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Abstract

A new information system representation, which inherenglgresents in-
discernibility is presented. The basic structure of thisresentation is a
Binary Decision Diagram. We offer testing results for camivey large data
sets into @inary Decision Diagram Information System representation, and
show how indiscernibility can be efficiently determined.rthermore, a Bi-
nary Decision Diagram is used in place of a relative disd®lity matrix to
allow for more efficient determination of the discernilyilitinction than pre-
vious methods. The current focus is to build an implementethat aids in
understanding how binary decision diagrams can improvegR@&et Data
Analysis methods.

Keywords: Rough Set Data Analysis, Binary Decision Diagsaimdiscerni-
bility, Discernibility Function

1 Introduction

As one of the most referenced data structures in Computen&eithe uses of Bi-
nary Decision Diagrams (BDD) [5, 15] are too numerous to oentR.E. Bryant
[13] popularized BDD when he observed thatiuced ordered BDD (ROBDD)
are a canonical representation of Boolean functions. Mecently, the work of
Berghammer et al. [3] has shown “how relations and theirapmus can efficiently
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be implemented by means of BDD. by demonstrating how they ...can be ap-
plied to attack computationally hard problems”.

Rough Set Data Analysis (RSDA), developed by Z. Pawlak [11] and his co—
workers in the early 1980s has become a recognized and wiskarched method
with over 2500 publications to ddteAs part of the RSDA process, indiscernibility
among objects and attributes within an information systesrdatermined in order
to perform rule dependency generation. Previously metlodd®8SDA were not
feasible with large data tables (e.g. with over 10,000 db)eeven on powerful
workstations. Nguyen and Nguyen [9]. Demonstrating mdiieient reduct deter-
mination than previous methods, we offer testing resulisgugdCl data sets with
more than 10,000 objects.

2 Rough set data analysis

2.1 Basics

The basic idea of RSDA is that objects are only discernablewpcertain gran-
ularity. For example, if we only know that a hit and run car veased BMW,
then, within this framework, all red BMWSs are the same to tiss the aim of the
police to increase the granularity of the information sa,tfiaally, the culprit's
car is distinguishable from all others. The mathematical td RSDA areindis-
cernibility relations, which are simply equivalence relations, i.e. they are xife
antisymmetric and transitive. Data representation in R&fone vianformation
systems, which can be described as tables of

Object— Feature—vector

relationships. More formally, an information system israstureZ = (U, Q,{V}, :
a € Q}), where

e [ is afinite non—empty set of objects.
e Qis afinite set of mappings : U — V,, calledattributes.

Throughout the rest of the paper we will uBe= (U,Q,{V, : a € Q}) as a
generic information system witl/| = n and|2| = k. We can think of(a, a(x))
as a descriptor which assigns valuer) to objectx for attributea. Since bothl/
and() are finite, we can picture an information system as a tableevthe rows are
labeled by the objects and the columns are labeled by thieuaés. An example is
shown in Table 1. In terms of measurement theory, RSDA oggermah a nominal

\We thank A. Skowron for this estimate



Table 1: A simple information system

Ulal|b|c|d
x1| 15|26 | 36 | 27
To | 15|26 | 18 | 19
x3 |14 | 37|18 | 48
x4 | 14| 37|18 | 48

scale, where only (in-)equality is recognized. Each(getf attributes determines
an indiscernibility relatiord on U by setting

20y < (Va € Q)[a(z) = a(y)]- 6y
If @ = {a}, we usually just write,. Observe that foP, ) C (2,
PCQ=10qCop, (2)
Op = {0a:ac P}. (3)
The complexity of determining indiscernibility relatiorssgiven by

Lemmal [9] IfQ C Q,and |Q| = k, then 65 can be found in O(k - nlog(n))
time and O(n) space.

One aim of RSDA is to eliminate features which are superfldousa reclassifica-
tion of the data; in other words, one looks for attribute ggtshich give the same
classification of the objects as the full $&tand which are minimal with respect to
this property; such sets are callemliucts. Formally, a reduct) is a set of attributes
such that

1. 0g = Oq.
2. If R C Q, thenfq C 0p.

Reducts correspond to keys of a relational database; coesty as was pointed
out in [12] the problem of finding a reduct of minimal cardibalis, in general,
NP-hard, and finding all reducts has exponential compldgify. Clearly, eact¥
has a reduct; the intersection of all reducts is callecttne.

Let d be a new attribute with a set of valu&s and information function :
U — Vg, and suppose thét# Q C . The aim is to relate the values an object has
with respect to the attributes ¢f to its value with respect td. The new attribute
is called thedependent attribute or decision attribute; the elements of) are called
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independent or condition attributes. The structur® = (Z, d) is called adecision
system; it is calledconsistent if

(Va,y € U)[(Va € Q)a(x) = a(y) impliesd(xz) = d(y)]. 4

An example of a decision system is given in Table 2. There warpnet the deci-
sion variable as “Demand”.

Table 2: A decision system

| Type| Price | Guaranteel Sound| Screen| d |
1 high | 24 months| Stereo| 76 high
low 6 months | Mono 66 low
low 12 months| Stereo| 36 low
medium| 12 months| Stereo| 51 high
medium| 18 months| Stereo| 51 high
high 12 months| Stereo| 51 low

OO B WN

A local rule of D is a pair(Kq, ;) whereKg is a class ofg, K, a class
of ; and Ko C K. This is the case just when all elements that have the same
attribute vector determined b, have the same decision value. In Table 2, we
have, for example, the local rul§2, 3}¢, {low},), whereQ) = {Price}. This rule
can be read as

If Price = low, then Demand = low.

Therefore, we usually writd{g — K instead of( K¢, Kq). A classKq of 0

is calledd-deterministic (or justdeterministic, if d is understood), if there is some
classK, such thati{g — K. The union of all deterministic classestf is called
the -positive region ofd, denoted bypos(Q, d). The characteristic function of
pos(@, d) is denoted by (Q, d).

If each class oflg is deterministic, i.e. ipos(Q,d) = U, then we say thad
is dependent on @, and write@ = d. In this case, we call) = d aglobal rule or
just arule. A d-reduct now is a set of attributes which is minimal witlspect to
@ = d. Ifitis clear that we are considering decision systems, wijust speak
of reducts.

2.2 Discernibility matrices and Boolean reasoning

Using the fact that RSDA operates on a nominal scale, annalige way of
representing discernibility is to cross-classify objelbysassigning to each pair



(z,y) € U? the set(x, y) of all those attributes for whicha(z) # a(y) [17]; the
result is called aliscernibility matrix. The discernibility matrix for our example of
Table 1 is shown in Table 3. It may be noted that time compfexitfinding the

Table 3: A discernibility matrix

U T To T3 T4
1 @ {C, d} Q Q
zy | {c, d} 0 {a,b,d} | {a,b,d}

b
zs | Q |{a,b,d} |{a,b,d} 0
g | Q |{a,b,d} 0 0

indiscernibility matrix from a given information systemd¥k - n?) and that the
space required to store the matrixQgk - n?) as well.

Associated with a discernibility matrix isdiscernibility function, which is a
frequently used tool to handle reducts [17]. First, we naedespreparation from
Boolean reasoning: Suppose tizat= ({0,1},A,V,—,0,1) is the two element
Boolean algebra. Boolean function is a mappingf : 2" — 2, wherel < n, and

,—/_ A
2" =2x2x---x 2. If Z,if € 2" we say thatf < yjif x; <y, forall1 <i <n.
n—times

A Boolean functionf : 2" — 2 is calledmonotone, if ¥ < g implies f(¥) < f(¥).
If V.= {y; : 1 < i < n}is a set of variables, and C V, we callT an
implicant of f, if for any valuation ofy € 2"

y; = 1 forall y; € T implies f(7) = 1. (5)

Observe that we can regard the left hand side of (5) as a aciigan and we can
equivalently write

NT=1=f(i)=1 (6)

Thus, an implicant gives us a sufficient condition fgg/) = 1. A prime implicant
of fisasubsel of VV such thal” is an implicant, but no proper subsetiohas this
property. Suppose th&t = {ay,...,a,}, andU = {z,...,z,}. Foreachs; €
Q, we leta! be a variable, and, faf(xz;, z;) # 0, we defined*(z;, z;) = \/{a; :
ar € §(x;,x;5)}. Now, thediscernibility function of Z is the formal expression

Az(al,...,arn) = /\{5*(@,%—) 1 <i<j<m, §(x;,x;) #0}  (7)

We usually just writeA if Z is understood. The discernibility function of the matrix
of Table 3 is therefore

Aa*, b, ¢, d*) = (¢* Vd*) A (a* VBV d*) A (@ VbV eV d).



The connection between reducts and the discernibility bas Bhown by Skowron
and Rauszer [17]; for completeness, we provide a proof.

Proposition 1 Q isareduct of Z if and only if Q isa primeimplicant of A.

PROOF  “=": Suppose that) is a reduct ofZ, and lety € 2" be a valuation of
{aj,...,a}} such that; = 1 for all a; € Q). We first show that) is an implicant
of A. Assume thatA(y) = 0. Then, by definition (7), there are< i < j < n
such thatz;, z; € U, §(x;,z;) # 0 andz, = 0 for all a; € dz;,z;. It follows
thato(z;,z;) N Q = 0, and thereforeQ) does not distinguish between andz;.
SinceQ is a reduct, we have, in particuldly = 0q, so that, in facty; andx;
cannot be distinguished by any attribute(in Hence,é(z;, z;) = (), contrary to
our assumption.

To show that() is prime, suppose tha® C @ is an implicant ofA, and as-
sume there are;,z; € U such thatz;0px;, and€ distinguishesr; andz;, i.e.
§(zi, z;) # 0. It follows from z;,0 pz; that P N é(z;, z;) = 0. Lety be a valuation

such that
1, fageP
i — ) (2 - M 8
Y {O, otherwise ®

Then,A{y; : a; € P} = 1, while A(%) = 0, contradicting the assumption that
P is an implicant ofA. It follows thatfp C 6, and the fact thaf) is a reduct
impliesP = Q.

“«<". Suppose thatP is a prime implicant ofA, and letz;0px;; then, P N
§(zs,z;) = 0. Assume thaf) distinguishesr; andz;, and choose a valuation
iy as in (8). By the same argument as above, we arrive at a caritoad Since
fp = fHq, P contains a reducf), and it is straightforward to see thét is an
implicant. It now follows from the fact tha® is prime, that) = P. B

Corollary 1 P C Qisareduct of Z if and only if P is minimal with respect to
the property

Pné(z,y) #0 9)
forall z,y € U, §(z,y) # 0.

We can define aelative discernibility matrix for a decision syster = (Z, d) in

a slightly different way than faf: First, construct the discernibility matriXp for
the extended attribute s@tU {d}. In case of our TV example, the matrix is given
in Table 4.



Table 4: Discernibility matrix\/p

2 3 4 5 6

1| Pr,Gu,So,Sc,d Pr,Gu,Sc,d Pr,Gu,Sc Pr,Gu,Sc Gu,Sc,d
2 Gu,So,Sc| Pr,Gu,So0,Sc,d Pr,Gu,S0,Sc,d Pr,Gu,S0,Sd
3 Pr,Sc,d Pr,Gu,Sc,d Pr,Sc
4 Gu Pr.d
5 Pr,Gu,d

Next we define aelative discernibility matrix M p by

Oz, xj) \{d}, ifded(z;,z;)andz;, z; € pos(Q,d)
S(mh xj) = or X(Q> d) (ml) 7£ X(Qv d)(xj)v (10)

0 otherwise.

The result for the TV example is shown in Table 5; note tha{2,d) = U.

Table 5: Relative discernibility matrix/ p

2 3 4 5 6
1| Pr,Gu,So,S¢ Pr,Gu,Sc Gu,Sc
2 Pr,Gu,So0,5¢ Pr,Gu,S0,5S¢
3 Pr,Sc Pr,Gu,Sc
4 Pr
5 Pr, Gu

Let AMD be the Boolean function belonging dp. Then,

Proposition 2 [17] {a;,,...,a; }isareduct of D ifand onlyif a;, A ... A a;,
isa prime implicant of AMD-

For our example, after absorption laws, we see that theveldiscernibility func-
tion has the form

Az, (PF,GU", SO, SC°) = PF A (GU" V SC°). (11)

The prime implicants aréPr,Gu} and{Pr,S¢g.
Much work has been done on employing methods of Boolean meagdor
reduct determination and rule finding, and we refer the netdg -9, 16, 17].



3 Binary Decision Diagrams

Given a n-ary Boolean functiofi(x1, . . . , ,, ), anordered binary decision diagram
(OBDD) [13] is a finite directed acyclic graph with one roat+ 1 levels, and
exactly two branches at each non-terminal node. One of théise0 case, denoted

by lo(x) and shown as a dashed line, the otherllumse, denoted byi(x) and
drawn as a solid line. The levels are determined by the (fieedgring of the
variablesx; > z2 > ... > z,,. Each traversal through the tree corresponds to an
assignment to the variables, and the nodes at levell give the evaluation of
corresponding through this traversal. Figure 1 shows an DB the function
fla,b,c) =a N (bVc).

Figure 1: An OBDD fora A (b V ¢)

The following reduction rules do not change the value of tirefion:

1. Use only one terminal label férand one terminal label fof and redirect
all lines from leveln to the respective node.

2. Iftwo non-terminal nodes, y are on the same level aie(x) = lo(y), hi(x) =
hi(y), then eliminate one of them, sayand redirect all lines inta to y.

3. Iflo(z) = hi(x) for some non—terminal node then remover and redirect
all lines intox to lo(z).

The result of applying these rules to an OBDD until none ofrttean be applied
any more is called seduced ordered binary decision diagram (ROBDD). Figure 2
shows the ROBDD of the functiofi(a,b,c) = a A (b V ).

A Shared Binary Decision Diagram Figure 3, is a multirooteéated acyclic
graph that represents multiple Boolean functions [14]. dReof nodes by more
than one Boolean function in the shared BDD allows for reduoemory use. A
quasi-reduced BDD [10] is one that does not apply Rule 3 abesdlting in each
node having paths to one or more nodes one level below.
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Figure 2: An ROBDD fora A (b V ¢) Figure 3. Shared Binary Decision Dia-

gram
@ f g
!

4 Binary Decision Diagram Information System

4.1 Representation

A Binary Decision Diagram Information System(BDDIS) is a quasi-reduced shared
BDD which represents both data and indiscernibility withminformation system.
A BDDIS has one or more root nodes. Each unique root node habtees that
may share nodes with other objects and represents one oringdiseernible ob-
jects. This level containing root nodes is defined asothect-top level; a top level
element is referenced W¥(u), v € U. The shared nature of the structure pro-
vides the mechanism for which indiscernibility in inhereBtery unique attribute
value is represented by a unique node on one level of the sobtsees defined as
the attribute-top level. The current implementation has as leaf nodes the unique
characters present within the information system. An ia#teve more efficient
representation is discussed in Section 7

From the information system of Table 1 the BDDISs of Figuremnd 5 are
derived. Figure 4 is shaded to visualize the attribute-ll Similarly, 5 is
shaded to visualize the object-top level.

Each column within the information system is represented pgth composed
of a unique series of lo and/or hi branches arriving at arbate-top level node.
In Figures 4 and 5, the first column is represented by the jpalh, ithe second a
path lo-hi, the third a path hi-lo... Each node is labeledhwit_x for level number
n and node numbet.



Figure 4: BDDIS: Shaded Attribute Top Level
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Figure 5: BDDIS: Shaded Object Top Level
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4.2 Indiscernibility

Two objectsj, k € U are in the same equivalence clas#'{fj) and7'(k) reference
the same object-top level node. From Figure 5 we can dereséolfowing object-
indiscernible sets{z}, {z2}, {z3,z4}. Objects are indiscernible with respect to
one attribute if by traversing a unique series of branchas ach object root node
the same attribute-top level node is attained. From Figitris4lear that objects 2,
3, 4 have a common path hi-lo to node_bZepresenting the value 18 for attribute
c. Thus the object 2,3,4 are indiscernible with respect tibate c.

For a given data set, the size of the BDDIS decreases as #leofandiscerni-
bility increases. The worst-case data that causes the BEDtfow as large as
possible — relative to the size of the information system data containing all
unique attribute values. The quasi-reduced structuredsesito reduce the com-
plexity associated with determining indiscernibility five initial implementation.
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Methods which reduce BDDIS size are discussed in Section 7.

4.3 Construction

A build tree is a two-dimensional array used to convert one row of therifdion
system at a time into one root node and one subtree withinEH2I8. The bottom
row consists of null-padded attribute values as characdfenghich each character
pair j and j+1 is stored as lo and hi keys within the nodes owmel labove the
leaf nodes in the BDDIS. The leaf nodes only exist logicaliyhim these nodes.
The attribute values are padded to the left with null characto create attributes
values of equat® character length, allowing each attribute value to formktree
of equal height in the BDDIS.

OneAVL tree [1] for each BDDIS level ensures nodes are unique. Each node
in the AVL trees is also a node within the BDDIS as well so thetle AVL tree
collectively forms the BDDIS. Each node contains keys, Whi&present the loca-
tion of the lo and hi children. The AVL trees use tloekey as primary key and the
hi-key as secondary key for insertions and rebalancing. Each Ast. is stored in
a two-dimensional array. The array index is used as the kepdf node.

Figure 6: BDDIS as AVL Trees
BDD Level

AVL Tree (0}

AVL Tree (1)

For each level of the build tree, a probing/ insertion openais performed into
the corresponding AVL tree that returns the node key of eiimeexisting node or
a newly inserted node. The returned key is placed withirdbinde in the element
corresponding to the parent of the lo and hi keysxt Ieve][% —1]. Upon each
level of the build tree the same process is performed bottomesulting with the
top element in the build tree representing an object rooeraw the completion
of the addition of an object into the BDDIS.
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4.4 Order of operation

The conversion process involves AVL probing/insertionragiens. For an object
with 32 attributes having 16 characters each, there areahdb81 x 15 probing
operations. Only the last object probes the AVL trees hgldiades created from
the insertion operations of all other objects before it.tkegthird object converted,
probes the AVL trees holding nodes created by the inserf@nations for the first
and the second objects.

Figure 7 displays the relationship between the size of the #¥es represent-
ing each level and the number of probe/insertion operatiatis worst-case data.
Note that the number of probe/insertion operations deesas the maximum size
of the AVL trees increases, and that the size of the levelsvibéhe attribute-top
level is much smaller as compared to the number of probe tipesa

Figure 7: Exploration of order developed from AVL size and ttumber of probe
operations
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It is observed that for each level (i > 1) : O(num.probeoperationsi)) x
log(max AVL _sizg(i)). With n objects,a attributes per object; characters per
attribute, z unique characters, the max AVL size below the attribute awellis
restricted by either the number of possible combinationsligits 22" or largest
number of nodesia(c/2%). It is clear that for some large value afanda, the
BDDIS will grow larger than available memory with worst calsda. It is expected
thatc will, in general, be small in most data sets.
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5 BDDISTesting Results

The success of the representation is currently defined msterf its speed, and
demonstrated using data sets from the UCI data repositdnyif# initial results
given in Table 6. Furthermore, tests with random data, showiable 7, illustrate
the ability of the method to handle larger data sets.

Table 6: Conversion to BDDIS; UCI Data Sets; Pentium 4 1.8GHz

Objects Attributes Size (KB)
Data set number| discernible| number| unique| Text| BDDIS | Time [s]
Iris 150 147 5 77 5 13| 0.00001
Nursery 12960 12960 9 28 | 1047 440 1
Adult 32561 32537 15| 22124| 3913| 3385 7
Cover Type 30000 30000 55| 6399| 3811| 5626 13
Connect-4 Opening 67557 67557 42 6 | 5895 2120 5

In Table 6, the size of UCI data as text, and the time requioecbhvert the
data into the BDDIS, are listed. In addition, in order to gaipetter understanding
of the results, the size of the data along with the number diaernible objects
and unique attributes within the information system iselistin this way, we can
represent the relationship of the level of indiscernipilitnd the size of the data
with the BDDIS size and conversion time required. As thelle¥éendiscernibility
increases or the number of unique attributes increaseg\thérees grows larger,
and thus, the conversion time required and the memory usedebDDIS are
increased.

Table 7 displays results of the conversion into BDDIS repméstion on a Pen-
tium 4 1.8GHz system using random 10-digit data sets of eititibutes and eight
characters each. Random data cause the quasi-reduced B®Hi&v unreason-
ably large as there is little opportunity for the BDDIS to seunodes because, in
general, classes are small, and the large majority of at&italues are unique.

Table 7: Conversion to BDDIS; Random data sets; Pentium@Hz8

Number of objects BDDIS (MB) | Time [s]
100000 24.4 40
200000 48.6 136
300000 72.6 281
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6 Discernibility functionsusing BDD

In this Section we shall describe a method to determine adamobiscernibil-
ity function without the requirement to create a discefitipmatrix. The current
implementation uses the Buddy BDD package [6] to repredentBbolean dis-
cernibility function as a BDD.

Instead of creating a set of disjunctions for pairs of eageatbin the infor-
mation system, the relative discernibility matrix can beated using pairs afis-
cernible object classes. Each discernible object class is represented by a top node
within the BDDIS. i.e each root node represents an objecedisble from all other
objects.

A depth first traversal of the BDDIS for every two discerniblgiects classes
that are indiscernible with respect to their decision ladties is performed from top
node to attribute top level node in order to create each seispfnctions in turn.
An AND operation is performed with each new set of disjunagionto what will
eventually become the final BDD representing the discdityilfiinction; the BDD
is always in a reduced form. Figure 8 represents the Bool@actibn for Table 2.
A reduct is derived from each possible set of unique pattdingao the leaf node
1, which for Figure 8 ard0, 1} and{0, 3}. Buddy codes attributes using integers;
in Figure 8, attribute) represents price, aridrepresents guarantee.

Figure 8: Discernibility function as a BDD for Table 2
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6.1 Order of the operation

In the worst case, the operation requiffé%i) traversals of the BDDIS and AND

operations into the BDD discernibility function. The Budpgckage uses a hash
table to represent the BDD discernibility function. The ANperation of each set

of disjunctions into the Boolean discernibility functios @ell as the creation of

the disjunctions is done in constant time [2] . The order afration isO(lggQ—('g)).
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As an outlook a method of creating a temporary reverse tee&DDIS in order
to derive the discernibility function more efficiently ispgred.

6.2 Timebehavior of reduct search in selected UCI| data sets

Table 8 displays results for deriving the discernibilitpétion along with the num-
ber of reducts attained and the time required. The resubts #hat as the number
of object gets large the time required gets unreasonalgg lar

Table 8: Discernibility function derivation from BDDIS; U@ata Sets; Pentium
4 1.8GHz

Objects
Data set number| discernible| Attr. | Num Reducts| Time [s]
Iris 150 147 9 4 1
Nursery 12960 12960 9 1 371
Adult 32561 32537| 15 2 2489
Cover Type 30000 30000| 55 1969 5526
Connect-4 Opening 67557 67557 42 547 24990

It should be mentioned that the adult data set has missingesalCurrently,
there is no extra missing data treatment in our system, andsteise a code for
missing as an extra value. Missing data handling within tBES is one of the
next steps after the feasibility of the representation asg@n.

7 Outlook

7.1 Reduced BDDIS

Two methods can be taken to reduce the size of the BDDIS. Omeethuce the
BDDIS by applying the ROBDD rules described in Section 3 whiere used to
reduce Figure 1to Figure 2. The BDDIS would then be a fullyucedi BDD and
no longer simply quasi-reduced.

Alternatively, one can create the BDDIS using a coded infiiiom system in
which every attribute valu&), of the original information system is coded to the
valueso, ..., ky — 1; here, each unique coded value represents a unique aitribut
value. An additional hash table is used to map the codes torigaal values.
Using the same codings for different entries will reduce slze of the BDDIS,
whereas the cost of the hash table is negligible. Table @septs a coded decision
system for Table 2. A coded decision system can be efficielafived by creating

15



Table 9: A coded information system

| Type | Price| Guaranteg Sound| Screen|| d |
1 0 0 0 0 0

ol w|N
oOIN|N| R,k
N w| NN -
o|lo|o|o|r
w| w| W N~
Rlo|o|kr|k

a temporary BDDIS representing only one attribute. The toges will represent
the object indiscernibility with respect to one attributedalerive a coding for the
column.

From Figure 7, when using worst case data, the attributestog tepresenting
all unique attribute values in the decision system, cost@in a) nodes. A coded
decision system reduces the number of unique attributeesdbn.. This can rep-
resent a huge reduction is the number of nodes required tesemt the decision
system whem is large. In a BDDIS created from a coded decision system the at-
tribute top level becomes the leaf nodes level. Leaf nodesegresented logically
as lo and hi keys within the leaf parent nodes. A BDBté8moves(n - a) nodes
plus all nodes below which formed the attribute top leveltseds. The BDDIS
also has the property of allowing further reductions to o@hove the attribute top
level as the ROBDD rules described in Section 3 are more émifyusatisfied. For
example: The number of nodes per level for the BDDIS derivedhle random
data test of 100.000 objects described within Table 7 islalygal in Figure 10.
The BDDIS: will remove levels 3, 4 and 5 resulting in the reduction of05B19
nodes to 700,000 nodes. As well some number of further rehscwill occur as
reduction rules will be more likely to apply.

Table 10: BDD nodes per level: 100,000 Objects from randota da
| Level [ Number Nodeg

0-Top 100,000
1 200,000
2 400,000
3 796,719
4 10,000
5 100
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A rule is derived from this process in that the larger the nemtif charac-
ters that exist in a string the more nodes that are removed fhe BDDIS as
compared to the BDDIS. A further random test with 100,000ects was per-
formed using 16 characters per attribute with again 8 atie#resulting in a total
of 3,096,790 nodes within the BDDIS. In this case the BD&i&oresentation re-
moves levels 3, 4, 5, 6, resulting again in a 700,000 nodetsireL

It may be worthy of mention that worst-case data becomeshestrcase data
when using a fully reduced BDDIS derived from a coded denisigstem. If an
decision system contained all unique attribute valueséh ealumn, for each row
1,0 < i < n — 1the coded information system would be composed complefely o
the integer value.11.

Each row is converted into a subtree into the BDDIS and fahgvihe reduc-
tion rules, each root nodeis also it's only leaf nodé. Thus a series of nodes
0,...n — 1 exists, regardless of the number of attributes. Of coursewawmorst
case exists for the fully reduced BDDIS. This would be a codecision system
where each row of attribute values creates as many permngatiom coded at-
tribute values as possible which limit as much as possildedtduction rules from
reducing the BDDIS. The best case represented by one roetia@dcoded infor-
mation system where every attribute valué.is

Table 11: Worst case coded information system

Ula|b|c|d
x110[(0]|0]|0
x| 11|11
r312(2(2]|2
x4 313(3]|3

7.2 Temporary Reverse-Threaded BDDIS.

The time required to create the discernibility function ¢engreatly reduced by
creating gemporary reverse-threaded BDDISwe denote as BDDIS The BDDIS
would contain the contain the same nodes as the BDDIS, bix made would
contain two arrays; One for references to parents comindpiiaths, and one to
parents coming via low paths within the BDDIS. The BDBE&n be created using
one complete traversal of the BDDIS.

The process to create a discernibility matrix then becoradsliaws: For each
attribute o of each object-top level root node traverse down a unique path of
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the BDDIS to an attribute-top level node. Then traverse e@BBDIS- following
the reverse unique path to zero or more object-top levelmodes. This finds all
objects that are indiscernible wittwith respect tau.

Discernibility of i with every other object-top level root node is then implied
with respect tax and stored as disjunctions within a temporary array, ¢éngth.

A BDD representing a discernibility function féwith respect to all other objects
is derived using this array.

n - a traversals must be performed down the BDDIS. Some numbexersals
up the BDDIS, that is greater or equal to the number of objects indisberniith
respect tax, must also be performed; Some small number of incorrecigbpeths
up the BDDIS will occur. O(nagqlog(a)) is derived which is much less that the
currentO(n?alog(a)) discussed in 6.1.

8 Concluding remarks

The quasi-reduced non reverse threaded implementatianiloed in Section 4.1 is
used in order to reduce complexity of the initial impleméotain order to gain an
understanding of how BDDs can be used to improve Rough Sdiddst Larger

data sets then previously and even very large data with rarstoucture can be
treated as a basis for rough set data analysis with the clBi3BiS representation,
the initial results described have proven to be encouragimd will result in a

continued focus on using BDD for rough set data analysis.
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