� Then

� �(� � (�� � �x��A��� � � � � � �xn�An��

By induction on the structure of A it follows that if A � T������ then � �A�
is de�ned and moreover �x 	� FV �� �A���
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Lemma ����
�

�� Let B � T����� and ��a� � ��x�� Then

� �B�x �� a#� � � �B��x �� � �a�#� if x � �x�
� � �B�� if x � �x�

�� If A � T����� is legal and A�� B� then � �A��� � �B��

Proof� �� By induction on the structure of B� using Lemma ���������

	� By induction on the generation of A �� B� We only treat the case
A � ��x�D�b�a and B � b�x �� a#� By the generation lemma it
follows that ( 
 D � s with s � � or s � �� In the �rst case one has
x � �x and by ���

� ���x�D�b�a� � � �b� � � �b�x �� a#� � � �B��

In the second case one has x � �x and by ���

� �A� � ��x���D��� �b��� �a�
� � �b��x �� � �a�#
� � �B��

Lemma ������ Let ( 
�C B � � or B � �� Then

( 
�C A � B � � �(� 
�� � �A� � ��B��

Proof� By induction on the proof of ( 
�C A � B� We treat three cases�

Case �� ( 
�C A � B is (�� x�C 
�C A � B and follows from (� 
�C A � B and
(� 
�C C � s by the weakening rule� By the IH one has

� �(�� 
�� � �A� � ��B� ) � �(�� 
�� � �C� � ��

We must show
� �(��� � �x�C� 
�� � �A� � ��B�� ���

If x � �x� then � �x�C� � x�� �C� and ��� follows from the IH by
weakening� If x � �x� then � �x�C� � �x���C�� �x�� �C� and ��� follows
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from the IH by weakening twice� �Note that in this case (� 
�C C � ��
so by Lemma ����� ��� one has 
�� ��C� � ���

Case 	� ( 
�C A � B is ( 
�C ��x�D�b� � � x�D�B� and follows from ( 
�C
� x�D�B� � s and (� x�D 
�C b � B� By the assumption of the
theorem one has s � ��

Subcase 	��� ��D� � 	� By the IH it follows among other things that

� �(� 
�� � x���D��� �D��� �B�# � �

� �(���x���D�� �x�� �D� 
�� � �b� � ��B�� �	�

We must show

� �(� 
�� ��x���D��� �D�� � ���D����B���

Now �x does not occur in ��B� since it is closed� nor in � �b�� There

fore� by �	� and the substitution lemma� using c
�D� in context (� �
� �(�� one has

� �(���x���D� 
�� � �b� � ��B�

and hence

� �(� 
�� ��x���D��� �b�� � � x���D����B�� � ��D����B�

� �� x�D�B��

since ��B� is closed�

Subcase 	�	� ��D� � �� Similarly�

Case �� ( 
�C A � B is ( 
�C � x�D�E� � s�
and follows directly from ( 
�C D � s� and (� x�D 
�C E � s��

Subcase ���� s� � �� The IH states

� �(� 
�� � �D� � ��
� �(�� x�� �D� 
�� � �E� � ��

We have to show

� �(� 
�� � x�� �D��� �E�� � ��

but this follows immediately from the IH�
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Subcase ��	� s� � �� The IH states now

� �(� 
�� � �D� � ��
� �(���x���D�� �x�� �D� 
�� � �E� � ��

We have to show

� �(� 
�� � x���D��� �D��� �E�� � ��

this follows from the IH and the fact that the fresh variable �x does
not occur in � �E��

Now the third partial map on pseudo
terms will be de�ned�

De�nition ������� The map ���##�T������T is de�ned as follows� Remem

ber that in the context (� � ���� c�� we de�ned expressions cA such that
( 
 A � s� (��( 
 cA � A�

���## � c�

���x## � �x

���x## � �x�
�� x�A�B## � c�������A##���B##��x �� c��A�#��x �� c
�A�#�� if ��A� � 	�

� c�������A##���B##��x �� c
�A�#�� if ��A� 	� 	�
���x�A�B## � ��z����x���A���x�� �A����B##���A##� if ��A� � 	�

� ��z����x�� �A����B##���A##� if ��A� 	� 	�
��BA## � ��B##� �A���A##� if ��A� � 	�

� ��B##��A##� if ��A� 	� 	�

In the above z � �z is fresh�

Proposition �������

( 
�C A � B � � �(� 
�� ��A## � � �B��

Proof� By induction on the derivation of A � B� We treat two cases�

Case �� ( 
�C A � B is ( 
�C � x�D�E� � s� and follows from ( 
�C D � s�
and (� x�D 
 E � s�� By the IH one has � �(� 
�� ��D## � � and
� �(� x�D� 
�� ��E## � �� By Lemma ����� one has � �(� 
�� � �D� � ��
hence � �(� 
�� c
�D� � � �D��
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If s� � �� then x � �x and � �(� x�D� � � �(�� x�� �D�� Therefore by
the substitution lemma

� �(� 
�� ��E##�x �� c
�D�# � ��

Hence by the application rule twice

� �(� 
�� c�������D##���E##�x �� c
�D�#� � ��

If s� � �� then x � �x and � �(� x�D� � � �(���x���D�� �x�� �D��
Therefore by the substitution lemma

� �(� 
�� ��E##�
�x �� c��D�#��x �� c
�D�# � ��

Hence by the application rule twice

� �(� 
�� c�������D##���E##��x �� c��D�#��x �� c
�D�#� � ��

In both cases one has

� �(� 
�� �� x�D�E## � �

Case 	� ( 
�C A � B is ( 
�C ��x�D�b� � � x�D�B� and follows from

(� x�D 
�C b � B

and
( 
�C � x�D�B� � s�

By the generation lemma �and the Church
Rosser theorem� one has
for some sort s�

( 
�C D � s� ) (� x � D 
�C B � s�

By the IH one has

� �(� x�D� 
�� ��b## � � �B�

and
� �(� 
�� ��D## � ��

By Lemma ����� one has

� �(� 
�� � �D� � �

and
� �(� x�D� 
�� � �B� � ��

If s� � �� then x � �x and � �(� x�D� � � �(�� x�� �D��
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Therefore by two applications of the abstraction rule and one appli

cation of the product rule one obtains

� �(� 
�� ���z���x�� �D����b##���D##� � �� �D��� �B���

If s� � �� then a similar argument shows

� �(� 
�� ��z���
�x���D���x�� �D����b##���D## � � x���D��� �D��� �B���

In both cases one has

� �(� 
�� ���x�D�b## � � � x�D�B��

Lemma ������� Let A�B � T � Then

�� x � �x� ��A��x �� B### � ��A##��x �� ��B###

�� x � �x� ��A��x �� B### � ��A##��x �� � �B�� �x �� ��B###�

Proof� �� By induction on the structure of A� We treat one case� A �
 y�D�E� Write P� � P �x �� B#� Now

��A�## � �� y�D��E�##

� c�������D�##��E�##�y �� c
�D
��#

� �c�������D##��E##�y �� c
�D�#��x �� ��B###
� �� y�D�E##�x �� ��B###�

by the induction hypothesis� the substitution lemmaand the fact that
� �D��x �� B#� � � �D��

	� Similarly� using the convention about hygiene made in de�nition
��	���

Lemma ������� Let A�B � T������ Then

A�B � ��A##��		� ��B##�

where ��		� denotes that the reduction takes at least one step�
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Proof� By induction on the generation of A�B� We treat only the case
that A�B is

��x�D�P �Q�P �x �� Q#�

If x � �x� then

����x�D�P �Q## � ��z���x�� �D����P ##���D##��Q##
��		� ��P ##�x �� ��Q###
� ��P �x �� Q###�

If x � �x� then

����x�D�P �Q## � ��z����x���D���x�� �D����P ##���D##� �Q���Q##
��		� ��P ##��x �� � �Q�� �x �� ��Q###
� ��P �x �� Q###�

Theorem ������� �� � SN� �C � SN�

Proof� Suppose �� � SN� Let M be a legal �C term� By Corollary ��	���
it is su�cient to assume ( 
�C M � A in order to show SN�M �� Consider
a reduction starting with M �M�

M��M��M��� � �

One has ( 
�C Mi � A� and therefore ( 
�� ��Mi## � � �A� for all i� by
Proposition ������� By lemma ������ one has

��M�##��		� ��M�##�� 		� � � �

But then ��M ## is a legal �� term and hence the sequence is �nite�

Corollary ������ 
Berardi�� In HA� the system of intuitionistic arith�
metic� one can prove

�� � SN � �C � SN�

Proof� The implication� is trivial� By inspecting the proof of ������ it
can be veri�ed that everything is formalizable in HA�

This corollary was �rst proved in Berardi ������ by proof theoretic meth

ods� The present proof of Geuvers and Nederhof gives a more direct argu

ment�
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The proof of �� � SN

occupies ������ 
�����	� The result will be proved using the following steps�

�� A map j � j�T��% will be de�ned such that

( 
�� A � B � � � SN�jAj��

	� ( 
�� A � B � � � SN�A��

�� ( 
�� A � B � �� SN�A��

�� ( 
�� A � B � � � SN�A��

�� ( 
�� A � B � SN�A�)SN�B��

De�nition �����	� A map j � j�T��% is de�ned as follows�

j�xj � x�
j�x�A�Bj � �x�jBj� if ��A� � ��

� jBj� else�
jBAj � jBjjAj� if ��A� � ��

� jBj� else�
j x�A�Bj � jBj�

The last clause is not used essentially� since legal terms  x�A�B never have
degree �� Typical examples of j � j are the following�

j�x���xj � �x�x�
j������x���xj � �x�x�
j��x���x�yj � ��x�x�y�
j�������x���x��j � �x�x�

The following lemma shows what kinds exist in �� and what kinds and
objects in ���

Lemma ������� Let K be the set of pseudo�terms de�ned by the abstract
syntax K � � j K�K� So K � f�� ���� ������ � � �g� Then

�� ( 
�� A � �� A �K�

�� ( 
�� B � A � �� A�B do not contain any �x�

	� ( 
�� A � �� A � ��

�� ( 
�� A � � � A is an nf�



Lambda Calculi with Types �	�

Proof� By induction on derivations�

Lemma �����
� Let A � � or ( 
�� A � �� Then for all terms B legal
in �� one has

A �� B � A � B�

Proof� First let A � �� Suppose B is legal and A �� B� By the Church&
Rosser theorem one has B ��� �� Then the last step in this reduction
must be

��x�A��A��A���A��x �� A�# � ��

Case �� A� � x and A� � �� Then by ��	��� one has ���� � ��x�� which
is impossible�
Case 	� A� � �� Then ��x�A���� is legal� hence ( 
 ��x�A���� � C for
some (� C� But then by ��	�	� one has ��C� � ���x�A���� $ � � �� a
contradiction�

If ( 
�� A � �� then A � K as de�ned in �����
 and similarly a con

tradiction is obtained� �In case 	 one has ( 
 ��x�A��A� � � x�A����� but
then ( 
 � x�A���� � s��

Now it will be proved in ������ 
 ����	� that if ( 
�� A � B � �� then
SN�jAj�� The proof is related to the one for �	�Curry in section ����
Although the proof is not very complicated� it cannot be carried out in
higher
order arithmetic PA� �because as Girard ���
	� shows SN���� im

plies Con�PA�� and G�odels second incompleteness theorem applies��

We work in ZF
set theory� Let U be a large enough set� �If syntax is
coded via arithmetic in the set of natural numbers �� hence the set of type

free �
terms % is a subset of �� then U � V�� will do� it is closed under the
operations powerset� function spaces and under syntactic operations� Here
V
 is the usual set
theoretic hierarchy de�ned by V� � ��V
�� � P �V
�
and V� � 

��V
� moreover �	 is the ordinal � $ ���

De�nition �������

�� A valuation is a map ��V�U �

	� Given a valuation � a map ���##��T �U 
 fUg is de�ned as follows�
Remember that X�Y � fF �% j �M �X FM �Y gand that SAT �
fX � % j X is saturatedg�

���##� � U �

���##� � SAT�

��x##� � ��x��
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�� x�A�B##� � ��A##����B##� if ��A� � ��B� � ��

� ��B##

A���
� � if ��A� � ��B� � 	�

� �f��B##�
x�	f � j f � ��A##�g� if ��A� � 	� ��B� � ��

� �� else�

���x�A�B##� � �x���B##�
x�	x�� if ��A� � �� ��B� � ��

� �f � ��A##����B##�
x�	f � � if ��A� � 	� ��B� � ��

� ��B##�� if ��A� � 	� ��B� � ��

� �� else�

��BA##� � ��B##���A##�� if ��A� � ��B� � ��

� ��B##����A##��� if ��A� � ��B� � ��

� ��B##�� if ��A� � �� ��B� � ��

� �� else�

Comment ������� In the �rst clauses of the de�nitions of �� x�A�B##��
���x�A�B##� and ��BA##� a syntactic operation �as coded in set theory� is used
�� as de�ned in �������	� extended to sets� � abstraction and application
as syntactic operations extended to U�� In the second clauses some set the

oretic operations are used �function spaces� lambda abstraction� function
application�� In the third clause in the de�nition of �� x�A�B##� an essential
impredicativity & the �Girard trick� & occurs� �� x�A�B##� for a �xed � is
de�ned in terms of ��B##� for arbitrary �� The fourth clauses are not used
essentially�

De�nition ������� Let � be a valuation�

� � � A � B � ��A##� � ��B##��

� � � ( � � � x � A for each �x�A� � (�

� ( � A � B � �� �� � (� � � A � B#�

Lemma ������� Let � be a valuation with � � (�

�� Assume that A is legal in �� and ��A� � �� Then

��A##� � jAj��x �� ���x�# � %�

�� Assume ��x� � ��a�� Then
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��B�x �� a###� � ��B##�
x�	

a��� ��

	� Let B be legal in ��� Suppose either ��B� � � and ��a� � ��x� � �
or ��B� � � and ��a� � ��x� � �� Then

��B�x �� a###� � ��B##�

�� Let A�A� be legal in �� and ��A� � ��A�� 	� �� Then for all �

A �� A
� � ��A##� � ��A

�##��

Proof� �� By induction on the structure of A�

	� By induction on the structure of B�

�� By induction on the structure of B�

�� Show that if A legal� ��A� 	� � and A��� A
�� then ��A##� � ��A�##��

Proposition �������

( 
�� A � B � ( � A � B�

Proof� By induction on the derivation of A � B� Since these proofs should
be familiar by now� the details are left to the reader�

Corollary �������

�� ( 
�� A � B � � � SN�jAj��

�� ( 
�� A � B � � � SN�A� ) SN�B��

Proof� For each kind k a canonical element fk � ��k##� will be de�ned�

f� � SN

fk��k� � �f � ��k�##�f
k��

Assume ( 
 A � B � �� De�ne ��� �
�
� by

���x� � fA if �x�A� � (�

� f�� if x 	�Dom�(��
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���x� � �x�

Then � � (� because if �x�A is in (� then ( 
 A � � hence ��A##�� ���##� � SAT
and therefore ��x� � x � ��A##� by the de�nition of saturation� if �x�A is in
(� then � � �x � A since ���x� � fA � ��A##��

�� By ����	� one has ��A##� � ��B##��SAT and therefore

jAj��x �� ���x�# � ��B##� � SN

so jAj��x �� ���x�#�SN and hence jAj�SN�

	� By ��� one has jAj�SN� From this it follows that A�SN� since for
legal terms of �� one has

A��A
� � jAj��jA

�j�

�This is not true for ��� for example

��x�������������x�����x�����x�

but the absolute values are both �x�x��

-From the previous result we will derive that constructors in �� are
strongly normalizing by interpreting kinds and constructors in �� as re

spectively types and elements in ��� The kind � will be translated as a
�xed ���� The following examples give the intuition�

valid in �� translation valid in ��
��� 
 �������� � ����� � � ���� a�� 
 ��b���a� � ����� � ��
���� f ������ 
 �f��f�� � � ���� a��� f ������ 
 c������fa��fa� � ��
��� 
 � �������� � � ���� a�� 
 c�����c�a � ��

De�nition ������� A map ����T������T����� is de�ned as follows�

���� � ��

���� � ��

��x�� � �x�

�BA�� � B�A�� if ��A� 	� ��

� B�� else�
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��x�A�B�� � ��x��A��B��� if ��A� 	� �� ��x� 	� ��

� B�� else�

� x�A�B�� � � x��A��B��� if ��A� � ��B� � 	�

� c�����A�B�� if ��A� � ��B� � ��

� B��x� �� cA
�

#� if ��A� � 	� ��B� � ��

� B�� else�

For pseudo
contexts one de�nes the following �remember (� � f���� c��g��

��x�A�� � x�A��

��x�A�� � ���

�x��A�� � � � � xn�An�
� � (�� �x��A��

�� � � � � �xn�An�
��

Then one can prove by induction on derivations

( 
�� A � B ) ��A� 	� � � (� 
�� A� � B��

Lemma �����	�

�� For ��A� 	� � and ��a� � ��x� 	� � one has

�A�x �� a#�� � A��x� �� a�#�

�� For A legal in �� with ��A� � � one has

A��B � A���B
��

Proof� Both by induction on the structure of A�

Proposition �������

( 
�� A � B � � � SN�A��

Proof�

( 
�� A � B � � � (� 
�� A� � B� � �

� SN�A��
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� SN�A��

De�nition �����
� Let M � ��x�A�B�C be a legal ��
term�

�� M is a ��redex if ��B� � � and ��A� � ��

	� M is a 	�redex if ��B� � � and ��A� � 	�

�� M is an ��redex if ��B� � � and ��A� � 	�

�� A 	
� is the �rst lambda occurrence in a 	
redex�

The three di�erent kinds of redexes give rise to three di�erent notions of
contraction and reduction and will be denoted by ����� and �� respec

tively� Note that �
reduction is �� 	� �
reduction� in the obvious sense� We
will prove that �
reduction of legal ��
terms is SN by �rst proving the
same for 	� �
reduction�

Lemma ������� Let A�B � T� be legal terms in ��� Then

�� �A��B� � �number of 	��s in A
��number of 	��s in B
�

�� �A��B� � �number of 	��s in A� ��number of 	��s in B
�

	� A����B � jAj � jBj�

�� A��B � jAj�� jBj�

Proof� �� Contracting a 	
redex ��x�A��B��C� removes one 	
� in A�
removes A� and moves around C�� possibly with duplications� A 	
�
is always part of ��x�A��B�� with degree �� A kind or constructor does
not contain objects� in particular no 	
redexes� Therefore removing
A�� or moving around C� does not change the number of 	
��s and
we have the result�

	� Similarly�

�� If M � ��x�A��B��C� in A is a 	
redex� then C� is a constructor
and jM j � jB�j� Remark that a constructor in an object M can
occur only as subterm of A� occurring in �y�A��B� in M � By the
de�nition of j � j constructors are removed in jM j� Therefore also
jB��x �� C�#j � jB�j� We can conclude jAj � jBj�



Lambda Calculi with Types ���

IfM � ��x�A��B��C� in A is an �
redex� then M and its contractum
M

�

are both constructors� Therefore jAj � jBj� again by the fact
that constructors are eliminated by j � j�

�� If M � ��x�A��B��C� is a �
redex with contractum M � � B��x ��
C�#� then jM j � ��x�jB�j�jC�j and jM �j � jB��x �� C�#j � jB�j�x ���
jC�j# as can be proved by induction on the structure of B�� Therefore
jM j�� jM �j� More generally jAj��jBj if A��B�

Lemma ������� Suppose M is legal in �� and ��M � � �� Then M is
strongly normalizing for

�� ��reduction�

�� 	� ��reduction�

Proof� �� M is not of the form  x�A�B� Therefore it follows that either

M � �x��A� � � ��xn�An�yB� � � �Bm� n�m � ��

or

M � �x��A� � � ��xn�An���y�C��C��B� � � �Bm� n � ��m � ��

In the second case ��M � � ��C��� Therefore ��y�Co�C��B� is not an
�
redex� So in both cases �
reduction starting with M must take
place within the constructors that are subterms of the Ai� Bi or Ci�
thus leaving the overall structure of M the same� Since �
reduction
on constructors is SN by ����	
 it follows that �
reduction on objects
is SN�

	� Suppose

M�����M����� � � �

is an in�nite 	� ��reduction� By ����	� ���� �	� it follows that after
some steps we have

Mk��Mk���� � � �

which is impossible by ����

Corollary ������� Suppose ��A� � � and SN�jAj�� Then SN�A
�
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Proof� An in�nite reduction starting with A must by ������ 	 be of the
form

A����� A���A� ����� A���A� ����� � � � �

But then by ����	� ��� we have

jAj � jA�j��jA�j � jA�j�� jA�j � � � � �

contradicting SN�jAj��

Proposition �������

( 
�� A � B � SN�A� ) SN�B��

Proof� If ( 
�� A � B � �� then ��A� � � by ��	�	� and SN�jAj� by
����	���� hence SN�A� by ������� also ( 
�� B � � � � and therefore by
����	
 one has SN�B�� If on the other hand ( 
�� A � B � �� then SN�A�
by ����	
 and SN�B� since B is in nf by �����
 ����

Theorem ������ 
Strong normalization for the ��cube�� For all sys�
tems in the ��cube one has the following�

�� ( 
 A � B � SN�A� ) SN�B��

�� x��A�� � � � � xn�An 
 B � C � A�� � � � � An� B�C are SN�

Proof� �� It is su�cient to prove this for the strongest system �C and
hence by ������ for ��� This is done in �����	�

	� By induction on derivations� using ����

	�� Representing logics and data�types

In this section eight systems of intuitionistic logic will be introduced that
correspond in some sense to the systems in the �
cube� The systems are
the following� there are four systems of proposition logic and four systems
of many
sorted predicate logic�

PROP proposition logic�
PROP	 second
order proposition logic�
PROP� weakly higher
order proposition logic�
PROP� higher
order proposition logic�
PRED predicate logic�
PRED	 second
order predicate logic�
PRED� weakly higher
order predicate logic�
PRED� higher
order predicate logic�

All these systems are minimal logics in the sense that the only logical
operators are� and �� However� for the second
 and higher
order systems
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the operators ��)�� and �� as well as Leibniz�s equality� are all de�n

able� see �����
� Weakly higher
order logics have variables for higher
order
propositions or predicates but no quanti�cation over them� a higher
order
proposition has lower order propositions as arguments� Classical versions
of the logics in the upper plane are obtained easily �by adding as axiom
���������� The systems form a cube as shown in the following Figure�
��

PROP� PRED�

�
�
�
�
�
�

�
�
�
�
�
�

PROP	 PRED	

PROP� PRED�

�
�
�
�
�
�

�
�
�
�
�
�

PROP PRED

Fig� �� The logic
cube�

This cube will be referred to as the logic
cube� The orientation of
the logic
cube as drawn is called the standard orientation� Each system
Li on the logic
cube corresponds to the system �i on the �
cube on the
corresponding vertex �both cubes in standard orientation�� The edges of
the logic
cube represent inclusions of systems in the same way as on the
�
cube�

A formula A in a logic Li on the logic
cube can be interpreted as a
type ��A## in the corresponding �i on the �
cube� The transition A �� ��A##
is called the propositions�as�types interpretation of de Bruijn ���
�� and
Howard ������� �rst formulated for extensions of PRED and �P� The
method has been extended by Martin
L�of ������ who added to �P types
!x�A�B corresponding to �strong� constructive existence and a constructor
�A �A�A�� corresponding to equality on a type A� Since Martin
L�of�s
principal objective is to give a constructive foundation of mathematics� he
does not consider the impredicative rules ��� ���

The propositions
as
types interpretation satis�es the following sound

ness result� if A is provable in PRED� then ��A## is inhabited in �P� In fact�
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an inhabitant of ��A## in �P can be found canonically from a proof of A in
PRED� di�erent proofs of A are interpreted as di�erent terms of type ��A##�
The interpretation has been extended to several other systems� see e�g�
Stenlund ���
	�� Martin
L�of ������ and Luo ������� In Geuvers ������ it
is veri�ed that for all systems Li on the logic
cube soundness holds with
respect to the corresponding system �i on the �
cube� if A is provable in
Li� then ��A## is inhabited in �i� Barendsen ������ veri�es that a proof D
of such A can be canonically translated to ��D## being an inhabitant of ��A##�

After seeing Geuvers ������� it was realized by Berardi �����a�� ������
that the systems in the logic
cube can be considered as PTSs� Doing this�
the propositions
as
types interpretation obtains a simple canonical form�
We will �rst give a description of PRED in its usual form and then in its
form as a PTS�

The soundness result for the propositions
as
type interpretation raises
the question whether one has also completeness in the sense that if a for

mula A of a logic Li is such that ��A## is inhabited in �i� then A is provable
in Li� For the proposition logics this is trivially true� For PRED complete

ness with respect to �P is proved in Martin
L�of ���
��� Barendsen and
Geuvers ������ and Berardi ������ �see also Swaen �������� For PRED�
completeness with respect to �C fails� as is shown in Geuvers ������ and
Berardi �������

This subsection ends with a representation of data types in �	� The
method is due to Leivant ������ and coincides with an algorithmgiven later
by B�ohm and Berarducci ������ and by Fokkinga ����
�� Some results are
stated about the representability of computable functions on data types
represented in �	�

Many sorted predicate logic

Many sorted predicate logic will be introduced in its minimal form� formu

las are built up from atomic ones using only� and � as logical operators�

De�nition ������

�� The notion of a many sorted structure will be de�ned by an example�
The following sequence is a typical many sorted structure

A � hA�B� f� g� P�Q� ci�

where
A�B are non
empty sets� the sorts of A
f � �A��A�A�� and g � A�B are functions�
P � A and Q � A� B are relations�
c �A is a constant�
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The name �sorts� for A and B is standard terminology� in the context
of PTSs it is better to call these the �types� of A�

	� The signature of A is h	� h�� �� �i� h��	i� h�i� h�� 	i� �i stating that there
are two sorts� two functions� the �rst of which has signature h�� �� �i�
i�e� having as input two elements of the �rst sort and as output an
element of the �rst sort� the second of which has signature h�� 	i� i�e�
having an element of the �rst sort as input and an element of the
second sort as output� etc�

De�nition������ Given the many sorted structure A of ����� the language
LA of �minimal� many sorted predicate logic over A is de�ned as follows�
In fact this language depends only on the signature of A�

�� LA has the following special symbols�

� A�B sort symbols�

� f �g function symbols�

� P�Q relation symbols�

� c constant symbol�

	� The set of variables of LA is

V � fxA j x variableg 
 fxB j x variableg�

�� The set of terms of sort A and of sort B� notation TermA and TermB
respectively� are de�ned inductively as follows�

� xA�TermA� xB� TermB�

� c�TermA�

� s�TermA and t�TermA � f �s� t��TermA�

� s�TermA � g�s��TermB�

�� The set of formulae of LA� notation Form� is de�ned inductively as
follows�

� s�TermA � P�s��Form�

� s�TermA� t�TermB � Q�s� t��Form�

� ��Form� 
�Form � ���
��Form�

� ��Form � ��xA����Form and ��xB����Form�

De�nition ������ Let A be a many sorted structure� The �minimal�
many sorted predicate logic over A� notation PRED � PREDA� is de�ned
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as follows� If , is a set of formulae� then , 
 � denotes that � is derivable
from the assumptions ,� This notion is de�ned inductively as follows �C
ranges over A and B� and the corresponding C over A�B��

� � ( � ( 
 �
( 
 ��
�( 
 � � ( 
 


(� � 
 
 � ( 
 ��


( 
 �xC��� t �TermC � ( 
 ��x �� t#

( 
 �� xC 	� FV �(� � ( 
 �xC���

where �x �� t# denotes substitution of t for x and FV is the set of free
variables in a term� formula or collection of formulae� For � 
 � one writes
simply 
 � and one says that � is a theorem�

These rules can be remembered best in the following natural deduction
form�

��
 �
�




�
���



�
��


�xC��
� t � termC�

��x �� t#

�
� x not free in the assumptions�

�xC�

Some examples of terms� formulae and theorems are the following�

The expressions xA� c� f �xA� c� and f �c� c� are all in TermA�g�x
A� is in

TermB� Moreover

�xAP�f �xA� xA��� ���

�xA�P�xA��P�f �xA� c��#� �	�

�xA�P�xA��P�f �xA� c��#��xAP�xA��P�f �c� c�� ���

are formulae� The formula ��� is even a theorem� A derivation of ��� is as
follows�
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�xA�P�xA��P�f�xA� c��#	

P�c��P�f �c� c��

�xAP�xA��

P�c�

P�f �c� c��
�

�xAP�xA��P�f �c� c��
	

�xA�P�xA��P�f �xA� c��#��xAP�xA��P�f �c� c��

the numbers �� 	 indicating when a cancellation of an assumption is being
made� A simpler derivation of the same formula is

�xA�P�xA��P�f �xA� c��#	

�xAP�xA��

P�f �c� c��
�

�xAP�xA��P�f �c� c��
	

�xA�P�xA��P�f �xA� c��#��xAP�xA��P�f �c� c��

Now we will explain� �rst somewhat informally� the propositions�as�
types interpretation from PRED into �P� First one needs a context corre

sponding to the structure A� This is (A de�ned as follows �later (A will
be de�ned a bit di�erently��

(A � A��� B���

P �A��� Q�A�B���

f �A�A�A� g�A�B�

c�A�

For this context one has

(A 
 c � A ����

(A 
 �fcc� � A

(A 
  x�A�P �fxx� � � ����

(A 
  x�A��Px�P �fxc�� � � �	��

(A 
 � x�A��Px�P �fxc������ x�A�Px��P �fcc�� � �� ����

We see how the formulae ���&��� are translated as types� The inhabi

tants of � have a somewhat �ambivalent� behaviour� they serve both as sets
�e�g� A��� and as propositions �e�g� Px � � for x�A�� The fact that formulae
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are translated as types is called the propositions�as�types �or also formulae�
as�types� interpretation� The provability of the formula ��� corresponds to
the fact that the type in ���� is inhabited� In fact

(A 
 �p�� x�A��Px�P �fxc�����q�� x�A�Px��pc�qc� �

 p�� x�A��Px�P �fxc���� q�� x�A�Px��P �fcc��

A somewhat simpler inhabitant of the type in ����� corresponding to the
second proof of the formula ��� is

�p�� x�A��Px�P �fxc�����q�� x�A�Px��q�fcc��

In fact� one has the following result that we state at this moment informally
�and in fact not completely correct��

Theorem ����� 
Soundness of the propositions�as�types interpre�
tation�� Let A be a many sorted structure and let � be a formula of LA�
Suppose


PRED � with derivation D�

then
(A 
�P �D# � ��# � ��

where �D# and ��# are canonical translations of respectively � and D�

Now it will be shown that up to �isomorphism� PRED can be viewed
as a PTS� This PTS will be called �PRED� The map � �� ��# can be
factorized as the composition of an isomorphism PRED ��PRED and a
canonical forgetful homomorphism �PRED ��P�

De�nition ����� 
Berardi 
��

a��� PRED considered as a PTS� no

tation �PRED� is determined by the following speci�cation�

S �s� �p� �f ��s��p

A �s � �s� �p � �p

R ��p� �p�� ��s� �p�� ��s��p��
��s� �s� �f �� ��s� �f � �f�

Some explanations are called for� The sort �s is for sets �the �sorts� of
the many sorted logic�� The sort �p is for propositions �the formulae of the
logic will become elements of �p�� The sort �f is for �rst
order functions
between the sets in �s� The sort �s contains �s and the sort �p contains
�p� �There is no �f � otherwise it would be allowed to have free variables
for function spaces��

The rule ��p� �p� allows the formation of implication of two formulae�
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���p� 
��p 
 ���
� � � x���
� � �p�

The rule ��s� �p� allows quanti�cation over sets�

A��s� ���p 
 ��xA��� � � x�A��� � �p�

The rule ��s��p� allows the formation of �rst
order predicates�

A��s 
 �A��p� � � x�A��p� � �p�

hence
A��s� P �A��p� x�A 
 Px � �p�

i�e� P is a predicate over the set A�

The rule ��s� �s� �f � allows the formation of a function space between
the basic sets in �s �

A��s� B��s 
 �A�B� � �f �

the rule ��s� �f � �f � allows the formation of curried functions of several
arguments in the basic sets�

A��s 
 �A��A�A�� � �f �

This makes it possible to have for example g�A�B and f ��A��A�A�� in
a context�

Now it will be shown formally that �PRED is able to simulate the
logic PRED� Terms� formulae and derivations of PRED are translated into
terms of � PRED� Terms become elements� formulae become types and a
derivation of a formula � becomes an element of the type corresponding to
��

De�nition ����	� Let A be as in ������ The canonical context correspond

ing to A� notation (A� is de�ned by

(A � A��s� B��s�
P ��A��p�� Q��A�B��p��
f ��A��A�A��� g��A�B��
c�A�

Given a term t � LA� the canonical translation of t� notation ��t##� and the
canonical context for t� notation (t� are inductively de�ned as follows�
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t ��t## (t

xC x x � C

c c hi

f �s� s�� f ��s##��s�## (s 
 (s�

g�s� g��s## (s

Given a a formula � in LA� the canonical translation of �� notation
���##� and the canonical context for �� notation (�� are inductively de�ned
as follows�

� ���## (�

P�t� P ��t## (t

Q�s� t� Q��s##��t## (s 
 (t

����� ����##�����## (�� 
 (��

�xC�
  x�C���
## (� � fx�Cg

Lemma ������

�� t�TermC � (A�(t 
�PRED ��t## � C�

�� ��Form � (A�(� 
�PRED ���## � �
p�

Proof� By an easy induction�

In order to de�ne the canonical translation of derivations� it is useful
to introduce some notation� The following de�nition is a reformulation of
������ now giving formal notations for derivations�
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De�nition ����
� In PRED the notion �D is a derivation showing , 
 ���
notation D � �, 
 ��� is de�ned as follows�

� �, � P� � �, 
 ���
D� � �, 
 ��
�� D� � �, 
 �� � �D�D�� � �, 
 
��

D � �,� � 
 
� � �I��D� � �, 
 ��
��

D � �, 
 �xC���� t �TermC � �Dt� � �, 
 ��x �� t#��

D � �, 
 ��� xC 	� FV �,� � �GxC�D� � �, 
 �xC����

Here C is A or B� P stands for �projection�� I� stands for introduction

and has a binding e�ect on � and GxC stands for �generalization� �over C�

and has a binding e�ect on xC�

De�nition ������

�� Let , � f��� � � � � �ng � Form� Then the canonical translation of ,�
notation (
� is the context de�ned by

(
 � (�� 
 � � � 
 (�n � x�������##� � � � � x�n����n##�

	� For D � �, 
 �� in PRED the canonical translation of D� notation
��D##� and the canonical context for D� notation (D� are inductively
de�ned as follows�

D ��D## (D

P� x� hi

D�D� ��D�##��D�## (D�

 (D�

I��D� �x�����##���D�## (D�
� fx�����##g

Dt ��D##��t## (D 
 (t

GxC�D �x�C���D## (D � fx�Cg

The following result is valid for the structure A as given in ������

Lemma �������

D � �, 
PRED �� � (A�(
 
 (� 
 (D 
�PRED ��D## � ���##�
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Proof� By induction on the derivation in PRED�

Barendsen ������ observed that in spite of Lemma������ one has in general
for e�g� a sentence � �i�e� FV ��� � ��


PRED � 	� �A �(A 
�PRED A � ���###�

The point is that in ordinary �minimal� intuitionistic or classical� logic it
is always assumed that the universes �the sorts A�B� � � �� of the structure
A are supposed to be non
empty� For example

��xA��Px�Q�����xA�Px��Q�

is provable in PRED� but only valid in structures with A 	� �� In so

called free logic one allows also structures with empty domains� This logic
has been axiomatized by Peremans ������ and Mostowski ������� The
system �PRED is �exible enough to cover also this free logic� The following
extended context (�A explicitly states that the domains in question are not
empty�

De�nition ������� Given a many sorted structure A as in ������ the ex�
tended context� notation (�A� is de�ned by (

�
A � (A� a�A� b�B�

Not only there is a sound interpretation of PRED into �PRED� there is
also a converse� In order to prove this completeness the following lemma�
due to Fujita and Tonino� is needed�

Lemma ������� Suppose ( 
�PRED A � B � �p� Then there is a many
sorted structure A� a set of formulae , � LA� a formula � � LA and a
derivation D such that

( � (A�(
 
 (� 
 (D�
A � ��D##� B � ���##
D � , 
PRED ��

Proof� See Fujita and Tonino �������

Corollary �������

�� Let � be a formula and , be a set of formulae of LA� Then

D � , 
PRED � � (A�(
 
 (� 
 (D 
�PRED ��D## � ���##�

�� Let , 
 f�g be a set of sentences of LA� Then
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, 
PRED � � �M �(�A�(
 
�PRED M � ���###�

	� Let � be a sentence of LA� Then


PRED � � �M �(�A 
�PRED M � ���###�

Proof� �� By ������ and �����	 and the fact that ���## is injective on
derivations and formulae�

	� If the members of , and � are without free variables� then

D � �, 
PRED �� � (A�(
 
 (D 
�PRED ��D## � ���##�

A statement in (D is of the form x � C� Since (�A 
 a � A� b � B one
has

, 
PRED � � �D�D � �, 
PRED ��#
� �D�(A�(
 
 (D 
�PRED ��D## � ���###
� �M �(�A�(
 
�PRED M � ���###�

�For the last ��� take M � ��D##�x� y �� a� b#� for ��� use Lemma
�����	��

�� By �	�� taking , � ��

Now that it has been established that PRED and �PRED are �isomor

phic�� the propositions
as
types interpretation from PRED to �P can be
factorized in two simple steps� from PRED to �PRED via the isomorphism
and from �PRED to �P via a canonical forgetful map�

De�nition ������ 
Propositions�as�types interpretation��

�� De�ne the forgetful map j � j� term��PRED��term��P� by deleting
all superscripts in � and �� so�

�s �� �
�p �� �
�f �� �
�s �� �

�p �� ��

E�g� j�x��p�xj � �x���x� Write j(j � hx��jA�j� � � �i for ( � hx��A�� � � �i�

	� Let A be a signature and let t� ��, and D be respectively a term� a
formula� a set of formulae and a derivation in PRED formulated in
LA� Write



��� H�P� Barendregt

�t# � j��t##j�
��# � j���##j�
�D# � j��D##j�
�,# � j(�Aj� j(
j�

Corollary ������ 
Soundness for the propositions�as�types inter�
pretation��

�� ( 
�PRED A � B � j(j 

�P jAj � jBj�

�� For sentences , and � in LA one has

D�, 
PRED � � �,# 

�P M � ��#� for some M�

Proof� �� By a trivial induction on derivations in �PRED�

	� By �������	� and ��

Now that we have seen the equivalence between PRED and �PRED�
the other systems on the logic cube will be described directly as a PTS
and not as a more traditional logical system� In this way we obtain the so
called L
cube isomorphic to the logic
cube�

De�nition �����	�

�� The systems �PROP� �PROP	� �PROP� and �PROP� are the
PTSs speci�ed as follows�

�PROP
S �p��p

A �p � �p

R ��p� �p�

�PROP	 � �PROP$ ��p� �p��

�PROP	
S �p��p

A �p � �p

R ��p� �p�� ��p� �p�

�PROP� � �PROP $ ��p��p��
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�PROP�
S �p��p

A �p � �p

R ��p� �p�� ��p��p�

�PROP� � �PROP $ ��p� �p� $ ��p��p��

�PROP�
S �p��p

A �p � �p

R ��p� �p�� ��p� �p�� ��p��p�

	� The systems �PRED� �PRED	� �PRED� and �PRED� are the
PTS�s speci�ed as follows�

�PRED

S �p� �s� �f ��p��s

A �p � �p� �s � �s

R ��p� �p�� ��s� �p�
��s� �s� �f�� ��s� �f � �f �� ��s��p�

�PRED	 � �PRED$ ��p� �p��

�PRED	

S �p� �s� �f ��p��s

A �p � �p� �s � �s

R ��p� �p�� ��s� �p�� ��p� �p�
��s� �s� �f �� ��s� �f � �f�� ��s��p�

�PRED� � �PRED$ ��p��p��

�PRED�

S �p� �s� �f ��p��s

A �p � �p� �s � �s

R ��p� �p�� ��s� �p�
��s� �s� �f �� ��s� �f � �f �� ��s��p�� ��p��p�

�PRED� � �PRED$ ��p� �p� $ ��p��p��

�PRED�

S �p� �s� �f ��p��s

A �p � �p� �s � �s

R ��p� �p�� ��s� �p�� ��p� �p�
��s� �s� �f �� ��s� �f � �f �� ��s��p�� ��p��p�

The eight systems form a cube as shown in the following �gure ��
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�PROP� �PRED�

�
�
�
�
�
�

�
�
�
�
�
�

�PROP	 �PRED	

�PROP� �PRED�

�
�
�
�
�
�

�
�
�
�
�
�

�PROP �PRED

Fig� �� The L
cube�

Since this description of the logical systems as PTSs is more uniform
than the original one� we will considere only this L
cube� rather than the
isomorphic one in �g� �� In particular� �g� � displays the standard orien

tation of the L
cube and each system Li �ranging over �PROP� �PRED
etc�� corresponds to a unique system �i on the similar vertex in the �
cube
�in standard orientation��

Now it will be shown how in the upper plane of the L
cube the logical
operators ��)�� and � and also an equality predicate �L are de�nable�
The relation �L is called Leibniz� equality�

De�nition ������ 
Second�order de�nability of the logical opera�
tions��

�� For A�B��p de�ne

� � � ���p����

�A � �A���

A)B �  ���p��A�B������

A �B �  ���p��A�����B������

	� For A��p and S��s de�ne

�x�S�A �  ���p�� x�S��A�������
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�� For S��s and x� y�S de�ne

�x �L y� �  P �S��p�Px�Py�

Note that the de�nition of ) and � make sense for systems extending
�PROP	 and � and �S for systems extending �PRED	� It is a good
exercise to verify that the usual logical rules for )��� � and �S are valid
in the appropriate systems�

Example �����
� We show how a part of �rst order Heyting Arithmetic
�HA� can be done in �PRED� That is� we give a context (A�(
 such that
(A �xes the language of HA and (
 �xes a part of the axioms of HA� Take
(A to be

N � �s�

� � N�

S � N�N�

$ � N�N�N�

� � N�N��p �

Take (
 to be

tr �  x� y� z � N� x � y � y � z � x � z�

sy �  x� y � N� x � y � y � x�

re �  x � N� x � x�

a� �  x� y � N� Sx � Sy � x � y�

a� �  x � N� x$ � � x�

a� �  x� y � N� x$ Sy � S�x $ y��

Note that we do not have a� � � x�N� Sx 	� �# and a� � � x�N� x 	� � �
�y�N�x � Sy#� because the logic is minimal �We can�t de�ne � and � in
�rst order logic�� Also we don�t have an induction scheme for the natural
numbers� which requires in�nitely many axioms or one second order axiom
�a� �  P �N��p �P�� � x�N�Px� P �Sx���  x�N�Px�� One says that
HA is not 
nitely 
rst order axiomatizable� Finally� the atomic equality
in �PRED is very weak� e�g� it doesn�t satisfy the substitution property �
if ��x� and x � y hold� then ��y� holds� In second order predicate logic
��PRED	� HA can be axiomatized by adding a� and further a� and a� using
the de�nable � and �� Also the atomic � can be replaced by the �de�nable�
Leibniz equality on N � which does satisfy the substitution property�

Example ������� The structure of commutative torsion groups is not
�nitely nor in�nitely �rst order axiomatizable� �This example is taken
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from Barwise ���

��� The manysorted structure of a commutative torsion
group is hA��� �� �i and it has as axioms�

�x� y� z �x � y� � z � x � �y � z��

�x x � � � x�

�x �y x � y � ��

�x� y x � y � y � x�

�x �n � � nx � ��

where we write
nx for x � � � � � x� �z �

n

If one tries to write the last formula in a �rst order form we get the follow

ing�

�x �x � � � 	x � � � � � ��

So we obtain an �in�nitary� formula� which� can be shown to be not �rst
order� by some use of the compactness theorem� A second order statement
�as type� that expresses that the group has torsion is

�x�A�P �A����Px���y�A�Py�P �x � y���P�#�

Theorem ������ 
Soundness of the propositions�as�types interpre�
tation�� Let Li be a system on the L�cube and let �i be the corresponding
system on the ��cube� The forgetful map j � j that erases all superscripts
in the ��s and ��s satis�es the following

( 
Li A � B � s � j(j 
�i jAj � jBj � jsj�

Proof� By a trivial induction on the derivation in Li�

As was remarked before� completeness for the propositions
as
types in

terpretation holds for PRED and �P� but not for PRED� and �C�

Theorem ������ 
Berardi 
��
��� Geuvers 
��
���� Consider the
similarity type of the structure A � hAi� i�e � there is one set without any
relations� Then there is in the signature of A a sentence � of PRED� such
that

	
PRED� �

but for some M one has
(A 
�C M � ��#�

Proof� �Berardi� De�ne

EXT �  p� p���p���p� p��� Q��p��p��Qp�Qp��#

� � EXT � �A does not have exactly two elements�

Obviously 	
PRED� �� Claim� interpreted in �C one has
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EXT � �if A is non
empty� then A is a type
free �
model��

The reason is that if a�A� then


 ��x��A�A��a� � ��A�A��A�

and always

 ��y�A��z�A�z� � �A��A�A���

therefore �A� �A�A�� and since �A �� A� �i�e� there is a bijection from A
to A�� it follows by EXT that �A �� �A�A��� i�e��A is a type
free �
model��

By the claimA cannot have two elements� since only the trivial �
model
is �nite�

Proof� �Geuvers� Consider in �PRED� the context ( and type B de�ned
as follows�

( � A��s� c�A
B �  Q���p��p�� q��p��Q� x�A�q���q���p�Q�q��q���

Then B considered as formula is not derivable in �PRED�� but its
translation jBj in �C is inhabited� i�e�

�� j(j 
�C C � jBj� for some C�

	� ( 	
�PRED� C � B� for all C�

As to �� it is su�cient to construct a C� such that

A��� c�A�Q������� q�� 
 C� � �Q� x�A�q���q
����Q�q��q���

Now note that
Q� x�A�q� � Q�A�q�

and the type

�Q� x�A�q���q����Q�q��q�# �
� Q�A�q��� ���� q�����Q�q��q������#

is inhabited by

�y��Q�A�q���������f �� q�����Q�q��q������fAy�

As to 	� if ( 
�PRED� C � B� then also

A��s� c�A�Q���p��p�� q��p� r��Q� x�A�q��� ���p� t�� q���p�Q�q��q����

 CQqr�t � �

By considering the possible forms of the normal form of CQqr�t it can
be shown that this is impossible�

The counterexample of Geuvers is shorter �and hence easier to formal

ize� than that of Berardi� but it is less intuitive�
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As is well
known� logical deductions are subject to reduction� see e�g�
Prawitz ������ or Stenlund ���
	�� For example in PRED one has

and

If the deductions are represented in �PRED� then these reductions be

come ordinary �
reductions�
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���I��D��D�## � ��x�����##���D�##���D�##��

��D�##�x� �� ��D�### � ��D��P� �� D�###�

���GxC�D�t## � ��x�C���D##���t##��

��D##�x �� ��t###� ��D�x �� t###�

In fact the best way to de�ne the notion of reduction for a logical system
on the L
cube is to consider that system as a PTS subject to �
reductions�

Now it follows that reductions in all systems of the L
cube are strongly
normalizing�

Corollary ������� Deductions in a system on the L�cube are strongly
normalizing�

Proof� The propositions
as
types map

j j � L
cube ��
cube

preserves reduction� moreover the systems on the �
cube are strongly nor

malizing�

The following example again shows the �exibility of the notion of PTS�

Example ������ 
Geuvers 
������� The system of higher
order logic
in Church ������ can be described by the following PTS�

�HOL
S ����,
A � � ��� � ,
R ��� ��� ��� ��� �����

That is �HOL is �� plus � � ,� The sort � represents the universe
of domains and the sort � represents the universe of formulae� The sort
, and the rule � � , allow us to make declarations A � � in the context�
The system �HOL consists of a higher
order term language given by the
sorts � � � � , and the rule ����� �notice the similarity with ��� with a
higher
order logic on top of it� given by the rules ��� �� and ��� ���

A sound interpretation of �PRED� in �HOL is determined by the map
given by

�p �� �
�s �� �

�f �� �

�p �� �

�s �� ,�
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Geuvers ������ proves that �HOL is isomorphic with the following ex

tended version of �PRED��

�PRED�.

S �p� �s��p��s

A �p � �p� �s � �s

R ��p� �p�� ��s� �p�� ��p� �p�
��s� �s�� ��p� �s�� ��s��p�� ��p��p�

where isomorphic means that there are mappings F � ��PRED�.� �
��HOL� and G � ��HOL�� ��PRED�.� such that G �F � Id and F �G �
Id� �Here the systems ��HOL� and ��PRED�.� are identi�ed with the set
of derivable sequents in these systems�� This shows that even completeness
holds for the interpretation above�

Representing data types in ��

In this subsection it will be shown that data types can be represented in
�	� This result of Leivant ������� ������ will be presented in a modi�ed
form due to Barendsen �������

De�nition �������

�� A data structure is a many sorted structure with no given relations�
A sort in a data structure is called a data set�

	� A data system is the signature of a data structure� A sort in a data
system is called a data type�

Data systems will often be speci�ed as shown in the following example�

� Sorts

A�B

� Functions

f � A�B

g � B�A�A

� Constants

c �A�

In a picture�
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Examples ������� Two data systems are chosen as typical examples�

�� The data system for the natural numbers Nat is speci�ed as follows�

� Sorts
N�

� Functions
S �N�N�

� Constants
� �N�

	� The dat asystem of lists over a sort A� notation ListA� is speci�ed
as follows�

� Sorts
A�LA�

� Functions
Cons � A�LA�LA�

� Constants
nil� LA�

De�nition �����	�

�� A sort in a data system is called a parameter sort if there is no in

going arrow into that sort and also no constant for that sort�

	� A data system is called parameter�free if it does not have a parameter
sort�

The data system Nat is parameter
free� The data system ListA has
the sort A as a parameter sort�
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De�nition ������� Let D be a data system� The language LD corre

sponding to D is de�ned in ����	

�� The �open� termmodel of D� notation T �D�� consists of the terms
�containing free variables� of LD together with the obvious maps given
by the function symbols� That is� for every sort C of

D the corresponding set C consists of the collection of the terms in LD
of sort C� corresponding to a function symbol f � C��C� a function
f � C��C� is de�ned by

f�t� � f �t��

A constant c of sort C is interpreted as itself� indeed one has also
c �C�

	� Similarly one de�nes the closed termmodel of D� notation T o�D�� as
the substructure of sets of T �D� given by the closed terms�

For example the closed term model of Nat consists of the set

��S��SS�� � � �

with the successor function and the constant �� this type structure is an
isomorphic copy of

hf�� �� 	� ���g� S� �i�

T �ListA� consists of the �nite lists of variables of type A�

De�nition �����
� Given a data system D with

A�� � � � �An parameter sorts�
B�� � � � �Bm other sorts�
f� � A��B��B� �say�
� � �
c� � B� �say�
� � �

Write

(D � A���� � � � � An���

B���� � � � � Bm���

f �A��B� � B��

� � �

c��B��



Lambda Calculi with Types ���

� � � �

For every term t � LD de�ne a �	
term t
 and context (t as follows�

t t
 (t

xC x x�C
f t� � � � tn ft
� � � � t



n (t� 
 � � � 
 (tn

c c hi

Lemma ������� For a term t � LD of type C one has

(D�(t 
�� t

 � C�

Proof� By induction on the structure of t�

Given a data system D� then there is a trivial way of representing T �D�
into �	 �or even into ��� by mapping t onto t
� Take for example the
data system Nat� Then (Nat � N ��� S�N�N� ��N and every term Sk�
can be represented as

(Nat 
 �S
k�� � N�

However� for this representation it is not possible to �nd� for example� a
term P lus such that� say�

P lus�S���S�� �� SS��

The reason is that S is nothing but a variable and one cannot separate a
compound S� or SS� into its parts to see that they represent the numbers
one and two� Therefore we want a better form of representation�

De�nition ������� Let D be a data system as in de�nition ����	��

�� Write ,D� A���� � � � � An� � �

	� A �	�representation of D consists of the following�

� Types B�� � � � � Bm such that

,D 
 B� � �� � � � � Bm � ��

� Terms f
�
� � � � � c�� � � � such that
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,D 
 f� � A��B��B��

� � �
,D 
 c� � B��
� � �

� Given a �	
representation of D there is for each term t of LD a
�	
term t and context ,t de�ned as follows�

t t ,t

xC x x�C
f t� � � � tn ft� � � � tn ,t� 
 � � � 
,tn

c c hi

� The �	
representation of D is called free if moreover for all terms
t� s in LD of the same type one has

t �� s � t � s�

Notation ������� Let ( � x��A�� � � � � xn�An be a context� Then

�(�M � �x��A� � � ��xn�An�M �

 (�M �  x��A� � � � xn�An�M �

M( � Mx� � � �xn�

Theorem ������ 
Representation of data types in �	� Leivant

��
��� B�ohm�Berarducci 
��
��� Fokkinga 
��
���� Let D be a
datasystem� Then there is a free representation of D in �	�

Proof� Let D be given as in de�nition ����	�� Write

/D � B� � �� � � � � Bm � ��

f� � A��B��B��

� � �

c� � B��

� � � �

We want a representation such that for terms t in LD of a non
parameter
type

t/D �� t

�x� �� x�/D# � � � �xn �� xn/D#� ���
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where x�� � � � � xn are free variables with non parameter types in t� for terms
t of a parameter type one has

t � t
� �	�

Then for terms of the same non
parameter type one has

t �� s � t/D �� s/D

� t
� �� s

�

� t
 �� s



� t
 � s


� t � s�

where � denotes the substitutor �x� �� x�/D# � � � �xn �� xn/D#� For terms
of the same parameter type the implication holds also� Now �	� is trivial�
since a term t of a parameter type A is necessarily a variable and hence

t � xA� so t
 � x � t� In order to ful�ll ��� de�ne

Bi �  /D�Bi

c � �/D�c

f
�
� �a��A��b��B��b��B��/D�fa��b�/D��b�/D��

Then by induction on the structure of t one can derive ���� Induction step�

f�t�t�t�/D � f
�
t�t�t�/D

�� f�t��t�/D��t�/D�
�� f�t



� t



�
�t
�

�

� �f�t�t�t��

��

Now it will be shown that for a term t �LD the representation t in �	
given by theorem �����	 can be seen as the canonical translation of a proof
that t satis�es �the second order de�nition of the set of elements of the free
structure generated by D��

De�nition �������

�� The map �� T �f�� �� 	� �g � fs� pg for �C is modi�ed as follows for
pseudoterms of �PRED	� Let i range over fs� pg�

���i� � �i� which is a notation for ���i��

���i� � 	i�
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���
i

x� � �i�

���
i

x� � �i�

�� x�A�B� � ���x�A�B� � ��BA� � ��B��

	� A map �� ##� �PRED	 into �PROP	 is de�ned as follows�

���i## � ��

���i## � ��

���
i

x## � �x�

���
i

x## � �x�

���x�A�B## � ��B## if �A � �s�

� ���x##���A##���B## else�

�� x�A�B## � ��B## if �A � �s�

�  ��x##���A##���B## else�

��BA## � ��B## if �A � �s�

� ��B##��A## else�

��x�A## � hi if �x � f�s� �sg�

� ��x##���A## else�

��x��A�� � � � � xn�An## � ��x��A�##� � � � � ��xn�An##�

�� A map j j� �PROP	��	 is de�ned as follows�

j�ij � ��

j�ij � ��

j�
i

xj � �x�

j�
i

xj � �x�

j x�A�Bj �  jxj�jAj�jBj�

j�x�A�Bj � �jxj�jAj�jBj�

jBAj � jBjjAj�

Finally put

jx�Aj � jxj�jAj�
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jx��A�� � � � � xn�Anj � jx��A�j� � � � � jxn�Anj�

�� A map � #� �PRED	��	 is de�ned by �A# � j��A##j�

Proposition �������

�� ( 
�PRED� A � B � ��(## 
�PROP� ��A## � ��B##�

�� ( 
�PROP� A � B � j(j 
�� jAj � jBj�

	� ( 
�PRED� A � B � �(# 
�� �A# � �B#�

Proof� �� By induction on derivations using

��P �x �� Q### � ��P ##���x## �� ��Q###�

	� Similarly� using �
s

x 	� FV ��P #��

�� By ��� and �	��

Now the alternative construction of t for t�LD can be given� The method
is due to Leivant ������� Let D be a datasystem with parameter sorts�
To �x the ideas� let D � ListA� Write (D � A��s� LA��s� nil�LA� cons �
A�LA�LA� For the parameter typeA a predicate PA��A��p� is declared�
For ListA the predicate

PLA � �z��LA�� Q��LA��
p��

�Qnil�� a�A y��LA��P
Aa�Qy�Q�cons ay�#�Qz#

says of an element z�LA that z belongs to the set of lists built up from
elements of A satisfying the predicate PA�

Now if t � LD is of type ListA� then intuitively t

 � LA satis�es P

LA�
Indeed� one has for such t

(D�(t 
 t

 � LA and (D�(t 
 dt � �P

LAt
�� ���

for some dt constructed as follows� Let C range over A and ListA with
the corresponding C being A or LA�
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t t
 (t dt

xC x x�C� ax��PCx� ax

nil nil hi �Q��LA��p��p��Qnil�
�q�� a�A y�LA�
�PAa�Qy�Q�cons ay�#��p

cons t�t� cons t
� t


� (t� �(t� �Q��LA��p��p��Qnil�

�q�� a�A y�LA�
�PAa�Qy�Q�cons ay�#��
qt
� t



� dt��dt�Qpq�

By induction on the structure of t one veri�es ���� By Proposition ������
it follows that

�(D�(t# 
 �dt# � ��P
Ct
�#� �	�

Write

A � �PA#�

LA � �PLA# �  Q���Q��A�Q�Q��Q�

nil � �dnil# � �Q����p�Q�q��A�Q�Q��p�

cons � �a�A�x�LA�Q����p�Q�q��A�Q�Q��qax�

Notice that this is the same �	
representation of ListA as given in theorem
�����	 and that t �� �dt#�

In this way many data types can be represented in �	�

Examples �������

�� Lists�

To be explicit� a list ha�� a�i�LA and cons are represented as follows�

LA � � L���L��A�L�L��L��

ha�� a�i � ��L���nil�L�cons�A�L�L�cons a��cons a�nil����

cons � �a�A�x�� L���L��A�L�L��L�
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�L���nil�L�cons�A�L�L�cons �xLnil cons��

Moreover
A��� a��A� a��A 
 ha�� a�i�LA�

	� Booleans�
Sorts
Bool
Constants
true� false�Bool

are represented in �	 as follows�

Bool �  ����������

true � �����x���y���x�

false � �����x���y���y�

�� Pairs�
Sorts

A��A��B

Functions

p�A��A��B�

Representation in �	

B �  �����A��A�������

p � �x�A��y�A������z��A��A�����zxy�

Applying the map j j � terms��	��% de�ned in ��	��� the usual repre

sentations of Booleans and pairing in the type
free �
calculus is obtained�
The same applies to the �	 representation of the data type Nat giving the
type
free Church numerals�

Now that data types can be represented faithfully in �	� the question
arises which functions on these can be represented by �
terms� Since all
terms have an nf� not all recursive functions can be represented in �	� see
e�g� Barendregt ������� thm� ��	����

De�nition �����	� Let D be a data structure freely represented in�	 as
usual� Consider in the closed term model T o�D� a function f �C�C�� where
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C and C� are non
parameter sorts� is called �	�de
nable if there is a term
f such that

(D 
�� f � �C�C�� ) ft �� ft for all t � TermC �

De�nition ������� Let a data system D be given� A Herbrand�G
odel
system� formulated in �PRED	� is given by

�� (D

	� (f������fn � a �nite set of function declarations of the form f��B��� � � �
fn�Bn with (D 
 Bi��f �

�� (ax������axm � a �nite set of axiom declarations of the form a��ax��� � � �
am�axm with each axi of the form fj�s�� � � � �� sp� �L r with the
s��� � � �sp�r terms in LD of the correct type �see �����
��� for the def

inition of �L� �

For such a Herbrand&G�odel system we write

HG � (D�(�f �( �ax�

In order to emphasize the functions one may write HG � HG��f �� The
principal function symbol is the last fn�

Example �����
� The following is a Herbrand
G�odel system �Note that
the principal function symbol f� speci�es the function �x �Nat�x$ x��

HG� � N ��s� ��N�S��N�N ��
f��N�N�N� f��N�N�

a��� x�N�f�x� �L x��
a���f�x�Sy� �L S�f�xy���
a���f�x �L f�xx��

De�nition ������� Let A be a data structure having no parameter sorts�
Let f � C�C� be a given external function on T �D� �similar de�nitions can
be given for functions of more arguments�� Let HG be a Herbrand&G�odel
system�

�� HG computes f � HG � HG�f�� � � � � fn� and for all t�TermC one
has for some p

HG 
�PRED� p � �fnt �L f�t���
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	� Suppose HG�f�� � � � � fn� computes f � Then f is called provably type�
correct �in �PRED	� if for some B one has

HG 
�PRED� B � � x�C��PCx�PC�

�fnx�##

�

Note that the notion �provably type correct� is a so
called intensional prop

erty� it depends on how the f is given to us as fn� Now the questions about
�	
de�nability can be answered in a satisfactory way� This result is due to
Leivant ������� It generalizes a result due to Girard ���
	� characterizing
the �	
de�nable functions on Nat as those that are provably total�

Theorem ������� Let D be a parameter�free data structure�

�� The basic functions in D are �	�de�nable

�� A function f �C�C� is recursive i� f is HG computable�

	� A function f �C�C� is �	�de�nable i� f is HG�computable and prov�
ably type correct in �PRED	�

Proof� �� This was shown in theorem �����	�

	� See Mendelson ����
��

�� See Leivant ������� �������

	�	 Pure type systems not satisfying normalization

In this subsection some pure type systems will be considered in which there
are terms of type � �  ������ As a consequence there are typable terms
without a normal form�

In subsection ��	 we encountered the system �� which can be seen as a
simpli�cation of �C by identifying � and �� It has as peculiarity that � � �
and its PTS speci�cation is quite simple�

De�nition ������ The system �� is the PTS determined as follows�

��
S �
A � � �
R ��� ��

Since all constructions possible in �C can be done also in �� by collaps

ing � to �� it seems an interesting simpli�cation� However� the system ��



��� H�P� Barendregt

turns out to be �inconsistent� in the sense that every type is inhabited� thus
making the propositions
as
types interpretation meaningless� Nevertheless�
the system �� is meaningful on the level of conversion of terms� In fact
there is a nontrivial model of ��� the so
called closure model due to Scott
���
��� see also e�g� Barendregt and Rezus ������� For a discussion on the
computational relevance of ��� see Coquand ������ and Howe ����
��

The �inconsistency� following from ��� was �rst proved by Girard ���
	��
He also showed that the circularity of ��� is not necessary to derive the
paradox� For this purpose he introduced the following pure type system
�U � Remember its de�nition�

De�nition ������ The system �U is the PTS de�ned as follows�

�U
S ����,
A � � ��� � ,
R ��� ��� ��� ��� ������ �,���� �,� ��

So �U is an extension of ��� The next theorem is the main result in this
subsection� The proof occupies this whole subsection�

Theorem ����� 
Girard�s paradox�� In �U the type � is inhabited� i�e�

M ��� for some M �

Proof� See ����	��

Corollary ������

�� In �U all types are inhabited�

�� In �U there are typable terms that have no normal form�

	� Results ��
 and ��
 also hold for �� in place of �U �

Proof� �� Let M �� be provable in �U � Then

a�� 
 Ma � a

and it follows that every type of sort � in �U is inhabited� Types of
sort � or , are always inhabited� e�g�  �x� �A�� by ��x� �A���

	� By proposition ��	���

�� By applying the contraction f��� � f��� � f�,� � � mapping �U
onto ���
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The proof of Girard�s paradox will be given in �ve steps� Use is made of
ideas in Coquand ������� Howe ����
� and Geuvers �������

�� Jumping out of a structure�

	� A paradox in naive set theory�

�� Formalizing�

�� An universal notation system in �U �

�� The paradox in �U �

Step �� Jumping out of a structure

Usually the method of diagonalization provides a constructive way to �jump
out� of a structure� Hence if we make the �tacit� assumption that everything
should be in our structure� then we obtain a contradiction� the paradox�
Well known is the Russell paradox obtained by diagonalization� De�ne the
naive set

R � fa j a 	� ag

Then
�a�a�R� a 	� a#�

in particular

R �R� R 	�R�

which is a contradiction� A positive way of rephrasing this result is saying
that R does not belong to the universe of sets from which we take the a�
thus we are able to jump out of a system� This is the essence of diagonal

ization �rst presented in Cantor�s theorem� The method of diagonalization
yields also undecidable problems and sentences with respect to some given
formal system �i�e� neither provable nor unprovable�� �If the main thesis
in Hofstadter ���
�� turns out to be correct it may even be the underlying
principle of self
consciousness��

The following paradox is in its set theoretic form� due to Mirimano�
����
�� We present a game theoretic version by Zwicker ����
�� Consider
games for two players� Such a game is called 
nite if any run of the game
cannot go on forever� For example noughts and crosses is �nite� Chess is
not �nite �a game may go on forever� this in spite of the rule that there is
a draw if the same position has appeared on the board three times� that
rule is only optional�� Hypergame is the following game� player I chooses a
�nite game� player II does the �rst move in the chosen game� player I does
the second move in that game� etc� Claim� hypergame is �nite� Indeed�
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after player I has chosen a �nite game� only �nitely many moves can be
made within that game� Now consider the following run of hypergame�

Player I� hypergame
Player II� hypergame
Player I� hypergame
� � � � � �

Therefore hypergame is not a �nite game and we have our paradox�
This paradox can be formulated also as a positive result�

Proposition ����� 
Informal�� Let A be a set and let R be a binary
relation on A� De�ne for a �A

SNRa � there is no in�nite sequence a�� a�� � � ��A such that

� � � � � �Ra�Ra�Ra�

Then in A we have
��b�a �SNRa � aRb#�

Proof� Suppose towards a contradiction that for some b

�a �SNRa� aRb#� ���

Then
�a �aRb�SNRa#� �	�

This implies
SNRb�

because if there is an in�nite sequence under b

� � �Ra�Ra�Rb

then there is also one under a��Rb�� contradicting �	�� But then by ���

bRb

Hence � � �RbRbRb and this means �SNRb� Contradiction�

By taking for A the universe of all sets and for R the relation �� one
obtains Mirimano��s paradox� By taking for A the collection of all ordinal
numbers and for R again �� one obtains the Burali&Forti paradox�

The construction in ����� is an alternative way of �jumping out of a
system�� This method and the diagonalization inherent in Cantor�s theorem
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can be seen as limit cases of the following generalized construction� This
observation is due to Quine ������� p����

Proposition ����	� Let A be a set and let R be a binary relation on A�
For n � �� 	� � � � � de�ne

Cna � �a�� � � � � an �A�a� � a ) �i � n ai��Rai ) an � a#�

Bn � fa �A j �Cnag�

fThe set Bn consists of those a � A not on an �n�cycle�g� Then in A one
has

��b�a�Bna� aRb#�

Proof� Exercise�

By taking n � � one obtains the usual diagonalization method of Can

tor� By taking n �  one obtains the result ������ Taking n � 	 gives
the solution to the puzzle �the exclusive club� of Smullyan ������� p�	�� �A
person is a member of this club if and only if he does not shave anyone who
shaves him� Show that there is no person that has shaved every member
of the exclusive club and no one else��

Step 	� The paradox in naive set theory

Now we will de�ne a �naive� set T with a binary relation � on it such that

�a � T �SN�a � a � b#� �.�

for some b � T � Together with Proposition ����� this gives the paradox�
The particular choice of T and � is such that the auxiliary lemmas needed
can be formalized in �U �

De�nition ������

�� T � f�A�R� j A is a set and R is a binary transitive relation on Ag
For �A�R�� �A�� R�� � T and f �A�A� write

�A�R� ��f �A
�� R�� � �a� b �A �aRb � f�a�R�f�b�#�

f is bounded � �a� �A��a �A�f�a�R�a��
�A�R� �f �A

�� R�� � �A�R� ��f �A
�� R�� ) f is bounded�

	� De�ne the binary relation � on T by

�A�R� � �A�� R�� � �f ��A�A����A�R� �f �A
�� R��#�

�� Let W � f�A�R�� T j SN��A�R�g�

We will see that b � �W����T satis�es �.� above� �For notational simplicity
we write for the restriction of � to W also � ��
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De�nition ����
� For �A�R� � T and a �A write

�� Aa � fb�A j bRag�

	� Ra is the restriction of R to Aa�

Lemma ������ Let �A�R� � T and a� b�A� Then

�� �Aa� Ra� � �A�R��

�� aRb � �Aa� Ra� � �Ab� Rb��

	� aRb � SNRb � SNRa�

�� ��a �ASNRa# � SN��A�R��

Proof� ��	� By using the map f � �x�Aa�x� For �	� the transitivity of
R is needed to ensure that f has codomain Ab� In both cases f is
bounded by a�

�� Suppose aRb� If there is an in�nite R
chain under a� i�e� � � �a�RaoRa�
then there is also one under b� indeed � � �a�RaoRaRb� Therefore
SNRb imlpies SNRa�

�� Suppose there is an in�nite �
chain under �A�R��

� � � �A�� R�� � �A�� R�� � �A�R��

-From the �gure � it can be seen that using the bounding elements
in �An� Rn� for the map fn�An���An � projected via the fs into A�
there is an in�nite R
chain� below an element of A�

This contradicts the assumption �a �A SNR�a��

Proposition �������

��A�R� � T �SN��A�R�� �A�R� � �W���#�

Proof� It su�ces to show that for �A�R� � T

�� SN��A�R� � �A�R� � �W����

	� SN��W����

For then �A�R� � �W��� � SN��A�R� by Lemma ����� ����
As to �� suppose SN��A�R�� Let a�A and de�ne f�a� � �Aa� Ra�� with

Ra de�ned in ������ By ����� ��� one has f�a� � �A�R�� by assumption and
�������� applied to �T��� it follows that SN��f�a�� and hence f�a� �W �
Therefore f �A�W � Moreover� f ��A�R� � �W��� by Lemma ����� ���� �	��

As to 	� note that by de�nition ��A�R� � W SN��A�R�� Hence by
Lemma ����� ��� one has SN��W����
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Step �� Formalizing

In this step several notions and lemmas from steps � and 	 will be for

malized� This could be done inside the systems of the cube �in fact inside
�P	�� However� since we want the eventual contradiction to occur inside
�U � a system that is chosen with as few axioms as seems possible� the for

malization will be done in �U directly� From now on the notions of context
and 
 refer to �U � Use will be made freely of logical notions �e�g� we write
�a�A instead of  a�A��

The �rst task is to de�ne the notion SNR without referring to the
concept of in�nity�

De�nition �������

�� (� is the context

A��� R��A�A����

	� Write in context (�
chainA�R� �P ��A�����a�A�Pa��b�A�Pb ) bRa##
SNA�R� �a�A��P ��A����chainA�RP � �Pa#�

Intuitively� chainA�RP states that P �A�� is a predicate on �i�e� subset of�
A such that for every element a in P there is an element b in P with bRa�
Moreover SNA�Ra states that a�A is not in a subset P � A that is a chain�

Lemma ������� In �U one can show

�� (� 
chainA�R � ��A�������
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�� (� 
 SNA�R � �A����

Proof� Immediate�

Proposition ������� In context (� the type

��b�A�a�A�SNA�Ra� aRb#

is in �U inhabited�

Proof� With a little e�ort the proof of Proposition ����� can be formalized
in �PRED	� Then one can apply the map f ��PRED	��U determined by

f��p� � �� f��s� � f��f � � f��p� � �� f��s� � ,�i

We now need a relativization of Proposition �������

De�nition �������

�� In context (� write
closedA�R � �Q��A�����a� b�A �Qa�bRa�Qb#�
fclosedA�RQ says� �if a is in Q and b is R
below a� then b is in Q��g

	� In context (�� Q�A��� write

�a�AQ�B � �a�A�Qa�B#

�a�AQ�B � �a�A�Qa)B#�

fThis is relativizing to a predicate Q�g

Corollary ������� In context (�� Q�A�� the type

closedA�RQ��b�A
Q�a�AQ �SNA�Ra� aRb#

is inhabited in �U �

Proof� The proof of Proposition ����� formalized in PRED	 can be rela

tivized and that proof becomes� after applying the contraction f the re

quired inhabitant�

So far we have formalized the results in Step �� There are several
problems for the formalization of the naive paradox in Step 	 into �U � The
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main one is that in �U a �subset� of a type does not form a type again� For
example it is not clear how to form Aa�� A� as a type� This problem is
solved by considering instead of a structure �Aa� Ra� the structure �A�Ra�
with

bRac � bRc ) bRa�

In order to formalize Lemma����� the de�nition of� has to be adjusted�
Let the domain of R be the �naive� subset

DomR � fa�A j �b�A aRbg�

In the new de�nition of� it is required that the monotonicmap involved
is bounded� but only on the domain of R�

A second problem is that T andW are not types and that it is not clear
how to realize �W����T � This problemwill be solved by constructing in �U
a �universal� kind U such that all pairs �A�R� can be �faithfully� embedded
into U�

De�nition �����	� In �U de�ne two predicates ��� � of type

� ��� r�������� ���� r����������� f ���������#

as follows� We write

�A�R� ��f �A
�� R�� for ��ARA�R�f

and similarly for � �

�� �A�R� ��f �A
�� R�� � �a� b�A �aRb� �fa�R��fb�#�

	�

�A�R� �f �A
�� R�� � �A�R� ��f �A

�� R�� )

�a��A� �DomR�a�)

�a�A �DomRa��fa�R
�a�##�

where DomRa stands for �b�A�aRb�

�� Write for the appropriate A�R and A�� R�

�A�R� �� �A�� R�� � �f �A�A� �A�R� ��f �A
�� R��

and similarly for ��

The notion SN� is not a particular instance of the notion SNA�R � This is
because the �set�

f�A�R� j A��� R�A�A��g

on which � is supposed to act does not form a type� Therefore SN� has
to be de�ned separately�
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De�nition �������

�� chain� � �P �� ���������������
�������r������������

�P��r��������r�����������
�P��r�)���� r�� � ���� r��#

#
#�

	� SN�� �����r����������P �� ����������������#�
�chain�P���P�r�#�

�� Trans Trans � �����r����������a� b� c����arb�brc�arc#�

�� In context (�� a�A de�ne

Ra � �b� c�A��bRc)bRa#�

Proposition �����
� Let A��� R��A�A���� a�A� b�A and assume

TransAR�

that is� work in context x �TransAR� Then the following types are inhab�
ited�

�� DomRa� �A�Ra� � �A�R��

�� aRb� �A�Ra� � �A�Rb��

	� aRb� SNA�Rb� SNA�Ra�

�� ��a�A�SNA�Ra� � SN�AR�

Proof� �� Assume DomRa� De�ne f � �x�A�x� Then �A�Ra� ��f
�A�R�� Moreover a in DomR bounds fx � x for x in Dom�Ra��
Indeed� xRay � xRa� Therefore �A�Ra� �f �A�R��

	� Assume Trans AR and aRb� Again de�ne f � �x�A�x� Then

�A�Ra� ��f �A�R
b��

indeed� xRay � xRy ) xRaRb � xRby by the transitivity of R�
Also a is in Dom�Rb� and again bounds fx � x for x in Dom�Ra��

�� Assume aRb and SNA�Rb� Let chainA�RP and assume towards a
contradiction Pa� De�ne P � � �x�A��Px � x �L b#� Then also
chainA�RP � and P �b� contradicting SNA�Rb�

�� ��� Assume ��a�A� SNA�Ra�� Let chain�P and assume towards a
contradiction PAR� Then for some A� and R� one has PA�R� and
�A�� R�� � �A�R�� and therefore for some a�A one has
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DomRa ) �f ��A��A� ��A�� R�� ��f �A�R�

) �y�A��DomR�y � �fy�Ra## ���

De�ne

P � � �x�A�DomRx ) ������r���������

P�r ) �f ����A� ���� r� ��f �A�R�

) �y�� �Domry��fy�Rx###�

Then also chainA�RP �� By ��� one has P �a� contradicting SNA�Ra�

�!� Assume SN�AR� Let a�A and suppose towards a contradiction
that chainA�RP and Pa� De�ne

P � � �����r�����������b�A�Pb ) �A�Rb� � ��� r�#�

Then chain�P �� by �	�� and P �AR� by ��� and �	�� contradicting
SN�AR�

Step �� A universal notation system in �U

In this step the second problem mentioned in Step � will be solved� Terms
U and i will be constructed such that i faithfully embeds a pair �A�R�
with A�n and R��A�A��� into U� Such a pair �U� i� is called a uni�
versal notation system for orderings and plays the role of the naive set
T � f�A�R� j R�A�A��g�

Proposition ������� There are terms U and i such that in �U

�� 
 U � ��

�� 
 i � � ������������U#�

	� The type f�faithfulness of the map i�g

�����r��������������r��

����������i�r �L i�
�r������ r� �� ���� r��#

is inhabited�

Proof� De�ne

H �  ��������������#�
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U � H���

i � �����r���������h�H�h�r�

Then clearly one has in �U

H � ��U � � and i � � �������������H���#�

So we have � and 	� As to �� we must show that in context

���� r��������� ����� r�����������

the type

i�r �L i��r����� r� �� ���� r��

is inhabited� Now

i�r �L i��r�

� �h�H�h�r �L �h�H�h��r�

� h�r �L h��r�� for all h�H�
� ���� r� �� ���� r��# �L ����� r�� �� ���� r��#�

by taking h � �����s������������ s� �� ���� r���
Since the right
hand side of the last equation is inhabited it follows that

��� r� �� ���� r���

Step � The paradox in �U

Using U in i of Step � we now can formalize the informal paradox derived
in step 	�

De�nition �������

�� On U de�ne the binary relation �i as follows� For u� u
��U let

u �i u
� � �����r��������������r������������

�u �L �i�r�)u
� �L �i�

�r��)
Trans �r ) Trans ��r� )
SN���� r� )
SN���

�� r�� ) ��� r� � ���� r��#�

	� On U de�ne the �unary� predicate I as follows� For u�U let
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Iu � �����r���������
�u �L �i�r� ) Trans �r ) SN���� r�#�

Note that closedU��i
I�

�� The element u � U is de�ned by u � iU � i�

Lemma ������� In context ���� r��������� ����� r����������� the fol�
lowing types are inhabited�

�� �i�r� �i �i�
�r��� ��� r� � ���� r���

�� SN��A�R�� SNU��i
�iAR��

Proof� �� Suppose �i�r� �i �i�
�r��� Then there are �� s� ��� s� of appro


priate type such that

i�r �L i�s ) i��r� �L i��s� ) ��� s� � ���� s���

By the faithfulness of i and the symmetry of �L it follows that

��� r� �� ��� s� � ���� s�� �� ���� r��

hence
��� r� � ���� r���

	� Suppose SN��A�R�� If chainU��i
Q� then de�ne

P�r � Q�i�r��

Then chain�P � Since SN��A�R� we have �PAR� But then �Q�iAR��
So we proved

chainU��i
Q� �Q�iAR��

i�e� SNU��i
�iAR��

Corollary ������� The type

�u�U�SNU��i
u

is inhabited�
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Proof� Let u�U and suppose towards a contradiction

chainU��i
P ) Pu�

Then
�u��U��u� �i u ) Pu���

Now
u� �i u������r���������u �L �i�r� ) SN���� r�#�

Hence by �	� of the lemma

SNU��i
�i�r� �L SNU��i

u�

But then� again using chainU��i
P � it follows that ��Pu�� Contradiction�

Lemma ������� Let A��� R��A�A��� and assume TransAR� Then the
following type is inhabited

SN��A�R���a�A�SN��A�R
a��

Proof� Applying ��������� one has

SN��A�R� � �b�A�SNA�Rb�

� �b�A��a�A�SNA��Ra�b� see below�

� �a�A�SN��A�R
a��

The implication SNA�Rb�SNA��Ra�b is proved as follows� Let SNA�Rb
and assume towards a contradiction that chainA��Ra�P and Pb� Then also

chainA�RP � contradicting SNA�Rb�

Lemma �������

�� Let ��� and r������ and assume Trans�r ) SN���� r�� Then
there are ���� and r��������� such that

Trans ��r� ) SN���
�� r�� ) ��� r� � ���� r���

�� �v�UI�v��UIv �i v
��
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Proof� �� The construction is the one for representing data structures
in Section ���� De�ne

�� �  ��������������

F � �x������� ���f �������fx�

 � ����� ���f ������� �

then  ����� and F �������� Intuitively �� � �
f g and F is the
canonical imbedding� Indeed� F is injective and is not in the range
of F � In fact� in the given context one has

��a���b���p��Fa �L Fb��Q�������p��x����x��Q�� �
��a� b����Fa �L Fb�a �L b��

��a���p��Fa �L  ��p��x����x����a���T ����b���b�� �
��a���Fa 	�L  ��

here T � ��� stands for �true� and has ��b���b� as inhabiting
proof� De�ne r��������� as the canonical extension of r to ��

making larger than the elements of ��

r� � �x����y������a���b���rab ) x �L Fa ) y �L Fb# �

��a���x �L Fa ) y �L  #�

Then Trans ��r�)SN���
�� r�� and ��� r� ��F ��

�� r�� with
bounding element  � This  is not yet in Dom
�� but one has
��� r� �F�F ����� r��� with bounding element F and therefore one
can take �� � ��� and r� � r���

	� If v � i�r� then take v� � i��r��

Proposition ������� The following type is inhabited�

�u�UI�v�UI�SNU��i
v � v �i u#�

Proof� For u one can take u � �iU �i�� In view of Corollary����		 it is
su�cient to show for v�U that fthe following types are inhabitedg�

�� Iu�
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	� Iv�v �i u�

As to �� we know from Corollary ����		

�u�U SNU��i
u

�SN�U �i�� by Proposition ����������
�I�iU �i�� since clearly Trans U �i�
�Iu�

As to 	� assume Iv� Then v �L �i�r� for some pair �� r with Trans�r )
SN���� r��

De�ne
f � ��a����i�ra�� � ���U��

Then for all a�� with Domra one has

fa � �i�ra� �i �i�r� � v�

fby ��������� one has ��� ra� � ��� r�� use Lemma ����	� and the de�nition
of �ig and similarly for all a� b��

arb � ��� ra� � ��� rb��
� i�ra �i i�r

b� SN���� ra� ) SN���� rb� since SN���� r��
� fa �i fb�

Therefore ��� r� ��f �U� �i�� f on Domr is bounded by v� Since v �i v
�

one has Dom�i
v� Therefore ��� r� �f �U� �i� and hence v �L �i�r� �i

�iU �i� � u�

Theorem �����	 
Girard�s paradox�� The type � is inhabited in �U
and hence in ���

Proof� Note that Proposition ����	� is in contradiction with Corollary
������� since I is closed in U� �i� This shows that � is inhabited in �U � so

a fortiori in ���

In Coquand �����b� another term inhabiting � is constructed� This
proof can be carried out in the system �U� which is the PTS de�ned as
follows�

�U�
S ����,
A � � ��� � ,
R ��� ��� ��� ��� ������ �,���

The proof is based on a category theoretic derivation of a contradiction
due to Reynolds ������� Note that �U� � �HOL$�,����

In the presence of so
called strong !s a simpler formalization of the set
theoretic paradox ������ can be formalized� see e�g� Coquand ������ or
Jacobs �������
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Fully formalized proof of Girard�s paradox

As a �nal souvenir we now show the reader the full term inhabiting ��
The term was presented to us by Leen Helmink who constructed it on an
interactive proof development system based on AUTOMATH for arbitrary
PTSs� The treatment on his system found an error in an earlier version
of this subsection� This kind of use has always been the aim of de Bruijn�
who conceived AUTOMATH as a proof checker�

Following the series of intermediate lemmas in this subsection� it became
pragmatic to deal with de�nitions as follows� If we need an expression like

C � ���X � X��� ���

where X is de�ned as M of type A� then we do not �ll in the �possibly
large� term M for X� but write

��X�A����X � X����M� �	�

This in order to keep expresions manageable� This de�nition mechanism
is also used extensively in functional programming languages like ML�
Helmink ������ shows that if all de�nitions given as �
redexes are con

tracted� then the length of the term is multiplied by a factor 
	 �so that
the term will occupy 	�� pages� that is more than this chapter��

Due to the presence of depending types� expressions like �	� are not
always legal in a PTS� even if ��� is� fFor example working in �U we often
needed the expression ��� for the type of predicates on �� We want to
de�ne

Pred �def ���������

and use it as follows�

��Pred���������R��Pred �� � � �#��x��������#����������� ���

This is illegal for two reasons� First of all ��� is not allowed in �U � Sec

ondly� the subterm ��R��Pred �� � � �#��x����� is ill formed� since ��x�����
is �not yet� of type �Pred ���g These phenomena were taken into account
by de Bruijn and in the AUTOMATH languages expressions like ��� are
allowed� The term that follows is for these reasons only legal in a liberal
version of �U �

Glancing over the next pages� the attentive reader that has worked
through the proofs in this subsection may experience a free association of
the whirling details�
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