
COSC/MATH 4P61 - Theory of Computation Term Test 3

Question 1: (10 marks) Construct a Turing machine that transforms an initial tape of the form $0^m 10^n$ (m and n 0's with m, n > 0 separated by a 1) into $0^m 1 \cdot 0^n$ (m and n 0's with m, n > 0 separated by a 1 followed by a blank). The tape head should be at the 1 before and after the computation. Run your machine on the input 00100.

Solution: We define $M = (\{q_0, q_1, q_2, q_3, q_f\}, \{0, 1\}, \{0, 1, B\}, \delta, q_0, B, \{q_f\})$ by:

Tape								State
_	0	0	1 ↑	0	0	-	-	q_0
_	0	0	1	0 ↑	0	-	-	q_1
_	0	0	1	-	0 ↑	-	-	q_2
_	0	0	1	-	0	_ ↑	-	q_2
-	0	0	1	-	0 ↑	0	-	q_3
_	0	0	1	_ ↑	0	0	-	q_3
_	0	0	1 ↑	-	0	0	-	q_f

Question 2: (10 marks) Consider the language

 $L = \{w010w \mid w \in L_d\}.$

Is this language recursively enumerable? Justify your answer.

Solution: Suppose L would be recursively enumerable, i.e., there is a Turing machine M that accepts L. Then we can construct a Turing machine M' that accepts L_d as follows. Given an input w, M' modifies the input to w010w and then simulates M. If M accepts, then w is in L_d , and our machine M' accepts as well. If M does not accept w010w or runs forever, then M' does the same. The existence of M' is a contradiction to the fact that L_d is not recursively enumerable.