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Abstract. In this paper we investigate weak contact relationsC on a latticeL, in
particular, the relation between various axioms for contact, and their connection
to the algebraic structure of the lattice. Furthermore, we will study a notion of
orthogonality which is motivated by a weak contact relationin an inner product
space. Although this is clearly a spatial application, we will show that, in caseL
is distributive andC satisfies the orthogonality condition, the only weak contact
relation onL is the overlap relation; in particular no RCC model satisfiesthis
condition.

1 Introduction

Various hybrid algebraic/relational systems have been proposed for reasoning about
spatial regions, among them the Region Connection Calculus(RCC) [12], proximity
structures [13], adjacency relations [9], and others. In most cases, the underlying alge-
braic structure is a Boolean algebra〈B,+, ·,∗,0,1〉 whose non-zero elements are called
regions. One also has binary relationsP andC, respectively calledpart of relationand
contact relation. P is the underlying partial order of the algebra and constitutes the
mereologicalpart of the structure [11], andC is often regarded as itstopologicalpart
[14]. C is related toP in varying degrees of strength. The part common to most axiom-
atizations for such structures consists of four axioms:

C0. (∀x)¬0Cx
C1. (∀x)[x 6= 0⇒ xCx]
C2. (∀x)(∀y)[xCy⇒ yCx]
C3. (∀x)(∀y)(∀z)[xCyandyPz⇒ xCz].

Axiom C3 prescribes only a very weak connection betweenC andP, which holds in the
most common interpretations: If a regionx is in contact with a regiony, andy is a part
of z, thenx is in contact withz.

⋆ Both authors gratefully acknowledge support from the Natural Sciences and Engineering Re-
search Council of Canada.



A relation satisfying C0 – C3 will be called aweak contact relation(with respect toP).
Note that these are indeed weaker than the contact relationsof e.g. [2], which satisfy
C0 – C3 and C5e below.

A weak contact structureis a tuple〈L,P,0,1,C〉, whereP is a bounded partial order
on L (with smallest element 0 and largest element 1), andC is a weak contact relation
(with respect toP). A weak contact latticeis a bounded lattice〈L,+, ·,0,1〉 with a weak
contact structure〈L,≤,0,1,C〉. We will usually denote a weak contact lattice by〈L,C〉.

Some or all of the following additional axioms have appearedin various systems:

C4. (∀x)(∀y)(∀z)[xC(y+ z)⇒ (xCyor xCz)] (The sum axiom)
C5c. (∀x)(∀y)[(∀z)(xCz⇒ yCz)⇒ xPy]. (The compatibility axiom)
C5e. (∀x)(∀y)[(∀z)(xCz⇔ yCz)⇒ x= y]. (The extensionality axiom)
C5d. (∀x 6= 1)(∃y 6= 0)[x(−C)y]. (The disconnection axiom)
C6. (∀x,y)[(x,y 6= 0∧x+ y= 1)⇒ xCy] (The connection axiom)

If a weak contact relation satisfies one of the additional axioms, say Cx, we will denote
this byC |=Cx.

It may be worthy of mention that C5d is equivalent to

(∀x)[(∀z)(xCz⇐⇒ 1Cz)⇒ x= 1](1.1)

C5e was one of the traditionally used axioms [14], and it is quite strong; it implies that
each region is completely determined by those regions to which it is in contact. The
difference between C5e and C5d is that in the former,C distinguishes any two non–
zero elements, while with C5d,C distinguishes only 1 from any non–zero element, as
can be seen from (1.1).

As we shall see below, C5c makesP definable fromC, so that the primitive relationC
suffices. Its strength also may be seen as a weakness, since onfinite–cofinite Boolean
algebras, and, in particular, finite Boolean algebras, the only relationC which satisfies
C1 – C5c is theoverlaprelation, defined by

xOy⇐⇒ (∃z)[z 6= 0∧xP˘zPy];(1.2)

xOymeans thatx andy have a common non-zero part. IfP is the underlying order≤ of
a lattice, then

xOy⇐⇒ (∃z)[z 6= 0∧z≤ x∧z≤ y],(1.3)

⇐⇒ x ·y 6= 0.(1.4)

If C satisfies, in addition, C6, then its underlying Boolean algebra is atomless [5]. This
property makes, for example, the RCC [12] unsuitable for reasoning in finite structures.
In order to remedy these effects, various measures have beenproposed, all of which
keep an underlying Boolean algebra, e.g. not demanding C5e,changing the basic re-
lations, or employing second order structures [9, 7]. Another possibility is to relax the
conditions on the underlying algebraic structure, e.g. notrequiring that they be Boolean
algebras; this seems sensible if our domain of interest doesnot include all possible
Boolean combinations of regions.
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Example 1.Consider the reference set

{North America, Canada,Mexico, Continental USA, /0}

with a “part–of” relationP. This relation generates the non–distributive latticeL shown
in Figure 1. Weak contact in this example is defined by

xCy⇐⇒ x,y 6= 0 and(xPyor yPx).

Observe that here the overlap relation restricted to non-zero and non-universal regions,

Fig. 1.Continental North America

i.e. regions not equal to the empty region and ’North America’, is just the identity.

Example 2.Another example1 is the (non–distributive) lattice of linear subspaces of an
inner product space where contact is given byUCV ⇐⇒ ¬(U ⊥ V), i.e.,U andV are
not orthogonal. We will return to this example in Section 5.

A related approach was put forward by Cohn and Varzi [1]. Motivated by topological
considerations, they consider various types〈C,Q,σ〉 of contact structures, whereC is a
reflexive and symmetric relation on a family of sets, a “parthood relation”Q is defined
fromC as

xQy⇐⇒ (∀z)[xCz⇒ yCz].(1.5)

and a fusion operatorσ , also defined fromC. Loosely speaking, the fusion of a family
of sets is its union.Q is clearly reflexive and transitive, but it need not be antisymmetric.

1 We thank A. Urquhart for pointing this out.
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It may be worthy to mention that Cohn and Varzi [1] do not, a priori, restrict the domain
to algebraic or ordered structures.

In the present paper we investigate weak contact relationsC on a latticeL, in particular,
the interaction between the axioms C0 – C6 and the algebraic structure of the lattice.
Our results are fairly basic, but we hope that they can assistthe qualitative spatial rea-
soning community in choosing the axioms for (weak) contact relations appropriate for
the domain under investigation.

2 Additional definitions and notation

If M is an ordered structure with smallest element 0, thenM+ = {y ∈ M : y 6= 0}.
Furthermore, we shall usually identify a structure with itsunderlying set.

Throughout,L will denote a bounded lattice. Ifa∈ L, thepseudocomplement a∗ of a is
the largestb∈ L such thata ·b= 0. If everya∈ L has a pseudocomplement, thenL is
calledpseudocomplemented. Observe that the lattice of Figure 3 shows that a pseudo-
complemented lattice need not be distributive. On the otherhand, it is well known that
every complete distributive lattice is pseudocomplemented [10].a∈ L+ is calleddense,
if a ·b 6= 0 for all b∈ L+. It is well known thata+a∗ is dense for eacha∈ L, and each
dense element can be written in this form [10].

If a∈ L+, a pair〈b,c〉 of non-zero elements ofL is called apartition of a if b+ c= a
andb ·c= 0.

For a setU , we denote by Rel(U) the set of all binary relations onU . If R,S∈ Rel(U),
then

R ; S= {〈a,c〉 : (∃b)[aRbandbRc]}

is thecompositionof R andS, andR˘ = {〈a,b〉 : bRa} its converse. We also define
R(x) = {y∈ L : xRy}. The (right)residual of R with respect to Sis the relation

R�S=−(R˘ ; −S).(2.1)

Here, complementation− is taken in Rel(U). It is well known that

x(R�S)y⇐⇒ R˘(x)⊆ S˘(y),(2.2)

and it is easy to see thatR�R is a quasi order, i.e. reflexive and transitive. Furthermore,
if R,S,T ∈ Rel(U), then thede Morgan equivalences

(R ; S)∩T = /0⇐⇒ (R˘ ; T)∩S= /0⇐⇒ (T ; S˘)∩R= /0(2.3)

hold in Rel(U).
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3 Mereology on weak algebraic structures

Our first results concerns the algebraic structure of the collection of all contact relations
on a latticeL:

Theorem 1. The collection of weak contact relations is a complete lattice with smallest
element O and largest element L+×L+.

Proof. We only show thatO is the smallest weak contact relation onL, and leave the
rest to the reader. Clearly,O satisfies C0 – C3. Now, suppose thatC is a weak contact
relation onL. To show thatO⊆C, let x,y∈ L+ such thatxOy. By (1.4), there is some
z 6= 0 with z≤ x,y. From C0 we obtainzCzwhich implies

zCz
C3
⇒ zCx

C2
⇒ xCz

C3
⇒ xCy. �

It is known that for weak contact lattices which are Boolean algebras and satisfy C4,
the axioms C5c, C5e, and C5d are equivalent. In our more general setting, we only have

Theorem 2. C5c⇒ C5e⇒ C5d.

Proof. The first implication follows immediately from the antisymmetry of⊆ and≤.
Suppose thatC satisfies C5e. IfxCzfor all z 6= 0, thenx= 1 by C5e which shows that
C satisfies C5d. �

Let us next consider the case thatC satisfies C4:

Theorem 3. If C |=C4, then

C |=C5c⇐⇒C |=C5e.

Proof. “⇒” follows from Theorem 2. For the other direction, letx,y ∈ L such that
C(x) ⊆ C(y); we will show thatx+ y = y: Suppose that(x+ y)Cz; by C4, we have
xCzor yCz, and fromC(x) ⊆ C(y), we obtainyCzin any case. Thus,C(x+ y)⊆ C(y);
sinceC(y)⊆C(x+y) by C3, it follows thatC(x+y) =C(y), and C5e now implies that
x+ y= y, i.e.x≤ y. �

The following example shows that C4 and C5c are independent:

Example 3.There are weak contact lattices〈L1,C〉,〈L2,C〉 such that

1. 〈L1,C〉 satisfies C5c and not C4.
2. 〈L2,C〉 satisfies C4 and not C5e (and, hence, not C5c).

Indeed, for 1. consider Figure 2, and for 2. consider Figure 3.
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Fig. 2. 〈L1,O〉 Fig. 3. 〈L2,O〉

For the general case, we have

Theorem 4. C5d 6⇒ C5e 6⇒ C5c.

Proof. The lattice〈L1,C〉 of Figure 3 withC = O satisfies C5d but not C5e: For each
non-zero element there is a non-zero element disjoint to it,showing C5d. On the other
hand,O(y) = O(z), andy 6= z.

The lattice〈L3,C〉 shown in Figure 4 withC= O∪{〈x,z〉,〈z,x〉}, satisfies C5e but not
C5c: We haveC(x)⊆C(z), butx 6≤ z. �

Fig. 4. 〈L3,C〉

This leads to connections betweenC, C�C, andP of different strengths:

Lemma 1. 1. C ; (C�C)⊆C.
2. C�C is antisymmetric if and only if C|=C5e.
3. P⊆C�C.
4. C�C⊆ P if and only if C|=C5c.
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Proof. 1. This follows immediately from the residual property ofC�C; for complete-
ness, we give a short proof. Assume thatC ; (C�C) 6⊆C, i.e. [C ; (C�C)]∩−C 6= /0.
Then, the de Morgan equivalences (2.3), and the fact thatC is symmetric show that

[C ; (C�C)]∩−C 6= /0⇐⇒ (C ; −C)∩ (C�C) 6= /0

⇐⇒ (C ; −C)∩−(C ; −C) 6= /0,

a contradiction.

We observe that 1. is a compatibility condition such as C3 with respect toC�C. Thus,
it is implicitly valid in the setup of [1].

2. This was already observed without proof in [1], see also [4]. Let C�C be antisym-
metric, anda,b∈ L such thatC(a) =C(b). From (2.2) and the fact thatC is symmetric,
we obtain thata(C�C)b andb(C�C)a, and our hypothesis implies thata= b. Thus,
C |=C5e. Conversely, leta(C�C)b andb(C�C)a. By (2.2), this impliesC(a) =C(b),
and hence,a= b by C5e.

3. Consider the following:

(x≤ y∧xCz)
C2
⇒ (zCx∧x≤ y)

C3
⇒ zCy

C2
⇒ yCz⇒C(x)⊆C(y)⇒ x(C�C)y.

4. This is just the definition. �

Observe that Figure 4 shows a weak contact lattice whereC�C is a partial order, that
strictly containsP; the additional pairs are〈x,z〉,〈z,x〉. It may be noted that, even if
C�C is a partial order, it need not be a lattice order.

Corollary 1. C5c implies C3.

Proof. SinceC |=C5c, Lemma 1(3,4) give usP=C�C. C3 now follows from Lemma
1(1). �

Already our weakest extensionality axiom may have an effecton the algebraic structure
of L:

Theorem 5. If L is a distributive bounded pseudocomplemented lattice and C satisfies
C5d, then L is a Boolean algebra.

Proof. Suppose thatx 6= 0,1, and assume thatx+ x∗ 6= 1. Then, by C5d, there is some
z 6= 0 such thatz(−C)(x+ x∗). Hence,z· (x+ x∗) = 0, which contradicts the fact that
x+ x∗ is dense; therefore,x+ x∗ = 1, i.e.x∗ is a complement ofx. Since in distributive
lattices complements are unique, it follows thatL is a Boolean algebra. �

This strengthens a Theorem of [3].

In [6] we have shown that for a distributiveL, C |=C4 andC |=C5e imply thatC= O.
Our next example shows that C4 is essential:
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{1,2,3,4}

{1,2}

{3}{2}{1}

∅∅∅∅

{3,4}

{4}

C({1}) = ↑ {1}
C({2}) = ↑ {2}
C({3}) = ↑ {3}
C({4}) = ↑ {4}
C({1,2}) = ↑ {3,4}∪ ↑ {1}∪ ↑ {2}
C({1,3}) = ↑ {1}∪ ↑ {3}
C({1,4}) = ↑ {1}∪ ↑ {4}
C({2,3}) = ↑ {2}∪ ↑ {3}
C({2,4}) = ↑ {2}∪ ↑ {4}
C({3,4}) = ↑ {1,2}∪ ↑ {3}∪ ↑ {4}
C({1,2,3}) = ↑ {1}∪ ↑ {2}∪ ↑ {3}
C({1,3,4}) = ↑ {1}∪ ↑ {3}∪ ↑ {4}
C({1,2,4}) = ↑ {1}∪ ↑ {2}∪ ↑ {4}
C({2,3,4}) = ↑ {2}∪ ↑ {3}∪ ↑ {4}

Fig. 5.A BA with C 6= O satisfying C5c and not C4

Example 4.Consider the sixteen element Boolean algebra shown in Figure 5. There,C
is the smallest contact relation containingO and〈{1,2},{3,4}〉; ↑M denotes the upset
{x : (∃y∈ M)y≤ x} induced byM. Clearly,C is a weak contact relation different from
O, and we see from the table that it satisfies C5e, but not C4.

An example of a weak contact relation satisfying all of C0–C5c with an underlying
modular and non–distribute lattice is shown in Figure 6.

4 Overlap and the lattice structure

SincexOy⇐⇒ x · y 6= 0, we can expect that additional properties of the weak contact
relationO are strongly related to the lattice properties. In this section, we will explore
this relationship.

First, observe that (1.4) implies thatO is the universal relation onL+ in case 0 is meet
irreducible. Thus, in this caseO is the only contact relation.

Theorem 6. C= O⇐⇒ (∀x)(∀y)(∀z)[xC(y ·z)⇔ (x ·y)Cz].

Proof. “⇒”: This follows immediately from (1.4) and the associativity of ·.

“⇐′′: By Theorem 1 it is sufficient to showC⊆ O. SupposexCy. Then,xC(y ·1), and
hence(x ·y)C1 using the assumption onC. From C0 we concludex ·y 6= 0. �

Lemma 2. 1. If L is distributive then O satisfies C4.
2. If O satisfies C4 and C5e then L is distributive.
3. If L is a bounded pseudocomplemented lattice, then O satisfies C5c.
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4. If L is a bounded pseudocomplemented lattice, then

L is a Boolean algebra⇐⇒ O satisfies C4 and C5e.

Proof. 1. Suppose thatL is distributive, and letaO(b+c); thena· (b+c) 6= 0. SinceL
is distributive, this is equivalent toa ·b+a ·c 6= 0. It follows thata ·b 6= 0 or a ·c 6= 0,
i.e.aObor aOc.

2. Leta,b,c,d ∈ L. Then, we have

dO[a · (b+ c)]⇐⇒ (d ·a)O(b+ c) by Theorem 6

⇐⇒ (d ·a)Obor (d ·a)Oc by C3 and C4

⇐⇒ dO(b ·a) or dO(c ·a) by Theorem 6

⇐⇒ dO(a ·b+a ·c) by C3 and C4

Thus,O(a · (b+ c)) = O(a ·b+a ·c), and C5e impliesa · (b+ c) = a ·b+a ·c.

3. SupposeO(x)⊆O(y). If x·y∗ 6= 0 we concludey∗ ∈O(x)⊆O(y) and hencey·y∗ 6= 0,
a contradiction. Therefore,x ·y∗ = 0 which is equivalent tox≤ y.

4. “⇒”: By 1. we know thatO satisfies C4 and by 2. thatO satisfies C5c. The latter
implies C5e.

“⇐′′: By 2. we know thatL is distributive. Since C5e implies C5d, we may conclude
from Theorem 5 thatL is a Boolean algebra . �

It can be seen from Figure 3 that the converse of 1. of Lemma 2 isnot true:O satisfies
C4, but the lattice is not distributive. Furthermore, we cannot replaceO by an arbitrary
contact relationC: If L is the eight element Boolean algebra with atomsx,y,z, let C
be the smallest contact relation onL such thatxC(y+ z). Then,x(−C)y andx(−C)z,
showing thatC 6|=C4.

The converse of 2. of Lemma 2 does not hold either: In any bounded chain we have
C(x) =C(1) for all x 6= 0, and thus, C5d is not satisfied.

Observe that in the proof of Lemma 2(3), C4 was only used to establish distributivity.
Since every finite distributive bounded lattice is pseudocomplemented, the previous
results show that, for finiteL, we have to give up C4 or C5e or both not to result in a
Boolean algebra, whereO is the only contact relation which satisfies C0 – C5e. In other
words, ifL is a bounded distributive lattice which is not a Boolean algebra, thenO does
not satisfy C5d, see Lemma 2.

5 Orthogonality

Our notion of orthogonality is motivated by the weak contactrelation in an inner prod-
uct space given in Example 2. There, weak contact of two linear subspacesU andV
was defined byUCV ⇐⇒ ¬(U ⊥ V), i.e. there areu ∈ U andv ∈ V with 〈u,v〉 6= 0;
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here,〈u,v〉 is the inner product ofu andv. It is easy to verify that this relation indeed
satisfies C0-C3.

Example 2 suggests the following definition: A pair of non-zero elements〈y,z〉 is called
an orthogonal partitionof an elementx if y(−C)z andy+ z= x. Note, thaty(−C)z
impliesy ·z= 0, and that the definition is symmetric.

By Theorem 1 we haveO⊆C so that every orthogonal partition is a partition.

In the example, we are able to switch from a given partition toan orthogonal one using
the orthonormalization procedure by Gram and Schmidt; thiscan be done by keeping
one subspace and varying the other one. We use an abstract version of this technique as
an additional property of weak contact providing orthogonalization:

N. (∀x)(∀y)(∀z)[(y,z) is a partition ofx⇒
(∃u)(y,u) is an orthogonal partition ofx].

The weak contact relation in Example 2 has property N. Notice, thatO always satisfies
N.

If the underlying lattice is distributive, then N is very restrictive:

Lemma 3. Let L be distributive.

1. If 〈y,u〉 and〈y,v〉 are partitions of x then u= v.
2. If C satisfies N then C= O.

Proof. 1. By definition we havey·u= 0= y·v andy+u= x= y+v so that we conclude
u= v by the distributivity ofL.

2. By Theorem 1 it remains to show thatC ⊆ O. Supposey(−O)z. If y = 0 or z= 0
we concludey(−C)z using C0. Otherwise,〈y,z〉 is a partition ofy+ z. By property N
there is au∈ L so that〈y,u〉 is an orthogonal partition ofy+ z. Since every orthogonal
partition is a partition we concludez= u using 1. This impliesy(−C)z. �

Corollary 2. If L is a bounded pseudocomplemented lattice, then

L is a Boolean algebra and C satisfies N⇐⇒C= O and C satisfies C4 and C5e.

Proof. The claim follows immediately from Lemma 3 and Lemma 2. �

The weak contact structure〈L,C〉 given in Figure 6 satisfies C0–C5d as well as N;
furthermore,C 6= O.

In any RCC model we haveC 6= O because of C6. Therefore, the previous theorem
shows that there is no RCC model satisfying property N.

Finally, the weak contact structure of Figure 6 exhibits a weak contact relationC 6= O
on a non–distributive modular lattice which satisfies C0-C5e and N.
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C(0) = /0
C(a) = {a,b,d,1}
C(b) = {a,b,c,1}
C(c) = {b,c,d,1}
C(d) = {a,c,d,1}
C(1) = {a,b,c,d,1}

Fig. 6. A non–distributive modular lattice withC 6= O satisfying C0–C5d and N

6 Conclusion and outlook

We have looked at the “fine structure” of the interplay between properties of contact
relations and those of the underlying algebra. In particular, we have shown that the var-
ious forms of extensionality – and their interplay with C4 – do not coincide when our
basic structure is not a Boolean algebra. Our results are elementary and not difficult
to prove; nevertheless, we hope that they are useful for the axiomatization for appli-
cation domains where not all possible Boolean combinationsof regions are required.
We intend to continue our investigations by considering still weaker structures such as
semi–lattices, and also topological domains in the spirit of [1]. Additionally, the topic
of orthogonal partitions and weak contact relations satisfying N merits further attention.
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