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Abstract— We describe an experiment in which we elicit
aggregated fuzzy information, and link it to the “direct scaling”
approach of S.S. Stevens [1]. We also re-analyze earlier experi-
ments [2] and compare the results to the proposed scaling method.
Our results seem to indicate that a compensatory operator is not
always necessary to model aggregated fuzzy information, and
that humans internally use a simple rescaling.

I. I NTRODUCTION

Fuzzy sets were introduced independently by Klaua [3] and
Zadeh [4], and have become a popular tool for handling vague
information: Given a setU and a propertyP , a fuzzy setis
a functionfP : U → [0, 1]. The numberfP (x) may be taken
as an indicator of the graded membership ofx in the (extent
of the) concept described byP , and can be considered as an
attempt to quantify vagueness of meaning (see also [5] for
earlier work in this direction).

Though one may have reservations about the usefulness of
offering continuously many choices, see e.g. [6], these are
widely used to indicate degrees of belief.

Applications of fuzzy set theory have been mainly indus-
trial, see e.g. [7], Chapter 11, and the references therein, or
the Fuzzy Application Library [8]. In the behavioral sciences,
fuzzy sets have received a mixed reaction; a recent account
can be found in [9].

In the present study, we shall be concerned with the
conjunctive aggregation of fuzzy information from several
dimensions as performed by humans: Given a stimulusx
and a conceptA, respondents are asked for the degree of
membershipµ(x,A) of the stimulusx in the conceptA.
Given two different conceptsA,B, the question arises how
the degrees of membership are combined, i.e. what, if any, is
the relationship betweenµ(x,A), µ(x,B), andµ(x,A ∧ B).
The early works suggest three ways of doing this:

min{µ(x,A), µ(x,B)} Min-norm [3], [4],

max{0, µ(x,A) + µ(x,B)− 1} Łukasiewicz norm[3],

µ(x,A) · µ(x,B) Product norm[4].

These operators are members of a class of functions called
triangular norms (t–norms), that has been accepted by the

fuzzy set community as the proper generalization of the
conjunction operator of classical propositional logic. A t–norm
is a functionM: [0, 1]2 → [0, 1] which satisfies

x M y = y M x,(1)

(x M y) M z = x M (y M z),(2)

x M y ≤ x M z, if y ≤ z,(3)

x M 1 = x.(4)

Historically, t–norms precede fuzzy sets, see e.g. [10]. It is
well known that the min–norm is the largest t–norm in the
sense that for any t–normM,

x M y ≤ min{x, y}.(5)

Disjunctive aggregation is often modeled byt–conormswhich
are functionsO : [0, 1]2 → [0, 1] which satisfy

xOy = yOx,(6)

(xOy)Oz = xO(yOz),(7)

xOy ≤ x M z, if y ≤ z,(8)

xO0 = x.(9)

Observe that axiomatically t–norms and t–conorms only differ
in their boundary conditions (4), (9). The t–conorms corre-
sponding to the classical t–norms are

max{µ(x,A), µ(x,B)} Max-conorm,

min{1, µ(x,A) + µ(x,B)} Łukasiewicz conorm,

µ(x,A) + µ(x,B)− µ(x,A) · µ(x,B) Sum norm.

While the definition of a t–norm is mathematically satisfy-
ing, the question remains whether humans form conjunctive
phrases according to the laws of t–norms. From their concept
of prototype theory, Osherson and Smith [11], [12] argue
strongly that this is not the case. Empirical studies send
mixed signals: While [13] finds some support for product
norm, the results of [14] favor the min–norm. In a study
of human perception of color category membership, Kay and
McDaniel [15] show that the membership value of an object



in a conjunctive class (orange) may have a higher value than
both of its constituents (red and yellow), thus violating (5). The
experiments of [16] and [17] found “. . . overwhelming support
for averaging rules and practically none for any rule that can be
represented as a t–norm” [17]. It is not clear, though, to what
extent these results are really contradictory, owing to different
elicitation of membership functions and experimental design.

II. COMPENSATORY AGGREGATION

Oden [13] recognizes that “. . . the characteristic of com-
pensation is an important property because it means that
errors of opposite polarity will tend to cancel each other
out”. In a widely noticed experiment, Zimmermann and Zysno
[2] (ZZ) investigate these compensatory effects, and argue
that compound membership can be described by a fuzzy
aggregation operator which combines the product normMp

and its dual conormOp by the weighted geometric mean

d = (x0 Mp x1)γ · (x0Opx1)1−γ

= (x0 · x1)γ · (1− (1− x0) · (1− x1))1−γ .

It may be noted that one can find simple one–parameter
aggregation operators based on other classical t–norms, and
that the ZZ-aggregation is not necessarily “the best” in terms
of explained variance. In Table I we compare the following
four functions:

ZZ aggregation:

fZZ(x0, x1) = (x0x1)
γ · (1− (1− x0)(1− x1))

1−γ(10)

Rescaled product:

fPR(x0, x1) = (x0 · x1)
γ(11)

min−max aggregation:

fMM (x0, x1) = min(x0, x1)γ + max(x0, x1)(1− γ)(12)

Łukasiewicz aggregation:

fLU (x0, x1) = max(0, x0 + x1 − 1)γ +(13)

(1−max(0, 1− (x0 + x1)))(1− γ)

Throughout the study, parameter estimation was done by the
Levenberg-Marquart-Algorithm using ordinary least-squares,
with the individual membership estimates as independent vari-
ables, and aggregated membership as the dependent variable.
The differences among the models are marginal, not only in

TABLE I

ONE PARAMETER AGGREGATION

Weight of
Function M (γ) O (1− γ) Explained variance

ZZ aggregation 0.409 0.591 0.925
Rescaled product 0.494 – 0.872
min−max [18] 0.674 0.326 0.942

Łukasiewicz 0.605 0.395 0.931

numbers, but also with respect to the residuals of the first three
regression equations shown in Figure 1.
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Fig. 1. Residuals

TABLE II

ONE PARAMETER AGGREGATION– A SECOND DATA SET

Weight of
Function M (γ) O (1− γ) Explained variance

ZZ aggregation 0.543 0.457 0.917
Rescaled product 0.598 – 0.939

min−max 0.924 0.076 0.924
Łukasiewicz 0.707 0.293 0.676

[2] offers a second data sets based on verbal descriptions
of stimuli. The results of the four aggregation functions is
presented in Table II. Once again the ZZ aggregation scheme
seems not to be the best candidate for an aggregation operator.
In both data sets the weighted min-max-rule is somewhat
better than the ZZ aggregation; in the second data set, the
rescaled product rule performs best, which is notable, because
the rescaled product avoids the use of an “OR” part in the
definition of the aggregation procedure

Finding aggregation operators is a pure model fitting act,
and there is no sound theory or explanation why aggregation
should work as it does. Furthermore, “The question of which
interaction and union operator best reflects psychological
reality still is open” [19] – even today, see [9].

Another aspect should be noted as well: Model fitting in
[2] was done by using mean values of the responses. In the
described experiment, this type of modeling is only adequate,
if we assume that the individual ratings show large random
variation and that the mean of the ratings reflects a “true” and
reliable value.

The situation is even more complex. The regression ap-
proaches are based on non–linear functions which may cause
problems for the proposed aggregation procedure: Since the



models are applied to aggregated data, the non–linear relation-
ship may be valid on an individual level, but the gauging of
the fuzzyness is totally different among respondents. Suppose,
for example, that the min–max-aggregation is valid on an
individual level with the weights23 for the minimum and13 for
the maximum – just as the empirical data indicate. Assuming

TABLE III

INDIVIDUAL AND AGGREGATED SCORES

X Y aggregate observed aggregate predicted
Subject 1 0.9 0.1 0.367 0.367
Subject 2 0.1 0.9 0.367 0.367

Mean 0.5 0.5 0.367 0.5

the data of Table III, the theory is obviously wrong when using
mean values, although it is exact on the basis of individual
data. Thus, a good fit of an aggregation operator using mean
values does not mean that this aggregation operator fits well
the given individual data. Indeed, our results reported below
show a marked difference between the two models.

Niskanen [20] uses the ZZ data to compare several soft
computing decision algorithms. The explained variances of
these schemes are far better than the simple aggregation
schemes presented above. However, all his algorithms use at
least three parameters to describe the relationship between
input and output. Thus, improved performance can be – at
least partially – attributed to overfitting, and not to a better
theory.

III. D IRECT SCALING

The elicitation procedure of [2] has been called “direct
scaling” for fuzzy membership functions [21]. The psycholo-
gist S.S. Stevens introduced another “direct scaling” approach
already in the 1950s [1], which has received little, if any,
attention in the fuzzy set community: LetX be a dimension
(loudness, length of a line, area of a rectangle...). When
comparing a stimulusx with a standardX0, the reported value
of x by a human subject (in terms of another dimension) can
be expressed by

S(x|X0) = c · xn(X)

Here, n(X) is a characteristic constant for the dimension-
dimension transfer, e.g.n(X) ≈ 2

3 for area estimation in terms
of length of a line. Assuming unit weights and identical power
exponents for the stimuli under study, we define

s(x) def= S(x|X0) = xn(X),

s(y) def= S(y|Y0) = ym(Y ),

s(x, y) def= S((x, y)|(X0, Y0)) =
(
xn(X)ym(Y )

)λ

= (s(x)s(y))λ,

wheres(x, y) is the rescaled product. A weak version of the
rescaled product model is the main effect scaling model:

s(x, y) def= s(x|y) · cy = t(y|x) · cx.

Here, x and y are rescaled with unknown functionss and t
and the aggregation is multiplicative. We discuss this approach
in Section V-B.2.

One aim of the current investigation is to investigate whether
Steven’s approach (or a variation thereof) can be used to
describe aggregated fuzzy memberships.

IV. T HE EXPERIMENT

The experiment was performed using a WWW-based inter-
face on a local server in a laboratory at Brock University1.

For elicitation of the fuzzy membership functions we have
used the same steps as [2] (“within factors”). Additionally,
there are three independent groups (“between factors”), which
vary the influence of verbal instruction within the process of
membership generation, thus allowing for different possibili-
ties of prototype description. In order to use “real” stimuli we
have employed six elliptic forms and eight colours, which were
expressed by a stimulus or by a verbal description, or both,
resulting in three different groups. Prototypes were “circle”
(shape) and “green” (color); a variant of the experiment had
color “red”. Elicitation of fuzzy membership was done by
adopting the similarity view in the sense of [22]: Respondents
were asked to indicate their agreement between the concepts
and the prototype on a sliding scale ranging from 0% to 100%,
resulting in6 + 8 + 6 · 8 = 186 responses per participant. The
sequence of the blocks, as well as the sequence of stimuli
in each part, were chosen at random. We have always used
stimuli for the concepts, and the following three prototype
descriptions:

1) Stimulus block: Prototypes are

• A black circle on a white background (for shape)
• A green square (for color),
• A green disk (for both).

2) Verbal block: Prototypes are

• TEXT(“The shape is a circle”),
• TEXT(“The color is green”),
• TEXT(“It is a green circle.”)

3) S+V block: Prototypes are

• A green disk + TEXT( “The shapes of the stimuli
are identical”),

• A green disk + TEXT(“The colours of the stimuli
are identical”),

• A green disk + TEXT( “The stimuli are identical”)

Respondents were students of Brock University; each was paid
$10 for participating in the experiment. The initial group con-
sisted of 60 respondents. In a second round of 25 respondents,
the color “green” was substituted by “red”. All in all, we
collect 12,384 single observations. It turns out that there are
only seven significant differences among the three prototype
groups for “green” and none for “red”. In Table IV we list the
observed membership functions for the single concepts, and
Table V gives the observed aggregated values.

1The interested reader can replicate the experiment atwww.xfrage.de/
fuz/



TABLE IV

MEAN VALUES OF SINGLE CONCEPTS(GREEN)

Green C1 C2 C3 C4 C5 C6 C7
90.9 30.35 33.12 42.21 48.92 46.94 31.58 52.88

Circle E80 E60 E40 E20 Line
90.18 48.86 40.89 33.94 27.6 12.61

TABLE V

OBSERVED AGGREGATION

Green C1 C2 C3 C4 C5 C6 C7
Circle 91,35 45.8 49.38 53.65 60.8 58.62 48.49 60.69
E80 59.71 29.47 32.72 35.33 43.54 42.38 29.96 42.81
E60 49.4 21.8 25.7 29.39 36.87 33.43 24.66 32.88
E40 43.28 20.53 22.41 24.85 31.29 27.41 22.26 30.71
E20 34.03 15.51 15.62 19.33 24.15 23.7 16.58 25.1
Line 19.65 8.47 9.31 10.14 13.78 16.61 8.58 12.86

Red C1 C2 C3 C4 C5 C6 C7
Circle 95.72 70.84 46.43 32.3 50.84 44.29 82.59 92.77
E80 67.46 49.39 30.9 23.52 38.75 32.75 57.55 61.61
E60 52.14 34.38 25.77 19.25 29.94 24.13 42.96 52.22
E40 39.88 28.83 20.14 14.42 22.23 18.54 34.57 37.88
E20 32.61 22.61 13.87 9.17 14.64 13.91 24.16 32.03
Line 15.9 10.91 6.97 3.83 7.26 5.19 11.26 12.07

V. M ODEL FITTING

A. Compensatory aggregates and rescaled product norm

In a first step, it can be shown that none of the traditional
t–norms fits the data. In a second analysis, we try to fit the
four models (10) – (13), assuming that a single parameter
governs the behavior of the subjects in every condition; as a
check for this assumption, we estimate the parameter of the
models in the “green” and “red” condition as well. Table VI
shows the result for the aggregated data, i.e. the mean values of
the responses to each stimulus/prototype pair, while Table VII
shows the results for the individual data. Here, one parameter
was estimated for every response; for each model we report
the mean of the estimated values ofγ.

TABLE VI

ONE PARAMETER AGGREGATION– AGGREGATED EXPERIMENTAL DATA

Weight of
Color Function M (γ) O (1− γ) Explained variance
Green ZZ aggregation 0.604 0.396 0.971

Rescaled product 0.676 – 0.971
min-max 0.876 0.124 0.814

Łukasiewicz 0.671 0.329 0.903
Red ZZ aggregation 0.653 0.363 0.954

Rescaled product 0.697 – 0.957
min-max 0.883 0.117 0.909

Łukasiewicz 0.726 0.274 0.752

Table VI shows that the rescaled product and ZZ aggrega-
tion give the best result for the aggregated data in terms of
explained variance. For the individual data, the weighted min-
max aggregation consistently outperforms the other functions.
The second best fit is shown by the rescaled product norm.
The ZZ and Łukasiewicz approach do not seem to be the best
choice for describing the data in this situation.

TABLE VII

ONE PARAMETER AGGREGATION– INDIVIDUAL EXPERIMENTAL DATA

Weight of
Color Function M (γ̄) O(1− γ̄) Explained variance
Both ZZ aggregation 0.599 0.401 0.475

Rescaled product 0.635 – 0.479
min-max 0.809 0.191 0.519

Łukasiewicz 0.833 0.167 0.427

Green ZZ aggregation 0.591 0.409 0.449
Rescaled product 0.632 – 0.454

min-max 0.802 0.198 0.498
Łukasiewicz 0.829 0.171 0.406

Red ZZ aggregation 0.615 0.385 0.545
Rescaled product 0.644 – 0.550

min-max 0.826 0.174 0.580
Łukasiewicz 0.842 0.158 0.486

B. Stevens’ direct scaling

1) Is there a power law:In terms of aggregated data, the
rescaled product as a first approximation of Stevens’ law fits
very well. There is no need for an additional fuzzy set based
theory for aggregation, and there is no need for a compensating
operator. Even the power constant of about 2/3 is predictable
from Stevens’ experiments in direct scaling of area estimation.
Thus, by Occam’s razor, this model would be the preferred
one.

When fitting the aggregation equations to the individual data
– resulting in one parameter per individuum - the goodness of
fit index of the rescaled norm is much lower, and the min-
max-rule seems to be the better choice.

The reduction of error within aggregated data is well known:
Whereas the single values may be quite unstable because of
uncontrollable influences, the mean (of 60 and more observa-
tions) is a quite noise free measure due to the law of large
numbers.

Using means seems to put a bias on smooth functions
such as the ZZ function or the rescaled product. Note that
the min-max-rule (and Łukasiewicz as well) are limited by a
function of min and max values of the one-dimensional scale
values, whereas ZZ and rescaled product are not. Even if the
individual aggregation functions reflects the functional form of
(e.g.) a min-max rule, the relationship based on mean values
may not.

The question whether “Stevens’ law” or a min-max-rule
governs the results is still open, and it seems to be dependent
on the intended application of the results. If we want to
describe aggregation in terms of reliable (aggregated) data,
the rescaled product seems to be a good choice - if we want
to describe aggregation for an individual, the min-max-rule
seems to be more appropriate.

2) Are there only main effects:The rescaled product is
a restrictive formulation of Stevens’ approach, because it is
assumed that the power exponent is identical for the stimuli
under study. A weak version of Stevens’ direct scaling ap-
proach is the main effect scaling model

s(x, y) = s(x|y) · cy = t(y|x) · cx.



The multiplicative relationship is a main feature of the
direct scaling assumption in case of combined stimuli. This
assumption can be used without assuming the validity of a
power law (or even the simple version of a rescaled product).
Since we have used a factorial design, we first predict the
conditional functionss(x|y) andt(y|x), and then all elements
in Table V by the marginals. The results reported in Table VIII
and Table IX are quite satisfactory.

TABLE VIII

FIT OF THE CONDITIONAL FUNCTIONS IN THE MAIN EFFECT MODEL

Experiment s(form|color) t(color|form)
Green 0.890 0.959
Red 0.945 0.985

TABLE IX

FIT OF THE MAIN EFFECT MODEL

Experiment Best t-Norm Main effect model
Green 0.971 0.988
Red 0.957 0.990

3) Is there really a psycho–physical power law in fuzzy
membership estimation:The power law in Stevens’ psy-
chophysical approach links parameters of a physical stimulus
with parameters of human behavior. In every analysis above,
we linked behavior parametersto other behavior parameters
under the assumption that the behavior is governed by a power
law using a relationship of the forms(x, y) = g(u(x), v(y)),
assuming the g, u and v can be described by the power law.
In case of the estimation of the conditional “form” function
we can link the data to the parameter of the form. Since we
use ellipses as stimuli, we may use the area of the ellipses as
a scaling parameter.

Becauses(x|color) = c · xa, we check the validity of the
function ln(s(x|color)) = c + a · ln(x) by measuringx in
percentages of the area of the circle given as the prototype.
The badness of fit of this assumption is demonstrated in Figure
2.

Clearly, the power law fails as a description of a psycho–
physical law in this context. A reason for this may be the
fact that the fuzzy membership scale is bounded – a situation
which is not present in the scaling experiments of Stevens.
If we assume that the end–points of the fuzzy membership
scale have to be reflected by an additional scaling function,
it is quite natural to assume that there is a function which
links the parameters of the physical world to the scaling. The
complementary log-log transformation

ln(− ln(1− s(x|color))) = c + a · ln(x)

is a good candidate for the linearization of the relationship, as
Figure 3 demonstrates.

VI. CONCLUSIONS

Using means of observation values as basis for a model is,
for practical purposes, a simple and quick way to obtain results
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Fig. 2. Badness of fit of Stevens’ law, given a physical dimension in fuzzy
membership estimation

Fig. 3. Stevens’ law including complementary log-log transformation as a
link function (code 1= no color; 2..8 different colours)

which are relatively error free. For decision making, however,
it is necessary to model the behavior of the individual. Our
results show that on the individual level there is some evidence
that the min-max model (12) is preferable, whereas on the
aggregated level the rescaled product (11) shows good success.



However, the high error variance in estimating the individual
parameters shows that further research is necessary.

Because of the applicability and the earlier literature, we
have concentrated on model building using the means of the
individual observations.

Human aggregation of fuzzy information is – first of all
– a scaling problem. The good performance of the rescaled
product show that there is no need for a model to use infor-
mation outside the intersection of the stimuli representation.
One problem that arises is that the structural properties of the
rescaled product are different to classical fuzzy operators.

As the main effect model holds, the estimation of fuzzy
membership values for combined stimuli can be done without
parametric and non–linear models, but it suffices to take the
same amount of information using the marginals. Unfortu-
nately, at present, we cannot offer a general solution for
compound stimuli consisting of three or more parts.

The original Stevens’ law does not hold for the direct
scaling of fuzzy membership values. This drawback can be
explained by the different scaling tasks: Whereas the original
Stevens’ task was the construction of a measurement line,
the fuzzy membership values are restricted to the interval
[0, 1]. The results of our experiment offer a link function –
the complementary log-log transformation – which links the
results of both scaling tasks. However, further experimental
research has to be undertaken to validate this functional
relationship.

Since our experimental conditions are rather artificial, the
validity of the results should be tested in settings which mimic
real-life situations.
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