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Abstract

A new information system representation, which inherentlyrepresents in-
discernibility is presented. The basic structure of this representation is a
Binary Decision Diagram. We offer testing results for converting large data
sets into aBinary Decision Diagram Information System representation, and
show how indiscernibility can be efficiently determined. Furthermore, a Bi-
nary Decision Diagram is used in place of a relative discernibility matrix to
allow for more efficient determination of the discernibility function than pre-
vious methods. The current focus is to build an implementation that aids in
understanding how binary decision diagrams can improve Rough Set Data
Analysis methods.

Keywords: Rough Set Data Analysis, Binary Decision Diagrams, Indiscerni-
bility, Discernibility Function

1 Introduction

As one of the most referenced data structures in Computer Science the uses of Bi-
nary Decision Diagrams (BDD) [5, 15] are too numerous to mention. R.E. Bryant
[13] popularized BDD when he observed thatreduced ordered BDD (ROBDD)
are a canonical representation of Boolean functions. More recently, the work of
Berghammer et al. [3] has shown “how relations and their operations can efficiently
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be implemented by means of BDD. . . by demonstrating how they . . . can be ap-
plied to attack computationally hard problems”.

Rough Set Data Analysis (RSDA), developed by Z. Pawlak [11] and his co–
workers in the early 1980s has become a recognized and widelyresearched method
with over 2500 publications to date1. As part of the RSDA process, indiscernibility
among objects and attributes within an information system are determined in order
to perform rule dependency generation. Previously methodsof RSDA were not
feasible with large data tables (e.g. with over 10,000 objects) even on powerful
workstations. Nguyen and Nguyen [9]. Demonstrating more efficient reduct deter-
mination than previous methods, we offer testing results using UCI data sets with
more than 10,000 objects.

2 Rough set data analysis

2.1 Basics

The basic idea of RSDA is that objects are only discernable upto a certain gran-
ularity. For example, if we only know that a hit and run car wasa red BMW,
then, within this framework, all red BMWs are the same to us. It is the aim of the
police to increase the granularity of the information so that, finally, the culprit’s
car is distinguishable from all others. The mathematical tool of RSDA areindis-
cernibility relations, which are simply equivalence relations, i.e. they are reflexive,
antisymmetric and transitive. Data representation in RSDAis done viainformation
systems, which can be described as tables of

Object 7→ Feature–vector

relationships. More formally, an information system is a structureI = 〈U,Ω, {Va :
a ∈ Ω}〉, where

• U is a finite non–empty set of objects.

• Ω is a finite set of mappingsa : U → Va, calledattributes.

Throughout the rest of the paper we will useI = 〈U,Ω, {Va : a ∈ Ω}〉 as a
generic information system with|U | = n and|Ω| = k. We can think of〈a, a(x)〉
as a descriptor which assigns valuea(x) to objectx for attributea. Since bothU
andΩ are finite, we can picture an information system as a table where the rows are
labeled by the objects and the columns are labeled by the attributes. An example is
shown in Table 1. In terms of measurement theory, RSDA operates on a nominal

1We thank A. Skowron for this estimate
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Table 1: A simple information system

U a b c d
x1 15 26 36 27

x2 15 26 18 19

x3 14 37 18 48

x4 14 37 18 48

scale, where only (in-)equality is recognized. Each setQ of attributes determines
an indiscernibility relationθQ onU by setting

xθQy ⇐⇒ (∀a ∈ Q)[a(x) = a(y)]. (1)

If Q = {a}, we usually just writeθa. Observe that forP,Q ⊆ Ω,

P ⊆ Q ⇒ θQ ⊆ θP , (2)

θP =
⋂

{θa : a ∈ P}. (3)

The complexity of determining indiscernibility relationsis given by

Lemma 1 [9] If Q ⊆ Ω, and |Q| = k, then θQ can be found in O(k · n log(n))
time and O(n) space.

One aim of RSDA is to eliminate features which are superfluousfor a reclassifica-
tion of the data; in other words, one looks for attribute setsQ which give the same
classification of the objects as the full setΩ, and which are minimal with respect to
this property; such sets are calledreducts. Formally, a reductQ is a set of attributes
such that

1. θQ = θΩ.

2. If R ( Ω, thenθΩ ( θR.

Reducts correspond to keys of a relational database; consequently; as was pointed
out in [12] the problem of finding a reduct of minimal cardinality is, in general,
NP-hard, and finding all reducts has exponential complexity[17]. Clearly, eachI
has a reduct; the intersection of all reducts is called thecore.

Let d be a new attribute with a set of valuesVd and information functiond :
U → Vd, and suppose that∅ 6= Q ⊆ Ω. The aim is to relate the values an object has
with respect to the attributes ofQ to its value with respect tod. The new attribute
is called thedependent attribute or decision attribute; the elements ofQ are called
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independent or condition attributes. The structureD = 〈I, d〉 is called adecision
system; it is calledconsistent if

(∀x, y ∈ U)[(∀a ∈ Ω)a(x) = a(y) impliesd(x) = d(y)]. (4)

An example of a decision system is given in Table 2. There we interpret the deci-
sion variable as “Demand”.

Table 2: A decision system

Type Price Guarantee Sound Screen d

1 high 24 months Stereo 76 high
2 low 6 months Mono 66 low
3 low 12 months Stereo 36 low
4 medium 12 months Stereo 51 high
5 medium 18 months Stereo 51 high
6 high 12 months Stereo 51 low

A local rule of D is a pair〈KQ,Kd〉 whereKQ is a class ofθQ, Kd a class
of θd andKQ ⊆ Kd. This is the case just when all elements that have the same
attribute vector determined byKQ, have the same decision value. In Table 2, we
have, for example, the local rule〈{2, 3}Q, {low}d〉, whereQ = {Price}. This rule
can be read as

If Price = low, then Demand = low.

Therefore, we usually writeKQ → Kd instead of〈KQ,Kd〉. A classKQ of θQ
is calledd-deterministic (or justdeterministic, if d is understood), if there is some
classKd such thatKQ → Kd. The union of all deterministic classes ofθQ is called
theQ-positive region ofd, denoted bypos(Q, d). The characteristic function of
pos(Q, d) is denoted byχ(Q, d).

If each class ofθQ is deterministic, i.e. ifpos(Q, d) = U , then we say thatd
is dependent on Q, and writeQ ⇒ d. In this case, we callQ ⇒ d a global rule or
just arule. A d-reduct now is a set of attributes which is minimal with respect to
Q ⇒ d. If it is clear that we are considering decision systems, we will just speak
of reducts.

2.2 Discernibility matrices and Boolean reasoning

Using the fact that RSDA operates on a nominal scale, an alternative way of
representing discernibility is to cross-classify objectsby assigning to each pair
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〈x, y〉 ∈ U2 the setδ(x, y) of all those attributesa for whicha(x) 6= a(y) [17]; the
result is called adiscernibility matrix. The discernibility matrix for our example of
Table 1 is shown in Table 3. It may be noted that time complexity of finding the

Table 3: A discernibility matrix

U x1 x2 x3 x4
x1 ∅ {c, d} Ω Ω

x2 {c, d} ∅ {a, b, d} {a, b, d}
x3 Ω {a, b, d} {a, b, d} ∅

x4 Ω {a, b, d} ∅ ∅

indiscernibility matrix from a given information system isO(k · n2) and that the
space required to store the matrix isO(k · n2) as well.

Associated with a discernibility matrix is adiscernibility function, which is a
frequently used tool to handle reducts [17]. First, we need some preparation from
Boolean reasoning: Suppose that2 = 〈{0, 1},∧,∨,−, 0, 1〉 is the two element
Boolean algebra. ABoolean function is a mappingf : 2n → 2, where1 ≤ n, and

2
n =

︷ ︸︸ ︷

2× 2× · · · × 2
n−times

. If ~x, ~y ∈ 2
n we say that~x ≤ ~y if xi ≤ yi for all 1 ≤ i ≤ n.

A Boolean functionf : 2n → 2 is calledmonotone, if ~x ≤ ~y impliesf(~x) ≤ f(~y).
If V = {yi : 1 ≤ i ≤ n} is a set of variables, andT ⊆ V , we callT an

implicant of f , if for any valuation of~y ∈ 2
n

yi = 1 for all yi ∈ T impliesf(~y) = 1. (5)

Observe that we can regard the left hand side of (5) as a conjunction, and we can
equivalently write

∧

T = 1 ⇒ f(~y) = 1. (6)

Thus, an implicant gives us a sufficient condition forf(~y) = 1. A prime implicant
of f is a subsetT of V such thatT is an implicant, but no proper subset ofT has this
property. Suppose thatΩ = {a1, . . . , an}, andU = {x1, . . . , xn}. For eachai ∈
Ω, we leta∗i be a variable, and, forδ(xi, xj) 6= ∅, we defineδ∗(xi, xj) =

∨
{a∗r :

ar ∈ δ(xi, xj)}. Now, thediscernibility function of I is the formal expression

∆I(a
∗

1, . . . , a
∗

n) =
∧

{δ∗(xi, xj) : 1 ≤ i � j ≤ m, δ(xi, xj) 6= ∅}. (7)

We usually just write∆ if I is understood. The discernibility function of the matrix
of Table 3 is therefore

∆(a∗, b∗, c∗, d∗) = (c∗ ∨ d∗) ∧ (a∗ ∨ b∗ ∨ d∗) ∧ (a∗ ∨ b∗ ∨ c∗ ∨ d∗).
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The connection between reducts and the discernibility has been shown by Skowron
and Rauszer [17]; for completeness, we provide a proof.

Proposition 1 Q is a reduct of I if and only if Q is a prime implicant of ∆.

PROOF. “⇒”: Suppose thatQ is a reduct ofI, and let~y ∈ 2
n be a valuation of

{a∗1, . . . , a
∗
n} such thatyi = 1 for all ai ∈ Q. We first show thatQ is an implicant

of ∆. Assume that∆(~y) = 0. Then, by definition (7), there are1 ≤ i � j ≤ n
such thatxi, xj ∈ U, δ(xi, xj) 6= ∅ andxt = 0 for all at ∈ δxi, xj . It follows
that δ(xi, xj) ∩ Q = ∅, and therefore,Q does not distinguish betweenxi andxj.
SinceQ is a reduct, we have, in particular,θQ = θΩ, so that, in fact,xi andxj
cannot be distinguished by any attribute inΩ. Hence,δ(xi, xj) = ∅, contrary to
our assumption.

To show thatQ is prime, suppose thatP ⊆ Q is an implicant of∆, and as-
sume there arexi, xj ∈ U such thatxiθPxj , andΩ distinguishesxi andxj, i.e.
δ(xi, xj) 6= ∅. It follows fromxiθPxj thatP ∩ δ(xi, xj) = ∅. Let ~y be a valuation
such that

yi =

{

1, if ai ∈ P,

0, otherwise.
(8)

Then,
∧
{yi : ai ∈ P} = 1, while∆(~y) = 0, contradicting the assumption that

P is an implicant of∆. It follows thatθP ⊆ θΩ, and the fact thatQ is a reduct
impliesP = Q.

“⇐”: Suppose thatP is a prime implicant of∆, and letxiθPxj ; then,P ∩
δ(xi, xj) = ∅. Assume thatΩ distinguishesxi andxj, and choose a valuation
~y as in (8). By the same argument as above, we arrive at a contradiction. Since
θP = θΩ, P contains a reductQ, and it is straightforward to see thatQ is an
implicant. It now follows from the fact thatP is prime, thatQ = P . �

Corollary 1 P ⊆ Ω is a reduct of I if and only if P is minimal with respect to
the property

P ∩ δ(x, y) 6= ∅ (9)

for all x, y ∈ U, δ(x, y) 6= ∅.

We can define arelative discernibility matrix for a decision systemD = 〈I, d〉 in
a slightly different way than forI: First, construct the discernibility matrix∆D for
the extended attribute setΩ ∪ {d}. In case of our TV example, the matrix is given
in Table 4.
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Table 4: Discernibility matrixMD

2 3 4 5 6
1 Pr,Gu,So,Sc,d Pr,Gu,Sc,d Pr,Gu,Sc Pr,Gu,Sc Gu,Sc,d
2 Gu,So,Sc Pr,Gu,So,Sc,d Pr,Gu,So,Sc,d Pr,Gu,So,Sc
3 Pr,Sc,d Pr,Gu,Sc,d Pr,Sc
4 Gu Pr,d
5 Pr,Gu,d

Next we define arelative discernibility matrix MD by

δ(xi, xj) =







δ(xi, xj) \ {d}, if d ∈ δ(xi, xj) andxi, xj ∈ pos(Ω, d)

or χ(Ω, d)(xi) 6= χ(Ω, d)(xj),

∅ otherwise.

(10)

The result for the TV example is shown in Table 5; note thatpos(Ω, d) = U .

Table 5: Relative discernibility matrixMD

2 3 4 5 6
1 Pr,Gu,So,Sc Pr,Gu,Sc Gu,Sc
2 Pr,Gu,So,Sc Pr,Gu,So,Sc
3 Pr,Sc Pr,Gu,Sc
4 Pr
5 Pr, Gu

Let∆MD
be the Boolean function belonging toMD. Then,

Proposition 2 [17] {ai1 , . . . , ait} is a reduct of D if and only if ai1 ∧ . . . ∧ ait
is a prime implicant of ∆MD

.

For our example, after absorption laws, we see that the relative discernibility func-
tion has the form

∆MD
(Pr∗,Gu∗,So∗,Sc∗) = Pr∗ ∧ (Gu∗ ∨ Sc∗). (11)

The prime implicants are{Pr,Gu} and{Pr,Sc}.
Much work has been done on employing methods of Boolean reasoning for

reduct determination and rule finding, and we refer the reader to [7–9, 16, 17].
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3 Binary Decision Diagrams

Given a n-ary Boolean functionf(x1, . . . , xn), anordered binary decision diagram
(OBDD) [13] is a finite directed acyclic graph with one root,n + 1 levels, and
exactly two branches at each non-terminal node. One of theseis the0 case, denoted
by lo(x) and shown as a dashed line, the other the1 case, denoted byhi(x) and
drawn as a solid line. The levels are determined by the (fixed)ordering of the
variablesx1 
 x2 
 . . . 
 xn. Each traversal through the tree corresponds to an
assignment to the variables, and the nodes at leveln + 1 give the evaluation off
corresponding through this traversal. Figure 1 shows an OBDD for the function
f(a, b, c) = a ∧ (b ∨ c).

Figure 1: An OBDD fora ∧ (b ∨ c)

The following reduction rules do not change the value of the function:

1. Use only one terminal label for0 and one terminal label for1 and redirect
all lines from leveln to the respective node.

2. If two non-terminal nodesx, y are on the same level andlo(x) = lo(y), hi(x) =
hi(y), then eliminate one of them, say,x and redirect all lines intox to y.

3. If lo(x) = hi(x) for some non–terminal nodex, then removex and redirect
all lines intox to lo(x).

The result of applying these rules to an OBDD until none of them can be applied
any more is called areduced ordered binary decision diagram (ROBDD). Figure 2
shows the ROBDD of the functionf(a, b, c) = a ∧ (b ∨ c).

A Shared Binary Decision Diagram Figure 3, is a multirooted directed acyclic
graph that represents multiple Boolean functions [14]. Reuse of nodes by more
than one Boolean function in the shared BDD allows for reduced memory use. A
quasi-reduced BDD [10] is one that does not apply Rule 3 aboveresulting in each
node having paths to one or more nodes one level below.
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Figure 2: An ROBDD fora ∧ (b ∨ c)
Figure 3: Shared Binary Decision Dia-
gram

4 Binary Decision Diagram Information System

4.1 Representation

A Binary Decision Diagram Information System(BDDIS) is a quasi-reduced shared
BDD which represents both data and indiscernibility withinan information system.
A BDDIS has one or more root nodes. Each unique root node has a subtree that
may share nodes with other objects and represents one or moreindiscernible ob-
jects. This level containing root nodes is defined as theobject-top level; a top level
element is referenced byT (u), u ∈ U . The shared nature of the structure pro-
vides the mechanism for which indiscernibility in inherent. Every unique attribute
value is represented by a unique node on one level of the rootssubtrees defined as
the attribute-top level. The current implementation has as leaf nodes the unique
characters present within the information system. An alternative more efficient
representation is discussed in Section 7

From the information system of Table 1 the BDDISs of Figures 4and 5 are
derived. Figure 4 is shaded to visualize the attribute-top level. Similarly, 5 is
shaded to visualize the object-top level.

Each column within the information system is represented bya path composed
of a unique series of lo and/or hi branches arriving at an attribute-top level node.
In Figures 4 and 5, the first column is represented by the path lo-lo, the second a
path lo-hi, the third a path hi-lo... Each node is labeled with Ln x for level number
n and node numberx.
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Figure 4: BDDIS: Shaded Attribute Top Level

Figure 5: BDDIS: Shaded Object Top Level

4.2 Indiscernibility

Two objectsj, k ∈ U are in the same equivalence class ifT (j) andT (k) reference
the same object-top level node. From Figure 5 we can derive the following object-
indiscernible sets:{x1}, {x2}, {x3, x4}. Objects are indiscernible with respect to
one attribute if by traversing a unique series of branches from each object root node
the same attribute-top level node is attained. From Figure 4it is clear that objects 2,
3, 4 have a common path hi-lo to node L25 representing the value 18 for attribute
c. Thus the object 2,3,4 are indiscernible with respect to attributec.

For a given data set, the size of the BDDIS decreases as the level of indiscerni-
bility increases. The worst-case data that causes the BDDISto grow as large as
possible – relative to the size of the information system – isdata containing all
unique attribute values. The quasi-reduced structure is chosen to reduce the com-
plexity associated with determining indiscernibility forthe initial implementation.
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Methods which reduce BDDIS size are discussed in Section 7.

4.3 Construction

A build tree is a two-dimensional array used to convert one row of the information
system at a time into one root node and one subtree within the BDDIS. The bottom
row consists of null-padded attribute values as charactersof which each character
pair j and j+1 is stored as lo and hi keys within the nodes one level above the
leaf nodes in the BDDIS. The leaf nodes only exist logically within these nodes.
The attribute values are padded to the left with null characters to create attributes
values of equal2k character length, allowing each attribute value to form a subtree
of equal height in the BDDIS.

OneAVL tree [1] for each BDDIS level ensures nodes are unique. Each node
in the AVL trees is also a node within the BDDIS as well so that each AVL tree
collectively forms the BDDIS. Each node contains keys, which represent the loca-
tion of the lo and hi children. The AVL trees use thelo-key as primary key and the
hi-key as secondary key for insertions and rebalancing. Each AVL tree is stored in
a two-dimensional array. The array index is used as the key ofeach node.

Figure 6: BDDIS as AVL Trees

For each level of the build tree, a probing/ insertion operation is performed into
the corresponding AVL tree that returns the node key of either an existing node or
a newly inserted node. The returned key is placed within build tree in the element
corresponding to the parent of the lo and hi keys:[next level][ j+2

2 − 1]. Upon each
level of the build tree the same process is performed bottom up resulting with the
top element in the build tree representing an object root node and the completion
of the addition of an object into the BDDIS.
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4.4 Order of operation

The conversion process involves AVL probing/insertion operations. For an object
with 32 attributes having 16 characters each, there are a total of 31 × 15 probing
operations. Only the last object probes the AVL trees holding nodes created from
the insertion operations of all other objects before it. e.gthe third object converted,
probes the AVL trees holding nodes created by the insertion operations for the first
and the second objects.

Figure 7 displays the relationship between the size of the AVL trees represent-
ing each level and the number of probe/insertion operationswith worst-case data.
Note that the number of probe/insertion operations decreases as the maximum size
of the AVL trees increases, and that the size of the levels below the attribute-top
level is much smaller as compared to the number of probe operations.

Figure 7: Exploration of order developed from AVL size and the number of probe
operations

It is observed that for each leveli : (i ≥ 1) : O(num probeoperations(i)) ×
log(max AVL size(i)). With n objects,a attributes per object,c characters per
attribute,z unique characters, the max AVL size below the attribute top level is
restricted by either the number of possible combinations ofdigits z2

i

or largest
number of nodesna(c/2i). It is clear that for some large value ofn anda, the
BDDIS will grow larger than available memory with worst casedata. It is expected
thatc will, in general, be small in most data sets.
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5 BDDIS Testing Results

The success of the representation is currently defined in terms of its speed, and
demonstrated using data sets from the UCI data repository [4] with initial results
given in Table 6. Furthermore, tests with random data, shownin Table 7, illustrate
the ability of the method to handle larger data sets.

Table 6: Conversion to BDDIS; UCI Data Sets; Pentium 4 1.8GHz

Objects Attributes Size (KB)
Data set number discernible number unique Text BDDIS Time [s]
Iris 150 147 5 77 5 13 0.00001
Nursery 12960 12960 9 28 1047 440 1
Adult 32561 32537 15 22124 3913 3385 7
Cover Type 30000 30000 55 6399 3811 5626 13
Connect-4 Opening 67557 67557 42 6 5895 2120 5

In Table 6, the size of UCI data as text, and the time required to convert the
data into the BDDIS, are listed. In addition, in order to gaina better understanding
of the results, the size of the data along with the number of indiscernible objects
and unique attributes within the information system is listed; in this way, we can
represent the relationship of the level of indiscernibility and the size of the data
with the BDDIS size and conversion time required. As the level of indiscernibility
increases or the number of unique attributes increases, theAVL trees grows larger,
and thus, the conversion time required and the memory used bythe BDDIS are
increased.

Table 7 displays results of the conversion into BDDIS representation on a Pen-
tium 4 1.8GHz system using random 10-digit data sets of eightattributes and eight
characters each. Random data cause the quasi-reduced BDDISto grow unreason-
ably large as there is little opportunity for the BDDIS to reuse nodes because, in
general, classes are small, and the large majority of attribute values are unique.

Table 7: Conversion to BDDIS; Random data sets; Pentium 4 1.8GHz

Number of objects BDDIS (MB) Time [s]
100000 24.4 40
200000 48.6 136
300000 72.6 281
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6 Discernibility functions using BDD

In this Section we shall describe a method to determine a Boolean discernibil-
ity function without the requirement to create a discernibility matrix. The current
implementation uses the Buddy BDD package [6] to represent the Boolean dis-
cernibility function as a BDD.

Instead of creating a set of disjunctions for pairs of each object in the infor-
mation system, the relative discernibility matrix can be created using pairs ofdis-
cernible object classes. Each discernible object class is represented by a top node
within the BDDIS. i.e each root node represents an object discernible from all other
objects.

A depth first traversal of the BDDIS for every two discernibleobjects classes
that are indiscernible with respect to their decision attributes is performed from top
node to attribute top level node in order to create each set ofdisjunctions in turn.
An AND operation is performed with each new set of disjunctions into what will
eventually become the final BDD representing the discernibility function; the BDD
is always in a reduced form. Figure 8 represents the Boolean function for Table 2.
A reduct is derived from each possible set of unique paths leading to the leaf node
1, which for Figure 8 are{0, 1} and{0, 3}. Buddy codes attributes using integers;
in Figure 8, attribute0 represents price, and1 represents guarantee.

Figure 8: Discernibility function as a BDD for Table 2

6.1 Order of the operation

In the worst case, the operation requiresn(n−1)
2 traversals of the BDDIS and AND

operations into the BDD discernibility function. The Buddypackage uses a hash
table to represent the BDD discernibility function. The ANDoperation of each set
of disjunctions into the Boolean discernibility function as well as the creation of
the disjunctions is done in constant time [2] . The order of operation isO( n2

·a
log(a)).
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As an outlook a method of creating a temporary reverse threaded BDDIS in order
to derive the discernibility function more efficiently is explored.

6.2 Time behavior of reduct search in selected UCI data sets

Table 8 displays results for deriving the discernibility function along with the num-
ber of reducts attained and the time required. The results show that as the number
of object gets large the time required gets unreasonably large.

Table 8: Discernibility function derivation from BDDIS; UCI Data Sets; Pentium
4 1.8GHz

Objects
Data set number discernible Attr. Num Reducts. Time [s]
Iris 150 147 9 4 1
Nursery 12960 12960 9 1 371
Adult 32561 32537 15 2 2489
Cover Type 30000 30000 55 1969 5526
Connect-4 Opening 67557 67557 42 547 24990

It should be mentioned that the adult data set has missing values. Currently,
there is no extra missing data treatment in our system, and wejust use a code for
missing as an extra value. Missing data handling within the BDDIS is one of the
next steps after the feasibility of the representation is proven.

7 Outlook

7.1 Reduced BDDIS

Two methods can be taken to reduce the size of the BDDIS. One can reduce the
BDDIS by applying the ROBDD rules described in Section 3 which were used to
reduce Figure 1to Figure 2. The BDDIS would then be a fully reduced BDD and
no longer simply quasi-reduced.

Alternatively, one can create the BDDIS using a coded information system in
which every attribute valueVa of the original information system is coded to the
values0, ..., kV − 1; here, each unique coded value represents a unique attribute
value. An additional hash table is used to map the codes to theoriginal values.
Using the same codings for different entries will reduce thesize of the BDDIS,
whereas the cost of the hash table is negligible. Table 9 represents a coded decision
system for Table 2. A coded decision system can be efficientlyderived by creating
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Table 9: A coded information system

Type Price Guarantee Sound Screen d

1 0 0 0 0 0
2 1 1 1 1 1
3 1 2 0 2 1
4 2 2 0 3 0
5 2 3 0 3 0
6 0 2 0 3 1

a temporary BDDIS representing only one attribute. The top nodes will represent
the object indiscernibility with respect to one attribute and derive a coding for the
column.

From Figure 7, when using worst case data, the attribute top level representing
all unique attribute values in the decision system, contains (n · a) nodes. A coded
decision system reduces the number of unique attribute values ton. This can rep-
resent a huge reduction is the number of nodes required to represent the decision
system whena is large. In a BDDISc created from a coded decision system the at-
tribute top level becomes the leaf nodes level. Leaf nodes are represented logically
as lo and hi keys within the leaf parent nodes. A BDDISc removes(n · a) nodes
plus all nodes below which formed the attribute top level subtrees. The BDDISc
also has the property of allowing further reductions to occur above the attribute top
level as the ROBDD rules described in Section 3 are more frequently satisfied. For
example: The number of nodes per level for the BDDIS derived by the random
data test of 100.000 objects described within Table 7 is displayed in Figure 10.
The BDDISc will remove levels 3, 4 and 5 resulting in the reduction of 1,506,819
nodes to 700,000 nodes. As well some number of further reductions will occur as
reduction rules will be more likely to apply.

Table 10: BDD nodes per level: 100,000 Objects from random data

Level Number Nodes

0 - Top 100,000
1 200,000
2 400,000
3 796,719
4 10,000
5 100
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A rule is derived from this process in that the larger the number of charac-
ters that exist in a string the more nodes that are removed from the BDDISc as
compared to the BDDIS. A further random test with 100,000 objects was per-
formed using 16 characters per attribute with again 8 attributes resulting in a total
of 3,096,790 nodes within the BDDIS. In this case the BDDISc representation re-
moves levels 3, 4, 5, 6, resulting again in a 700,000 node structure.

It may be worthy of mention that worst-case data becomes near-best case data
when using a fully reduced BDDIS derived from a coded decision system. If an
decision system contained all unique attribute values in each column, for each row
i, 0 ≤ i ≤ n− 1 the coded information system would be composed completely of
the integer valuei.11.

Each row is converted into a subtree into the BDDIS and following the reduc-
tion rules, each root nodei is also it’s only leaf nodei. Thus a series of nodes
0, . . . n − 1 exists, regardless of the number of attributes. Of course a new worst
case exists for the fully reduced BDDIS. This would be a codeddecision system
where each row of attribute values creates as many permutations from coded at-
tribute values as possible which limit as much as possible the reduction rules from
reducing the BDDIS. The best case represented by one root node is a coded infor-
mation system where every attribute value is0.

Table 11: Worst case coded information system

U a b c d
x1 0 0 0 0

x2 1 1 1 1

x3 2 2 2 2

x4 3 3 3 3

7.2 Temporary Reverse-Threaded BDDIS.

The time required to create the discernibility function canbe greatly reduced by
creating atemporary reverse-threaded BDDIS we denote as BDDISr. The BDDISr
would contain the contain the same nodes as the BDDIS, but each node would
contain two arrays; One for references to parents coming viahi paths, and one to
parents coming via low paths within the BDDIS. The BDDISr can be created using
one complete traversal of the BDDIS.

The process to create a discernibility matrix then becomes as follows: For each
attributea of each object-top level root nodei, traverse down a unique path of
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the BDDIS to an attribute-top level node. Then traverse up the BDDISr following
the reverse unique path to zero or more object-top level rootnodes. This finds all
objects that are indiscernible withi with respect toa.

Discernibility of i with every other object-top level root node is then implied
with respect toa and stored as disjunctions within a temporary array ofn length.
A BDD representing a discernibility function fori with respect to all other objects
is derived using this array.

n ·a traversals must be performed down the BDDIS. Some numberq traversals
up the BDDISr, that is greater or equal to the number of objects indiscernible with
respect toa, must also be performed; Some small number of incorrect partial paths
up the BDDISr will occur. O(naq log(a)) is derived which is much less that the
currentO(n2a log(a)) discussed in 6.1.

8 Concluding remarks

The quasi-reduced non reverse threaded implementation described in Section 4.1 is
used in order to reduce complexity of the initial implementation in order to gain an
understanding of how BDDs can be used to improve Rough Set Methods. Larger
data sets then previously and even very large data with random structure can be
treated as a basis for rough set data analysis with the chosenBDDIS representation,
the initial results described have proven to be encouragingand will result in a
continued focus on using BDD for rough set data analysis.
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