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Abstract. In this paper we investigate weak contact relatiGran a latticel, in
particular, the relation between various axioms for cantaed their connection
to the algebraic structure of the lattice. Furthermore, vilestudy a notion of
orthogonality which is motivated by a weak contact relaiioan inner product
space. Although this is clearly a spatial application, wk stiow that, in casé&

is distributive andC satisfies the orthogonality condition, the only weak contac
relation onL is the overlap relation; in particular no RCC model satisffés
condition.

1 Introduction

Various hybrid algebraic/relational systems have beempgsed for reasoning about
spatial regions, among them the Region Connection CaldR@) [12], proximity
structures [13], adjacency relations [9], and others. Isteases, the underlying alge-
braic structure is a Boolean algeld& +, -,*,0, 1) whose non-zero elements are called
regions One also has binary relatioRsandC, respectively callegart of relationand
contact relation P is the underlying partial order of the algebra and congguhe
mereologicalpart of the structure [11], and is often regarded as itepologicalpart
[14]. Cis related tdP in varying degrees of strength. The part common to most axiom

atizations for such structures consists of four axioms:

CO0. (¥x)—0Cx

C1. (VX)[x# 0= XCX

C2. (VX)(Vy)[xCy=yCX

C3. (¥x)(Vy)(Vz)[xCyandyPz=- xCZ.

Axiom C3 prescribes only a very weak connection betw@amdP, which holds in the
most common interpretations: If a regigiis in contact with a regiow, andy is a part
of z, thenx is in contact withz.

* Both authors gratefully acknowledge support from the NaltBciences and Engineering Re-
search Council of Canada.



A relation satisfying CO — C3 will be calledweak contact relatiofwith respect tdP).
Note that these are indeed weaker than the contact reladfomg. [2], which satisfy
CO0 — C3 and C5e below.

A weak contact structures a tuple(L,P,0,1,C), whereP is a bounded partial order
onL (with smallest element O and largest element 1), @nsla weak contact relation
(with respect td?). A weak contact latticés a bounded latticé, +, -, 0, 1) with a weak
contact structuréL, <,0,1,C). We will usually denote a weak contact lattice ¢hyC).

Some or all of the following additional axioms have appeanedarious systems:

C4. (Yx)(VY)(VZ)[xC(y+z) = (xCyor xC2)] (The sum axiom)
C5c. (¥x)(Vy)[(Vz)(xCz=- yC2) = xP}Y}. (The compatibility axiom)
C5e. (VX)(WY)[(Vz)(xCz< yC2 = x =Y. (The extensionality axiom)
C5d. (Vx# 1)(3y # 0)[x(—C)y]. (The disconnection axiom)

C6. (WX, Y)[(X,y #OAX+Yy=1) = xCy (The connection axiom)

If a weak contact relation satisfies one of the additionabins, say &, we will denote
this byC = Cx

It may be worthy of mention that C5d is equivalent to
(1.1) (WX)[(V2)(xCz<= 1C2) = x=1]

C5e was one of the traditionally used axioms [14], and it isegstrong; it implies that
each region is completely determined by those regions tetwitiis in contact. The
difference between C5e and C5d is that in the forr@edjstinguishes any two non—
zero elements, while with C5€, distinguishes only 1 from any non—zero element, as
can be seen from (1.1).

As we shall see below, C5¢c makislefinable fronC, so that the primitive relatio@
suffices. Its strength also may be seen as a weakness, sifiicet@rcofinite Boolean
algebras, and, in particular, finite Boolean algebras, thg @lationC which satisfies
C1 - C5c is theverlaprelation, defined by

(1.2) XOy<=> (32)[z# OAXP zPY};

xOymeans thax andy have a common non-zero partHfis the underlying ordex of
a lattice, then

(1.3) XOy<=> (F2)[z£ 0N Z<XANZ<Y],
(1.4) = Xx-y#0.

If C satisfies, in addition, C6, then its underlying Boolean latgds atomless [5]. This
property makes, for example, the RCC [12] unsuitable fos@aang in finite structures.
In order to remedy these effects, various measures haveprepnosed, all of which

keep an underlying Boolean algebra, e.g. not demanding €@®&mging the basic re-
lations, or employing second order structures [9, 7]. Apottossibility is to relax the

conditions on the underlying algebraic structure, e.gregtiring that they be Boolean
algebras; this seems sensible if our domain of interest doeénclude all possible

Boolean combinations of regions.



Example 1.Consider the reference set
{North America, Canada,Mexico, Continental US4, 0

with a “part—of” relationP. This relation generates the non—distributive latticghown
in Figure 1. Weak contact in this example is defined by

xCy<=> x,y # 0 and(xPyor yPX).

Observe that here the overlap relation restricted to noo-aed non-universal regions,

North America
[

Mexico ‘ ‘Canada‘ ‘Cont. USA
A

Fig. 1. Continental North America

i.e. regions not equal to the empty region and 'North Ameérisgust the identity.

Example 2.Another examplkis the (non—distributive) lattice of linear subspaces of an
inner product space where contact is giverl@§V <= —(U L V), i.e.,U andV are
not orthogonal. We will return to this example in Section 5.

A related approach was put forward by Cohn and Varzi [1]. Maigd by topological
considerations, they consider various tyfesQ, o) of contact structures, whe€zis a

reflexive and symmetric relation on a family of sets, a “padithrelation”Q is defined
fromC as

(1.5) XQy <= (Vz)[xCz= yCZ.

and a fusion operatar, also defined fron€. Loosely speaking, the fusion of a family
of sets is its unionQ is clearly reflexive and transitive, but it need not be amtigyetric.

1 We thank A. Urquhart for pointing this out.



It may be worthy to mention that Cohn and Varzi [1] do not, aprirestrict the domain
to algebraic or ordered structures.

In the present paper we investigate weak contact rela@anrsa latticel, in particular,
the interaction between the axioms CO — C6 and the algehtraictsre of the lattice.
Our results are fairly basic, but we hope that they can amsualitative spatial rea-
soning community in choosing the axioms for (weak) contalzttions appropriate for
the domain under investigation.

2 Additional definitions and notation

If M is an ordered structure with smallest element 0, thEh= {y € M : y # 0}.
Furthermore, we shall usually identify a structure withutslerlying set.

ThroughoutL will denote a bounded lattice. & € L, thepseudocomplement af a is

the largesb € L such thata-b = 0. If everya € L has a pseudocomplement, thers
calledpseudocomplemente@bserve that the lattice of Figure 3 shows that a pseudo-
complemented lattice need not be distributive. On the dihed, it is well known that
every complete distributive lattice is pseudocomplemefit6].a < L™ is calleddense

if a-b#0forallbeL™. Itis well known thata+ a* is dense for each € L, and each
dense element can be written in this form [10].

If ac L, a pair(b,c) of non-zero elements df is called apartition of aif b+c=a
andb-c=0.

For a set), we denote by ReU) the set of all binary relations da. If R,S< Rel(U),
then

R; S={(a,c): (db)[aRbandbRd}

is the compositionof R and S, andR™ = {(a,b) : bRa} its converse We also define
R(x) = {y € L: xRy}. The (right)residual of R with respect toiS the relation

(2.2) R\S=—-(R"; —9).
Here, complementation is taken in RglU ). It is well known that
(2.2) X(RN\ Sy < R'(x) € S'(y),

and it is easy to see thRt\ Ris a quasi order, i.e. reflexive and transitive. Furthermore
if R,S T € Rel(U), then thede Morgan equivalences

(2.3) (R; 9NT =0+ (R"; T)NS=0<~= (T; S)NR=0

hold in Re(U).



3 Mereology on weak algebraic structures

Our first results concerns the algebraic structure of thiectmbn of all contact relations
on a latticel:

Theorem 1. The collection of weak contact relations is a completedattiith smallest
element O and largest element k L.

Proof. We only show thaD is the smallest weak contact relation bpand leave the
rest to the reader. Clearl§) satisfies CO — C3. Now, suppose tlaits a weak contact
relation onL. To show thaO C C, letx,y € L™ such thaOy. By (1.4), there is some
z+# 0 withz< x,y. From CO we obtaizCzwhich implies

2Cz2 20xE xcz2 xCy. (]

It is known that for weak contact lattices which are Boolelyehras and satisfy C4,
the axioms C5c, C5e, and C5d are equivalent. In our more gksedting, we only have

Theorem 2. C5c=- C5e=- C5d.
Proof. The first implication follows immediately from the antisyreiny of C and <.

Suppose that satisfies C5e. IkCzfor all z# 0, thenx = 1 by C5e which shows that
C satisfies C5d. O

Let us next consider the case tltasatisfies C4:

Theorem 3. If C = C4, then
CEChc«= C=Cbe

Proof. “=" follows from Theorem 2. For the other direction, lety € L such that
C(x) € C(y); we will show thatx+y =y: Suppose thatx+ y)Cz by C4, we have
xCzor yCz and fromC(x) C C(y), we obtainyCzin any case. Thu(x+y) C C(y);
sinceC(y) C C(x+Y) by C3, it follows thalC(x+y) = C(y), and C5e now implies that
X+y=y,i.ex<y. O
The following example shows that C4 and C5c are independent:

Example 3.There are weak contact latticds;,C), (L»,C) such that

1. (L1,C) satisfies C5c and not C4.
2. (L,,C) satisfies C4 and not C5e (and, hence, not C5c).

Indeed, for 1. consider Figure 2, and for 2. consider Figure 3



Fig. 2. (L1,0) Fig. 3. (Lp,0)

For the general case, we have

Theorem 4. C5d#4 C5e+4 C5c.

Proof. The lattice(L;,C) of Figure 3 withC = O satisfies C5d but not C5e: For each
non-zero element there is a non-zero element disjoint shawing C5d. On the other
hand,O(y) = O(z), andy # z

The lattice(L3,C) shown in Figure 4 wittC = OU {(x,2), (z X)}, satisfies C5e but not
C5c: We have&E(x) C C(z), butx £ z O

Fig. 4. (L3,C)

This leads to connections betwe€nC\ C, andP of different strengths:

Lemmal. 1. C; (C\C)CC.

2. C\ Cis antisymmetric if and only if & Cb5e.
3. PCC\ C.

4. C\C CPifand only if C|= C5c.



Proof. 1. This follows immediately from the residual property®f C; for complete-
ness, we give a short proof. Assume tB83t(C\ C) ZC, i.e.[C; (CN\C)]N—-C#0.
Then, the de Morgan equivalences (2.3), and the facQlmsymmetric show that

[C; (C\C)N-C#0<(C; —C)N(C\C)#0
<~ (C; —C)n—(C; —C)#0,
a contradiction.

We observe that 1. is a compatibility condition such as CBwaspect t&\ C. Thus,
it is implicitly valid in the setup of [1].

2. This was already observed without proof in [1], see al$ol[dt C\ C be antisym-
metric, andg, b € L such thaC(a) = C(b). From (2.2) and the fact th&tis symmetric,
we obtain thag(C\ C)b andb(C\ C)a, and our hypothesis implies that= b. Thus,
C =C5e. Conversely, lea(C\ C)bandb(C\ C)a. By (2.2), this impliesC(a) = C(b),
and hencea = b by Cbe.

3. Consider the following:
c2 c3 c2
(X< yAXC2 = (zCxAX <y) = zCy= yCz=- C(x) C C(y) = X(C\ C)y.
4. This is just the definition. O
Observe that Figure 4 shows a weak contact lattice w@exeC is a partial order, that

strictly containsP; the additional pairs aréx,z),(z x). It may be noted that, even if
C\ Cis a partial order, it need not be a lattice order.

Corollary 1. C5c implies C3.

Proof. SinceC |=C5c, Lemma 1(3,4) give uB = C\ C. C3 now follows from Lemma
1(1). O

Already our weakest extensionality axiom may have an effa¢he algebraic structure
of L:

Theorem 5. If L is a distributive bounded pseudocomplemented lattioe @ satisfies
C5d, then L is a Boolean algebra.

Proof. Suppose that # 0,1, and assume that+ x* # 1. Then, by C5d, there is some
z# 0 such thaiz(—C)(x+x"). Hence,z- (x+ x*) = 0, which contradicts the fact that
X+ Xx* is dense; therefore,+ x* = 1, i.e.x* is a complement of. Since in distributive
lattices complements are unique, it follows thas a Boolean algebra. O

This strengthens a Theorem of [3].

In [6] we have shown that for a distributite C = C4 andC = C5e imply thatC = O.
Our next example shows that C4 is essential:



e 03I
{1,2,3,4} C({2 =112
C({3}) = 1{3}
c{4) =1{4
cd{rzh) =1{84ut{1tur{2}
C{13}) =1{1ut{3}
C{14}) =1{Hut{4
C{2,3}) =1{2}ut{3}

C({z4) =1{Zur{4
C({3,4}) =t{L2ur{3pur{4}
C({1,2,3}) = t{1uT{2U 1 {3}
C({1,3,4}) = t{1LUT{3}UT{4}

o C({1,2,4}) = t{1jut{2ju {4}
C({2,3,4}) = t{2ZJur{3ut{4}

Fig. 5. A BA with C # O satisfying C5c and not C4

Example 4.Consider the sixteen element Boolean algebra shown in &gurhereC

is the smallest contact relation containi@and({1,2},{3,4}); M denotes the upset
{x: (3y € M)y < x} induced byM. Clearly,C is a weak contact relation different from
O, and we see from the table that it satisfies C5e, but not C4.

An example of a weak contact relation satisfying all of COe@®@&th an underlying
modular and non—distribute lattice is shown in Figure 6.

4 Overlap and the lattice structure

SincexOy<=> x-y # 0, we can expect that additional properties of the weak obnta
relationO are strongly related to the lattice properties. In thisisectve will explore
this relationship.

First, observe that (1.4) implies th@tis the universal relation ob™ in case 0 is meet
irreducible. Thus, in this cag@ is the only contact relation.

Theorem 6. C = O <> (¥X)(Vy)(VZ)[xC(y- 2) < (x-y)CZ.

Proof. “="; This follows immediately from (1.4) and the associatmif -.

“<": By Theorem 1 it is sufficient to sho@ C O. SupposeCy. ThenxC(y-1), and
hence(x-y)C1 using the assumption & From CO we conclude-y # 0. O

Lemma 2. 1. IfL is distributive then O satisfies C4.
2. If O satisfies C4 and C5e then L is distributive.
3. If Lis a bounded pseudocomplemented lattice, then OfigstiS5c¢.



4. If Lis a bounded pseudocomplemented lattice, then

L is a Boolean algebra= O satisfies C4 and Cbe.

Proof. 1. Suppose thdt is distributive, and leaO(b + c); thena- (b+ c¢) # 0. Sincel
is distributive, this is equivalent ta-b+a-c #£ 0. It follows thata-b# 0 ora-c # 0,
i.e.aOboraOc

2. Leta,b,c,d € L. Then, we have

dOJa- (b+c)] < (d-a)O(b+c) by Theorem 6
<= (d-a)Obor (d-a)Oc by C3 and C4
<= dQO(b-a) ordO(c-a) by Theorem 6
<= dO(a-b+a-c) by C3 and C4

Thus,0O(a- (b+c)) =0O(a-b+a-c),and C5e implies- (b+c)=a-b+a-c.

3. Suppos®©(x) C O(y). If x-y* £ 0 we concludg* € O(x) C O(y) and hencg-y* # 0,
a contradiction. Therefore, y* = 0 which is equivalent ta <'y.

4. "=": By 1. we know thatO satisfies C4 and by 2. th& satisfies C5c. The latter
implies C5e.

“«<": By 2. we know that is distributive. Since C5e implies C5d, we may conclude
from Theorem 5 thatt is a Boolean algebra . O

It can be seen from Figure 3 that the converse of 1. of Lemman@tigrue:O satisfies
C4, but the lattice is not distributive. Furthermore, wertatrreplaceO by an arbitrary
contact relatiorC: If L is the eight element Boolean algebra with atamgz, letC
be the smallest contact relation trsuch thaxC(y + z). Then,x(—C)y andx(—C)z,
showing thaC (£ CA4.

The converse of 2. of Lemma 2 does not hold either: In any bedmthain we have
C(x) =C(1) for all x #£ 0, and thus, C5d is not satisfied.

Observe that in the proof of Lemma 2(3), C4 was only used tmbdéish distributivity.
Since every finite distributive bounded lattice is pseudaoglemented, the previous
results show that, for finite, we have to give up C4 or C5e or both not to result in a
Boolean algebra, whef@ s the only contact relation which satisfies CO — C5e. In other
words, ifL is a bounded distributive lattice which is not a Boolean bafgetherO does

not satisfy C5d, see Lemma 2.

5 Orthogonality

Our notion of orthogonality is motivated by the weak contatation in an inner prod-
uct space given in Example 2. There, weak contact of two tisaaspacell andV
was defined byJCV < —~(U L V), i.e. there ar&1 € U andv € V with (u,v) # 0;



here,{(u,v) is the inner product ofl andv. It is easy to verify that this relation indeed
satisfies CO-C3.

Example 2 suggests the following definition: A pair of nomezelementsy, z) is called
an orthogonal partitionof an elemenk if y(—C)z andy+ z= x. Note, thaty(—C)z
impliesy-z= 0, and that the definition is symmetric.

By Theorem 1 we hav® C C so that every orthogonal partition is a partition.

In the example, we are able to switch from a given partitioart@rthogonal one using
the orthonormalization procedure by Gram and Schmidt;darsbe done by keeping
one subspace and varying the other one. We use an abstrsicthvef this technique as
an additional property of weak contact providing orthodizadion:

N. (¥X)(Vy)(V2)[(y,2) is a partition ofx =
(3u)(y,u) is an orthogonal partition of.

The weak contact relation in Example 2 has property N. Notleat O always satisfies
N.

If the underlying lattice is distributive, then N is very testive:
Lemma 3. Let L be distributive.

1. If {y,u) and(y,v) are partitions of x then = v.
2. If C satisfies N then €& O.

Proof. 1. By definition we havg-u=0=y-vandy-+u=x=Yy+V so that we conclude
u =V by the distributivity ofL.

2. By Theorem 1 it remains to show thatC O. Suppose/(—0)z If y=00rz=0
we concludey(—C)z using CO. Otherwisely, ) is a partition ofy + z. By property N
there is au € L so that(y,u) is an orthogonal partition of+ z. Since every orthogonal
partition is a partition we conclude= u using 1. This impliey(—C)z O

Corollary 2. If L is a bounded pseudocomplemented lattice, then

L is a Boolean algebra and C satisfiesdN=- C = O and C satisfies C4 and Cbe.
Proof. The claim follows immediately from Lemma 3 and Lemma 2. O
The weak contact structurg,C) given in Figure 6 satisfies CO—C5d as well as N;

furthermoreC # O.

In any RCC model we hav€ # O because of C6. Therefore, the previous theorem
shows that there is no RCC model satisfying property N.

Finally, the weak contact structure of Figure 6 exhibits akveontact relatiol® # O
on a non—distributive modular lattice which satisfies C@@had N.
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C@) =10

C@ = {a/b,d,1}
C() = {a/b,c,1}
C() = {b,c,d,1}
Cd) = {ac,d,1}
C(1) = {a/b,c,d,1}

Fig. 6. A non—distributive modular lattice wit@ # O satisfying CO-C5d and N

6 Conclusion and outlook

We have looked at the “fine structure” of the interplay betwpeoperties of contact
relations and those of the underlying algebra. In particwa have shown that the var-
ious forms of extensionality — and their interplay with C4e-ribt coincide when our
basic structure is not a Boolean algebra. Our results amegitary and not difficult
to prove; nevertheless, we hope that they are useful for timmatization for appli-
cation domains where not all possible Boolean combinatidrregions are required.
We intend to continue our investigations by considerinigjwgaker structures such as
semi-lattices, and also topological domains in the spirjfiLh Additionally, the topic
of orthogonal partitions and weak contact relations satigfN merits further attention.
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