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To see how these rules work, imagine that the user has just seen the typing mistake
and thus the contents of working memory (w.m.) are

(GOAL perform unit task)
(TEXT task 1s insert space)
(TEXT task is at 5 23)
(CURSOR 8 7)

TEXT refers to the text of the manuscript that is being edited and CURSOR refers to
the insertion cursor on the screen. Of course, these items are not actually located
in working memory — they are external to the user — but we assume that knowledge
from observing them is stored in the user’s working memory.

The location (5,23) is the line and column of the typing mistake where the space
is required. However, the current cursor position is at line 8 and column 7. This is
of course acquired into the user’s working memory by looking at the screen.
Looking at the four rules above (SELECT-INSERT-SPACE, INSERT-SPACE-
DONE, INSERT-SPACE-1 and INSERT-SPACE-2), only the first can fire. The
condition for SELECT-INSERT-SPACE is:

(AND (TEST-GOAL perform unit task)

true because (GOAL perform unit task) is in w.m.
(TEST-TEXT task is insert space)

true because (TEXT task is insert space) is in w.m.
(NOT (TEST-GOAL insert space))

true because (GOAL insert space) is not in w.m.
(NOT (TEST-NOTE executing insert space)) )

true because (NOTE executing insert space) is not in w.m.

So, the rule fires and its action is performed. This action has no external effect in
terms of keystrokes, but adds extra information to working memory. The (LOOK-
TEXT task is at $LINE %COL) looks fora corresponding entry and binds LINE
and COL to 5 and 23 respectively. These are variables, somewhat as in a normal
programming language, which are referred to again in other rules.

The contents of working memory after the firing of rule SELECT-INSERT-SPACE
are as follows (note that the order of elements of working memory is arbitrary):

(GOAL perform unit task)
(TEXT task is insert space)
(TEXT task is at 5 23)

(NOTE executing insert space)
(GOAL insert space)

(LINE 5)

(coL 23)

(CURSOR 8 7)

At this point neither rule SELECT-INSERT-SPACE nor INSERT-SPACE-DONE
will fire as the entry (GOAL insert space) will make their conditions false. As
LINE is bound to 5 and COL is bound to 23, the condition (TEST-CURSOR %LINE
%CoL) will be false also, and hence only rule INSERT-SPACE-1 can fire.
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After this rule’s actions have been performed, the working memory will include
the entry (GOAL move cursor to 5 23).The rules for moving the cursor are
not included here, but would be quite extensive, moving up/down and right/left
depending on the relative positions of the cursor and the target location. Eventually,
assuming the cursor movement is successful, the cursor would be at (5,23) whence
rule INSERT-SPACE-2 would be able to fire. This would perform the keystrokes:
‘T°, SPACE and ESC, which in vi puts the editor into insert mode, types the space
and thén leaves insert mode. The action also removes the ‘insert space’ goal
from working memory as this goal has been achieved.

Now the goal has been removed, the second rule INSERT-SPACE-DONE is free
to fire, which ‘tidies up’ working memory. In particular, it ‘unbinds’ the variables
LINE and COL, that is it removes the bindings for them from working memory.

Notice that the rules did not fire in the order they were written. Although they
look somewhat like the if-then—else commands one would get in a standard pro-
gramming language, they behave very differently. The rules are all active and at
each moment any rule that has its conditions true may fire. Some rules may never
fire; for instance, if the cursor is at the correct position the third rule would not fire.
Furthermore, the same rule may fire repeatedly; for example, if we were to write
out the production rules for moving the cursor, one rule may well be

(MOVE-UP

IF “(AND (TEST-GOAL move-up)
(TEST-CURSOR-BELOW SLINE) )

THEN ( (DO-KEYSTROKE ‘K’) ))

This rule is to type ‘K’ (the vi command to move the cursor up one line) while
the cursor is below the desired line. It will, of course, be constantly refired until the
cursor is at the correct line.

Notice that the keystrokes for actually inserting the space, once you are at the
right position, have been proceduralized. That is, the user does not go through the
subgoals ‘enter insert mode’, ‘type space’, ‘leave insert mode’. For a complex inser-
tion, it is quite likely that the user will perform exactly these goals. However, the act
of inserting a single space is assumed to be so well rehearsed that it is stored as a
single chunk. That is, the rules above represent expert knowledge of the vi editor.

Of course, novices may well do exactly the same keystrokes as the experts, but the
way they store the knowledge will be different. To cope with this CCT has a set of
‘style’ rules for novices. These limit the form of the conditions and actions in the
production rules. Basically, novices are expected to test constantly all the rules in
their working memory and to check for feedback from the system after every key-
stroke. Thus a set of ‘novice’ rules would not include the proceduralized form of
insert space. Bovair, Kieras and Polson provide a list of many style rules which can
be used to embody certain psychological assumptions about the user (novice/expert
distinction is only one) in a CCT description [27].

The rules in CCT need not represent error-free performance. They can be used
to explain error phenomena, though they cannot predict them. For instance, the
rules above for inserting a space are ‘buggy’ — they do not check the editor’s mode.
Imagine you had just been typing the ‘cognitive’ in ‘cognitivecomplexity theory’
(with the space missing), you think for a few minutes and then look again at the
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screen and notice that the space is missing. The cursor is at the correct position for
the space, so rule INSERT-SPACE-1 never gets fired and we go directly through
the sequence: SELECT-INSERT-SPACE, INSERT-SPACE-2 then INSERT-
SPACE-DONE. You type ‘1’, a space and then escape. However, the ‘i’ assumes that
you are in vi’s command mode, and is the command to move the editor into insert
mode. If, however, after typing ‘cognitive’ you had not typed escape, to get you
back into command mode, the whole sequence would be done in insert mode. The
text would read: ‘cognitivel complexity theory’.

The CCT rules are closely related to GOMS-like goal hierarchies; the rules may
be generated from such a hierarchy, or alternatively, we may analyze the production
rules to obtain the goal tree:

GOAL: insert space
GOAL: move cursor — if not at right position
PRESS-KEY-T
PRESS-SPACE
PRESS-ESCAPE

The stacking depth of this goal hierarchy (as described for GOMS) is directly
related to the number of (GOAL ...) terms in working memory.

In fact, the CCT rules can represent more complex plans than the simple sequen-
tial hierarchies of GOMS. The continuous activity of all production rules makes it
possible to represent concurrent plans. For example, one could have one set of pro-
duction rules representing the goal of writing a book, and another set representing
the goal of drinking ‘tea. These rules could both be active simultaneously, thus
allowing an author to drink tea whilst typing. Despite this apparent flexibility, CCT
is not normally used in this way. It is not clear why this is, except that CCT, like
GOMS, is aimed at low-level, proceduralized goals — that is, the wunit task. It is
reasonable that successive unit tasks be chosen from different activities: the author
may delete a word, have a drink, do a word search, but each time a complete unit
task would be performed — the author does not take a drink of tea in the middle of
deleting a word.

We have seen how CCT rules may be informally analyzed to discuss issues of
proceduralization and error behaviour, and how we can relate them to GOMS-like
goal hierarchies. However, the main aim of CCT is (as its name suggests) to be able
to measure the complexity of an interface.

Basically, the more production rules in the CCT description the more difficult
the interface is to learn. This claim rests on the assumption that the production
rules represent reasonably accurately the way knowledge is stored and therefore that
the time taken to learn an interface is roughly proportional to the number of rules
you have to learn.

We have only discussed the user side of CCT here. If the cognitive user descrip-
tion is complemented by a description of the system, it is claimed that one can
predict the difficulty of the mapping between the user’s goals and the system model.
The generalized transition hetworks which describe the system grammar themselves
have a hierarchical structure. Thus both the description of the user and that of the
system can be represented as hierarchies. These can then be compared to find
mismatches and to produce a measure of dissonance.
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There are various problems with CCT. As with many ‘rich’ description methods,
the size of description for even a part of an interface can be enormous.
Furthermore, there may be several ways of representing the same user behaviour
and interface behaviour, yielding different measures of dissonance. To some extent
this is catered for by the novice style rules, but there is no such set of rules for the
system description. '

Another problem is the particular choice of notations. Production rules are often
suggested as a good model of the way people remember procedural knowledge, but
there are obvious ‘cludges’ in the CCT description given above. In particular, the
working memory entry (NOTE executing insert space) is there purely to
allow the TNSERT-SPACE-DONE rule to fire at the appropriate time. It is not at all
clear that it has any real cognitive significance. One may also question whether the
particular notation chosen for the system is critical to the method. One might choose
to represent the system using any one of the dialog description notations in Chapter
8. Different notations would probably yield slightly different measures of dissonance.

However, one should regard CCT as an engineering tool giving one a rough mea-
sure of learnability and difficulty combined with a detailed description of user
behaviour. This can then be used by analysts employing their professional exper-
tise. Arguably, the strength of the central idea of CCT lies beyond the particular
notations used.

6.7.3 Problems and extensions of goal hierarchies

The formation of a goal hierarchy is largely a posz hoc technique and runs a very real
risk of being defined by the computer dialog rather than the user. One way to rec-
tify this is to produce a goal structure based on pre-existing manual procedures and
thus obtain a natural hierarchy [130]. To be fair, GOMS' defines its domain to be
that of expert use, and thus the goal structures which are important are those which
users develop out of their use of the system. However, such a natural hierarchy may
be particularly useful as part of a CCT analysis, representing a very early state of
knowledge.

On the positive side, the conceptual framework of goal hierarchies and user goal
stacks can be used to express interface issues, not directly addressed by the nota-
tions above. For instance, early automated teller machines gave the customers the
money before returning their cards. Unfortunately, this led to many customers leav-
ing their cards behind. This was despite on-screen messages telling them to wait.
This is referred to as a problem of closure. The user’s principal goal is to get money;
when that goal is satisfied, the user does not complete or close the various subtasks
which still remain open:

GOAL: GET-MONEY

GOAL: USE-ATM
INSERT-CARD
ENTER-PIN
ENTER-AMOUNT
COLLECT-MONEY

<< outer goal now satisfied goal stack popped  >>

COLLECT-CARD - subgoal operators missed
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Banks (at least some of them) soon changed the dialog order so that the card was
always retrieved before the money was dispensed. A general rule that can be applied
to any goal hierarchy from this is that no higher level goal should be satisfied until
all subgoals have been satisfied. However, it is not always easy to predict when the
user will consider a goal to have been satisfied. For instance, one of the authors has
been known to collect his card and forget the money!

6.8 Linguistic models

The user’s interaction with a computer is often viewed in terms of a language, so it
is not surprising that several modelling formalisms have developed centred around
this concept. Several of the dialog notations described in Chapter 8 are also based
on linguistic ideas. Indeed, BNF grammars are frequently used to specify dialogs.
The models here, although similar in form to dialog design notations, have been
proposed with the intention of understanding the user’s behaviour and analyzing
the cognitive difficulty of the interface.

6.8.1 BNF

Representative of the lnguistic approach is Reisner’s use of Backus—Naur Form
(BNF) rules to describe the dialog grammar [206]. This views the dialog ata purely
syntactic lével, ignoring the semantics of the language. BNF has been used widely
to specify ‘the syntax of computer programming languages, and many system
dialogs can be described easily using BNF rules. For example, imagine a graphics
system which has a line-drawing function. To select the function the user must
select the ‘line’ menu option. The line-drawing function allows the user to draw a
polyline, that is a sequence of line arcs between points. The user selects the points by
clicking the mouse button in the drawing area. The user double clicks to indicate
the last point of the polyline.

draw-line = select-line + choose-points
+ last-point
select-1line ] position-mouse + CLICK-MOUSE
choose-points ::= choose-one
| choose-one + choose-points
choose-one HEES position-mouse + CLICK-MOUSE
last-point s B position-mouse + DOUBLE-CLICK-MOUSE

position-mouse :: empty | MOVE-MOUSE + position-mouse

The names in the description are of two types: non-terminals, shown in lower case,
and terminals, shown in upper case. Terminals represent the lowest level of user
behaviour, such as pressing a key, clicking a mouse button or moving the mouse.
Non-terminals are higher-level abstractions. The non-terminals are defined in
terms of other non-terminals and terminals by a definition of the form

name ;1= expression
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The ¢: : =* symbol is read as ‘is defined as’. Only non-terminals may appear on the
left of a definition. The right hand side is built up using two operators ‘+ (sequence)
and |’ (choice). For example, the first rule says that the non-terminal draw-1ine
is defined to be select-1ine followed by choose-points followed by last-
point. All of these are non-terminals, that is they do not tell us what the basic user
actions are. The second rule says that select-1line is defined to be position-
mouse (intended to be over the ‘line’ menu entry) followed by MOUSE-CLICK. This
is our first terminal and represents the actual clicking of a mouse.

To see what position-mouse is, we look at the last rule. This tells us that there
are two possibilities for position-mouse (separated by the |” symbol). One
option is that position-mouse is empty — a special symbol representing no
action. That is, one option is not to move the mouse at all. The other option is to
do a MOVE-MOUSE action followed by position-mouse. This rule is recursive,
and this second position-mouse may itself either be empty or be a MOVE-MOUSE
action followed by position-mouse, and so on. That is, position-mouse may
be any number of MOVE-MOUSE actions whatsoever. ;-

Similarly, choose-points is defined recursively;but this time it does not have
the option of being empty. It may be one or more of the non-terminal choose-one
which is itself defined to be (like select-1line) position-mouse followed by
MOUSE-CLICK.

The BNF description of an interface can be analyzed in various ways. One mea-
sure is to count the number of rules. The more rules an interface requires to use it,
the more complicated it is. This measure is rather sensitive to the exact way the
interface is described. For example, we could have replaced the rules for choose-
points and choose-one with the single definition

choose-points ::= position-mouse + CLICK-MOUSE
| position-mouse + CLICK-MOUSE + choose-points

A more robust measure also counts the number of ‘+’ and ‘|” operators. This
would, in effect, penalize the more complex single rule. Another problem arises
with the rule for select-line. This is identical to the choose-one rule.
However, the acts of selecting a menu option and choosing a point on a drawing
surface are obviously so different that they must surely be separated. Decisions like
this about the structure of a BNF description are less of a problem in practlce than
the corresponding problems we had with CCT.

In addition to these complexity measures for the language as a whole, we can use
the BNF definition to work out how many basic actions are required for a particular
task, and thus obtain a crude estimate of the difficulty of that task.

The BNF description above only represented the user’s actions, not the user’s
perception of the system’s responses. This input bias is surprisingly common
amongst cognitive models, as we will discuss in Section 6.9. Reisner has developed
extensions to the basic BNF descriptions which attempt to deal with this by adding
‘information-seeking actions’ to the grammar.

6.8.2 Task-action grammar
Measures based upon BNF have been criticized as not ‘cognitive’ enough. They
ignore the advantages of consistency both in the language’s structure and in its use
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of command names and letters. Task—action grammar (TAG) [193] attempts to deal
with some of these problems by including elements such as parametrized grammar
rules to emphasize consistency and encoding the user’s world knowledge (for example,
up is the opposite of down).

To illustrate consistency, we consider the three UNIX commands: cp (for copying
files), mv (for moving files) and 1n (for linking files). Each of these has two possible
forms. They either have two arguments, a source and destination filename, or have
any number of source filenames followed by a destination directory:

copy ::= ‘cp’ + filename + filename
| ‘cp’ + filenames + directory

move ::= ‘mv’ + filename + filename
" | ‘mv’ + filenames + directory

link ::= ‘In’ + filename + filename
| ‘In’ + filenames + directory

Measures based upon BNF could not distinguish between these consistent com-
mands and an inconsistent,alternative — say if 1n took its directory argument first.
Task—action grammar was ”/desigﬁed to reveal just this sort of consistency. Its
description of the UNIX commands would be

file-op[Op] = command[Op] + filename + filename
| command[Op] + filenames + directory
command [Op=copy] := P ciok
command [Op=move] := ‘mv’
command [Op=1ink] := ‘In’

This captures the consistency of the commands and closely resembles the original
textual description. One would imagine that a measure of the complexity of the lan-
guage based on the TAG description would be better at predicting actual learning
and performance than a simple BNF one.

As well as handling consistency well, TAG has-features for talking about ‘world
knowledge’. For example, imagine we have two command line interfaces for moving
a mechanical turtle around the floor.

Command interface 1
movement [Direction]

.= command[Direction] + distance + RETURN
command [Direction=forward] .= ‘go 395’

command [Direction=backward] = ‘go 013’
command [Direction=1left] = ‘go 712’
command [Direction=right] = ‘go 956’

Command interface 2
movement [Direction]
. .= command[Direction] + distance + RETURN
‘FORWARD'
*BACKWARD

command [Direction=forward]
command [Direction=backward]

command [Direction=1left] := ‘LEFT’
command. [Direction=right]

Il

‘RIGHT’
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The first interface may not be as silly as it seems; the command ‘go 395’ could
refer to the address of a machine-code routine which performs the appropriate
movement. However, it is absolutely clear that the second interface is preferable
to the first. TAG includes a special form known-item which is used to denote
information that the user will already know, and thus not need to learn in order
to use the system. Using this form, the TAG rules for the second interface are
rewritten

Command interface 2
movement [Direction]
1= command [Direction] + distance + RETURN

command [Direction] := known-item[Type=word, Direction]
¥ command[Directionzforward] := ‘FORWARD'

*  command [Directionzbackward] = ‘BACKWARD'

* c‘ommand[Direction=left] .= ‘LEFT’

* command[Directi’on:right] = ‘RIGHT'

The starred rules can be generated from the second rule using the user’s world
knowledge. They are included in any TAG description for completeness, but are
not counted in any measure of complexity. ’ i

Sometimes it may not be clear what the appropriate command is, but once
we know one, the rest become obvious. For example, consider a simple database
displaying a list of records. We are expecting two commands, one to move up the
list to the previous record, and another to move down the list to the next record.
There are several options for the commands, for instance UP/DOWN, PREVIOUS/
NEXT, possibly in upper or lower case, possibly also just the first letter of the rel-
evant word. In addition, one might have mixed-up command sets such as UP/
NEXT or N/previous. The fact that any of the former set of commands is easier to
learn than the mixed-up commands is called congruence. TAG has a notation to
describe the congruence of an interface. The notation F(‘next') is used to
denote the feature set related to the word ‘next’. That is, next/previous. With this
notation a congruent gramimar requires only one ‘veal’ fule, such as

prowse [Direction] := F(‘next’) + return
* Dbrowse[Direction=up] .= ‘previous’ + return

* browse[Direction:down] o= ‘next’ + return

We have seen that the notation allows one to say that the commands RIGHT
and LEFT are consistent for opposite actions. How do we know that the user
regards the opposite of RIGHT to be LEFT rather than WRONG? Obviously, the
inclusion of world knowledge depends upon the user of the system — the above
certainly assumes that the user’s language is English. The designer is obviously
responsible for inputting this world knowledge into the TAG description and its
validity will depend on the professional judgement of the designer. However, TAG
will make these assumptions clear and thus, by highlighting them, hold them up for
inspection.
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6.9 The challenge of display-based systems

Both goal hierarchical and grammar-based techniques were initially developed
when most interactive systems were command line or at most keyboard and cursor
based. There are significant worries about how well these approaches can therefore
generalize to deal with more modern windowed and mouse-driven interfaces.

Both families of techniques largely ignore system output — what the user sees. The
implicit assumption is that the users know exactly what they want to do and execute
the appropriate command sequences blindly. There are exceptions to this. We have
already mentioned how Reisner’s BNF has been extended to include assertions
about output. In addition, TAG has been extended to include information about
how the display can affect the grammar rules.

Another problem for grammars is the lowest-level lexical structure. Pressing a
cursor key is a reasonable lexeme, but moving a mouse one pixel is less sensible. In
addition, pointer-based dialogs are more display oriented. Clicking a cursor at a
particular point on the screen has a meaning dependent on the current screen con-
tents. This problem can be partially resolved by regarding operations such as ‘select
region of text’ or ‘click on quit button’ as the terminals of the grammar. If this
approach is taken, the detailed mouse movements and parsing of mouse events in
the context of display information (menus etc.) are abstracted away.

Goal hierarchy methods have different problems, as more display-oriented
systems encourage less structured methods for goal achievement. Instead of
having well-defined plans, the user is seen as performing a more exploratory
task, recognizing fruitful directions and backing out of others. Typically, even when
this exploratory style is used at one level, we can see within it and around it more
goal-oriented methods. So, for example, we might consider the high-level goal
structure g

WRITE_LETTER
FIND_SIMILAR_LETTER
COPY_IT
EDIT_COPY

However, the task of finding a similar letter would be exploratory, searching
through folders, etc. Such recognition-based searching is extremely difficult to
represent as a goal structure. Similarly the actual editing would depend very much
on non-planned activities: ‘ah yes, I want to reuse that bit, but I’ll have to change
that’. If we then drop to a lower level again, goal hierarchies become more applica-
ble. For instance, during the editing stage we might have the ‘delete a word’
subdialog: '

DELETE_WORD
SELECT_WORD
MOVE#MOUSE_TO*WORD_START
DEPRESS_MOUSE_BUTTON
MOVE_MOUSE_TO_WORD_END
RELEASE_MOUSE_BUTTON
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CLICK_ON_DELETE
MOVE_MOUSE_TO_DELETE_TICON
CLICK_MOUSE_BUTTON

Thus goal hierarchies can partially cope with display-oriented systems by an
appropriate choice of level, but the problems do emphasize the rather prescriptive
nature of the cognitive models underlying them.

These problems have been one of the factors behind the growing popularity of siz-
uated action [230] and distributed cognition [135, 119] in HCI (see also Chapter 14).
Both approaches emphasize the way in which actions are contingent upon events and
determined by context, rather than being preplanned. At one extreme, protagonists
of these approaches seem to deny any planned actions or long-term goals. On the
other side, traditional cognitive modellers are modelling display-based cognition using
production rules and similar methods, which include sensory data within the models.

At a low level, chunked expert behaviour is modelled effectively using hierarchical
or linguistic models, and is where the keystroke-level model (discussed later in this
chapter) has proved effective. In contrast, it is clear that no amount of cognitive
modelling can capture the activity during the writing of a poem. Between these two,
cognitive models will have differing levels of success and utility. Certainly models at
all but the lowest levels must take into account the user’s reactions to feedback from
the system, otherwise they cannnot address the fundamental issue of interactivity at all.

6.10 Physical and device models

6.10.1 Keystroke-level model

Compared with the deep cognitive understanding required to describe problem-
solving activities, the human motor system is well understood. KLM (Keystroke-
Level Model [36]) uses this understanding as a basis for detailed predictions about
user performance. It is aimed at unit tasks within interaction — the execution of sim-
ple command sequences, typically taking no more than 20 seconds. Examples of
this would be using a search and replace feature, or changing the font of a word. It
does not extend to complex actions such as producing a diagram. The assumption
is that these more complex tasks would be split into subtasks (as in GOMS) before
the user attempts to map these into physical actions. The task is split into two
phases:

acquisition of the task, when the user builds a mental representation of the
task;

execution of the task using the system’s facilities.

KLM only gives predictions for the latter stage of activity. During the acquisition
phase the user will have decided how to accomplish the task using the primitives of
the system, and thus, during the execution phase, there is no high-level mental
activity — the user is effectively expert. KLM is related to the GOMS model, and
can be thought of as a very low-level GOMS model where the method is given.
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operators, a mental operator and a system response operator:

B Pressing a mouse button.

|
K Keystroking, actually striking keys, including shifts and other modifier keys. : .

|

\

1
i
|
|
| ‘
The model decomposes the execution phase into five different physical motor : f .
| |
: . . . . . . ,
i P Pointing, moving the mouse (or similar device) at a target. !
H Homing, switching the hand between mouse and keyboard. !
D Drawing lines using the mouse.
M Mentally preparing for a physical action.

R System response which may be ignored if the user does not have to wait for
it, as in copy typing.

The execution of a task will involve interleaved occurrences of the various opera-

‘ tors. For instance, imagine we are using a mouse-based editor. If we notice a single it

‘ character error we will point at the error, delete the character and retype it, and i
then return to our previous typing point. This is decomposed as follows:

( 1 move hand to mouse H[mouse]
2 position mouse after bad character PB[LEFT]
3 return to keyboard H [keyboard] !
4 delete character MK[DELETE]
5 type correction K([char]
6 reposition insertion point H[mouse] MPB [LEET]

Notice that some operators have descriptions added to them, representing which
device the hand homes to (for example, [mouse]) and what keys are hit (for example,
LEFT — the left mouse button).

The model predicts the total time taken during the execution phase by adding the
component times for each of the above activities. For example, if the time taken for
one keystroke is 7, then the total time doing keystrokes is

Ty = 2t
Similar calculations for the rest of the operators give a total time of

T,

execute

:TI(+TB+TP+TH+TD+TM+TR
:25K+2zB+zP+3tH+O+2tM+0

In this example, the system response time was Zero. However, if the user had to 1
wait for the system then the appropriate time would be added. In many typing tasks,
the user can type ahead anyway and thus there is no need to add response times.
Where needed, the response time can be measured by observing the system.

The times for the other operators are obtained from empirical data. The keying 8 |
time obviously depends on the typing skill of the user and different times are thus ,
used for different users. Pressing a mouse button is usually quicker than typing
(especially for two-finger typists), and a more accurate time prediction can be made by i |
separating out the button presses B from the rest of the keystrokes K. The pointing it
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Table 6.1 Times for various operators in the KLM (adapted from
Card, Moran and Newell [37])

Operator Remarks - Time (s)
K Press key

good typist (9o wpm) 0.12

poor typist (40 wpm) 0.28

non-typist 1.20
B Mouse button press

down or up 0.10

click 0.20
P Point with mouse

Fitts’ law 0.1 log, (D/S + 0.5)

average movement 1.10
H Home hands to and from keyboard 0.40
D Drawing — domain dependent -
M Mentally prepare 1.35
R Response from system — measure o

time can be calculated using Fitts’ law (see Chapter 1), and thus depends on the
size and position of the target’. Alternatively, a fixed time based on average within
screen pointing can be used. Drawing time depends on the number and length of
the lines drawn, and is fairly domain specific, but one can easily use empirical data
for more general drawing tasks. Finally, homing time and mental preparation time
are assumed constant. Typical times are summarized in Table 6.1.

The mental operator is probably the most complex part of KLM. Remember that
the user is assumed to have decided what to do, and how to do it. The mental
preparation is thus just the slight pauses made as the user recalls what to do next.
There are complicated heuristics for deciding where to put M operators, but they
all boil down to the level of chunking (see Chapter 1 for a discussion of chunking).
If the user types a word, or a well-known command name, this will be one chunk,
and hence only require one mental operator. However, if a command name were an
acronym which the user was recalling letter by letter, then we would place one M
operator per letter.

The physical operator times all depend on the skills of the user. Also the mental
operator depends on the level of chunking, and hence the expertise of the user. You
must therefore decide before using KLLM predictions just what sort of user you are

1. The form of Fitts’ law used with the original KLM is Klog, (D/S + 0.5), where D is the distance to
the target and S is the target size. We will use this form for calculations in this subsection, but revert to
the form a + blog,(D/S + 1) in the next subsection when we consider Buxton’s three-state model as this
form was used for these experiments.
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thinking about. You cannot even work out the operators and then fill in the times
later, as different users may choose different methods and have different placings of
M operators due to chunking. This sounds rather onerous, but the predictions
made by KLLM are only meant to be an approximation, and thus reasonable guesses
about levels of expertise are enough.

Individual predictions may be interesting, but the power of KILM lies in compari-
son. Given several systems, we can work out the methods to perform key tasks, and
then use KLM to tell us which system is fastest. This is considerably cheaper than
conducting lengthy experiments (levels of individual variation would demand vast
numbers of trials — see Chapter 11). Furthermore, the systems need not even exist.
From a description of a proposed system, we can predict the times taken for tasks. As
well as comparing systems, we can compare methods within a system. This can be
useful in preparing training materials, as we can choose to teach the faster methods.

Example: Using the keystroke-level model

As an example, we compare the two methods for iconizing a window given

in Section 6.7.1. One used the ‘L7’ function key, and the other the ‘CLOSE’
option from the window’s pop-up menu. The latter is obtained by moving to
the window’s title bar, depressing the left mouse button, dragging the mouse
down the pop-up menu to the ‘CLOSE’ option, and then releasing the mouse
button. We assume that the user’s hand is on the mouse to begin with, and
hence only the L7-METHOD will require a homing operator. The operators for
the two methods are as follows:

L,7-METHOD H[to keyboard] MK[L7 function key]
CLOSE-METHOD P[to menu bar] B[LEFT down] MP][to option] B[LEFT upl

The total times are thus

1,7-METHOD = 0.4 + 135 + 0.28

2.03 seconds

11+ 0.1 + 1.35 + 1.1 + 0.1
= 3.75 seconds

Il

Il

CLOSE-METHOD

The first calculation is quite straightforward, but the second needs a little
unpacking. The button presses are separate down and then up actions and
thus each is only timed at 0.1 of a second, rather than 0.2 for a click, or 0.28
for typing. We have also used the simplified average 1.1 second time for the
pointing task. From these predictions, we can see that the L7-METHOD is far
faster. In Section 6.7.1, Sam'’s selection rule was to use the L7 _METHOD when
playing blocks. To do so, he can go on playing the game using the mouse in
his right hand whilst moving his left hand over the key. Thus the real time for
Sam, from when he takes his attention from the game to when the command
is given, is less, 2.03 seconds minus the homing time, that is 1.63 seconds.
Given the method is so fast, why does Sam not use it all the time?

Perhaps the average estimates for pointing times have biased our

estimate. We can be a little more precise about the CLOSE-METHOD timing




MODELS OF THE USER IN DESIGN
250

if we use Fitts’ law instead of the average 1.1 seconds. The mouse will
typically be in the middle of a 25 line high window. The title bar is 1.25 lines
high. Thus the distance to target ratio for the first pointing task is 10:1. The
‘CLOSE’ option is four items down on the pop-up menu; hence the ratio for
the second pointing task is 4:1. Thus we can calculate the pointing times:

P[to menu bar] = o0.1log, (10.5) = 0.339
P[to option] 0.1 log, (4.5) = 0.217

With these revised timings, KLM predicts the CLOSE-METHOD will take 2.1
seconds. So, Sam’s selection rule is not quite as bad as it initially seemed!

I

Worked exercise

Do a keystroke level analysis for opening up an application in a visual desktop
interface using a mouse as the pointing device, comparing at least two differ-
ent methods for performing the task. Repeat the exercise using a trackball.
Consider how the analysis would differ for various positions of the trackball
relative to the keyboard and for other pointing devices.

Answer

We provide a keystroke level analysis for three different methods for launch-
ing an application on a visual desktop. These methods are analyzed for a con-
ventional one-button mouse, a trackball mounted away from the keyboard
and one mounted close to the keyboard. The main distinction between the
two trackballs is that the second one does not require an explicit repositioning
of the hands, that is there is no time required for homing the hands between
the pointing device and the keyboard.

Method 1 Double clicking on application icon

Steps Operator Mouse Trackball, Trackball,
1. move hand to mouse  H[mouse]  0.400 0.400 0.000
2. mouse to icon P[to icon] 0.664 1.113 1.113
3. double click 2R [click] 0.400 0.400 0.400
4, return to keyboard H[kbd] 0.400 0.400 0.000
Total times 1.864 2.313 1.513

Method 2 Using an accelerator key

Steps Operator Mouse Trackball, = Trackball,
1. move hand to mouse  H[mouse] 0.400 0.400 0.000
2. mouse to icon P[to icon] 0.664 1.113 1.113
3. click to select Bclick] 0.200 0.200 0.200
4. pause : M 1.350 1.350 1.350
5. return to keyboard H[kbd] 0.400 0.400 0.000
6. press accelerator K 0.200 0.200 0.200

Total times 3.214 3.663 2.763
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Method 3 Using a menu
Steps : Operator Mouse Trackball, Trackball,
1. move hand to mouse  H[mouse]  0.400 0.400 0.000
2. mouse to icon P[to icon]  0.664 1.113 1.113
3. click to select Bclick] 0.200 0.200 0.200
4. pause M 1.350 1.350 1.350
5. mouse to file menu P 0.664 .1.113 1.113
6. pop-up menu B[down] 0.100 0.100 0.100
7. drag to open Py 0.713 1.248 1.248
8. release mouse " Blup] 0.100 0.100 0.100
9. return to keyboard H[kbd] 0.400 0.400 0.000
Total times 4.591 6.024 5.224

Card, Moran and Newell empirically validated KLM against a range of systems,
both keyboard and mouse based, and a wide selection of tasks. The predictions
were found to be remarkably accurate (an error of about 20%). KILM is thus one
of the few models capable of giving accurate quantitative predictions about perfor-
mance. However, the range of applications is correspondingly small. It tells us a lot
about the microinteraction, but not about the larger-scale dialog.

However, we have seen that one has to be quite careful, as the approximations
one makes can radically change the results - KLM is a guide, not an oracle. One
should also add a word of caution about the assumption that fastest is best. There
are certainly situations where this is so, for example highly repetitive tasks such as
telephony or data entry. However, even e€xpert users will often not use the fastest
method. For example, the expert may have a set of general-purpose, non-optimal
methods, rather than a few task-specific methods.

6.10.2 Three-state model

In Chapter 2, we saw that a range of pointing devices exists in addition to the
mouse. Often these devices are considered logically equivalent, if the same inputs
are available to the application. That is, so long as you can select a point on the
screen, they are all the same. However, these different devices — mouse, trackball,
light pen — feel very different. Although the devices are similar from the application’s
viewpoint, they have very different sensory—motor characteristics.

Buxton has developed a simple model of input devices [33], the three-state model,
which captures some of these crucial distinctions. He begins by looking at a mouse.
If you move it with no buttons pushed, it normally moves the mouse cursor about.
This tracking behaviour is termed state 1. Depressing a button over an icon and
then moving the mouse will often result in an object being dragged about. This he
calls state 2 (see Figure 6.1).

If instead we consider a light pen with a button, it behaves just like a mouse when
it is touching the screen. When its button is not depressed, it is in state 1, and when
its button is down, state 2. However, the light pen has a third state, when the light
pen is not touching the screen. In this state the system cannot track the light pen’s
position. This state is called state 0 (see Figure 6.2).
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button down

state 1 state 2
tracking dragging

button up

Figure 6.1 Mouse transitions: states 1 and 2

A touchscreen is like the light pen with no button. While the user is not touching
the screen, the system cannot track the finger — that is, state 0 again. When the user
touches the screen, the system can begin to track — state 1. So a touchscreen is a
state 0—1 device whereas a mouse is a state 1-2 device. As there is no difference
between a state 0-2 and a state 0—1. device, there are only the three possibilities we
have seen. The only additional complexity is if the device has several buttons, in
which case we would have one state for each button: 2.4, 2middies Zrighe

One use of this classification is to look at different pointing tasks, such as icon
selection or line drawing, and see what state 0—1-2 behaviour they require. We can
then see whether a particular device can support the required task. If we have to use
an inadequate device, it is possible to use keyboard keys to add device states. For
example, with a touchscreen, we may nominate the escape key to be the ‘virtual’
mouse button whilst the user’s finger is on the screen. Although the mixing of key-
board and mouse keys is normally a bad habit, it is obviously necessary on occasions.

At first, the model appears to characterize the states of the device by the inputs
available to the system. So, from this perspective, state 0 is clearly different from
states 1 and 2. However, if we look at the state 1-2 transaction, we see that it is sym-
metric with respect to the two states. In principle there is no reason why a program
should not decide to do simple mouse tracking whilst in state 2 and drag things
about in state 1. That is, there is no reason until you want to type something! The
way we can tell state 1 from state 2 is by the activity of the user. State 2 requires a
button to be pressed, whereas state 1 is one of relative relaxation (whilst still requir-
ing hand—eye coordination for mouse movement). There is a similar difference in
tension between state 0 and state 1.

It is well known that Fitts’ law has different timing constants for different devices.
Recall that Fitts’ law says that the time taken to move to a target of size Sata
distance D is:

a + blog,(D/S + 1)

button down

touch screen

state 0
no
feedback

state 2
dragging

state 1
tracking

remove pen button up

Figure 6.2 Light pen transitions: three states
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The constants ¢ and b depend on the particular pointing device used and the skill
of the user with that device. However, the insight given by the three-state model is
that these constants also depend on the device state. In addition to the timing, the
final accuracy may be affected. )

These observations are fairly obvious for state 0—1 devices. With a touchscreen,
or light pen, a cursor will often appear under the finger or pen when it comes in
contact with the screen. The accuracy with which you can move the cursor around
will be far greater than the accuracy with which you can point in the first place. Also
it is reasonable to expect that the Fitts’ law constant will be different, although not
so obvious which will be faster. ’

There is a similar difference between states 1 and 2. Because the user is holding
a button down, the hand is in a state of tension and thus pointing accuracy and
speed may be different. Experiments to calculate Fitts’ law constants in states 1 and
2 have shown that these differences do exist [146]. Table 6.2 shows the results
obtained for a mouse and trackball.

We can recalculate the KLLM prediction for the CLOSE-METHOD using these data.
Recall that the method had two pointing operators, one to point to the window’s
title bar (with a distance to target size ratio of 10:1), the second to drag the selec-
tion down to ‘CLOSE’ on the pop-up menu (4:1). Thus the first pointing operator
is state 1 and the second is state 2. The times are thus :

Mouse
P[to menu bar] = -107 + 223 log,(11) = 664 ms
P[to option] = 135 + 2491log,(5) = 713 ms
Trackball
P[to menu bar] = 75 + 300 log,(11) = 1113 ms
P[to option] = -349 + 688log,(5) = 1248 ms

giving a further revised time for the CLOSE-METHOD of 2.93 seconds using a mouse
and 3.91 seconds using a trackball.

Table 6.2 Fitts’ law coefficients (after MacKenzie, Sellen and

Buxton [146])

Device a (ms) b (ms/bit)
Pointing (state 1)

Mouse —107 223

Trackball 75 300
Dragging (state 2)

Mouse 135 249

Trackball =349 688
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6.11 Cognitive architectures

The formalisms we have seen so far have some implicit or explicit model of how the
user performs the cognitive processing involved in carrying out a task. For instance,
the concept of taking a problem and solving it by divide and conquer using subgoals.
is central to GOMS. CCT assumes the distinction between long- and short-term
memory, with production rules being stored in long-term memory and ‘matched’
against the contents of short-term (or working) memory to determine which “fire’.
The values for various motor and mental operators in KLM were based on the
Model Human Processor (MHP) architecture of Card, Moran and Newell [37].
Another common assumption which we have not discussed in this chapter is the
distinction between linguistic levels — semantic, syntactic and lexical — as an archi-
tectural model of the user’s understanding.

In Chapter 1, we discussed some of these architectural descriptions of the user as
an information-processing machine. Our emphasis in this section will be to describe
a couple more architectural models that are quite distinct from those described in
Chapter 1 and assumed in the earlier parts of this chapter. Here we will see that the
architectural assumptions are central to the description of the cognitive modelling
that these approaches offer.

There are interesting differences of emphasis between these architectural models
and the previous models. The hierarchical and linguistic notations tend to assume
perfect dialog on the user’s part. They may measure the complexity of that perfect
dialog, but tend not to consider diversions from the optimal command sequences.
However, for the architectural models in this section the prediction and under-
standing of error is central to their analyses.

6.11.1 The problem space model
Rational behaviour is characterized as behaviour which is intended to achieve a spe-

 cific goal. This element of rationality is often used to distinguish between intelligent

and machine-like behaviour. In the field of artificial intelligence (AI), a system
exhibiting rational behaviour is referred to as a knowledge-level system. A knowledge-
level system contains an agent behaving in an environment. The agent has knowl-
edge about itself and its environment, includings its own goals. It can perform
certain actions and sense information about its changing environment. As the agent
behaves in its environment, it changes the environment and its own knowledge. We
can view the overall behaviour of the knowledge-level system as a sequence of envi-
ronment and agent states as they progress in time. The goal of the agent is charac-
terized as a preference over all possible sequences of agent/environment states.
Contrast this rational behaviour with another general computational model for a
machine, which is not rational. In computer science it is common to describe a
problem as the search through a set of possible states from some initial state to a
desired state. The search proceeds by moving from one state to another possible
state by means of operations or actions, the ultimate goal of which is to arrive at one
of the desired states. This very general model of computation is used in the ordi-
nary task of the programmer. Once she has identified a problem and a means of
arriving at the solution to the problem (the algorithm), the programmer then
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represents the problem and algorithm in a programming language which can be
executed on a machine to reach the desired state. The architecture of the machine
only allows the definition of the search or problem space and the actions which can
occur to traverse that space. Termination is also assumed to happen once the
desired state is reached. Notice that the machine does not have the ability to for-
mulate the problem space and its solution, mainly because it has no idea of the goal.
It is the job of the programmer to understand the goal and so define the machine
to achieve it.

We can adapt the state-based computational model of a machine in order to real-
ize the architecture of a knowledge-level system. The new computational model is
the problem space model, based on the problem-solving work of Newell and Simon

. at Carnegie—Mellon University (see Chapter 1). A problem space consists of a set

of states and a set of operations that can be performed on the states. Behaviour in
a problem space is a two-step process. First, the current operator is chosen based
on the current state and then it is applied to the current state to achieve the new
state. The problem space must represent rational behaviour, and so it must char-
acterize the goal of the agent. A problem space represents a goal by defining the
desired states as a subset of all possible states. Once the initial state is set, the task
within the problem space is to find a sequence of operations that form a path within
the state space from the initial state to one of the desired states, whereupon
successful termination occurs.

From the above description, we can highlight four different activities that occur
within a problem space: goal formulation, operation selection, operation applica-
tion and goal completion. The relationship between these problem space processes
and knowledge-level activity is key. Perception which occurs at the knowledge level
is performed by the goal formulation process, which creates the initial state based
on observations of the external environment. Actions at the knowledge level are
operations in the problem space which are selected and applied. The real knowledge
about the agent and its environment and goals is derived from the state/operator
information in the problem space. Because of the goal formulation process, the set
of desired states indicates the knowledge-level goal within the problem space. The
operation selection process selects the appropriate operation at a given point in time
because it is deemed the most likely to transform the state in the problem space to
one of the desired states; hence rational behaviour is implied.

The cycle of activity within the problem space is as follows. Some change in the
external environment which is relevant to the goal of the agent is sensed by the goal
formulation process, which in turn defines the set of desired states for the agent and
its initial state for the following task. The operation selection process suggests an
operation which can act on that state and transform it ‘closer’ to a desired state.
The operation application process executes the operation, changing the current
state and surrounding environment. If the new state is a desired state, then the goal
has been achieved and the goal completion process reverts the agent to inactive.

The real power of the problem space architecture is in recursion. The activity of
any of the processes occurs only when the knowledge it needs to complete its chore
is immediately available. For example, to decide which operation is most likely to
lead to a desired state, the problem space will need to know things about its current
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state and that of the environment. If that information is not immediately available,
then activity cannot continue. In that case, another problem space is invoked with
the goal of finding out the information that was needed by the parent problem
space. In this way, we can see the evolution of problems spaces as a stack-like struc-
ture, new spaces being invoked and placed on the problem space stack only to be
popped off the stack once they achieve their goal.

Though the problem space model described briefly above is not directly imple-
mentable, it is the basis for at least one executable cognitive architecture, called
Soar. We do not discuss the details of Soar’s implementation; the interested reader
is referred to Laird, Newell and Rosenbloom [133]. An interesting application of
the Soar implementation of problem spaces has been done by Young and colleagues
on programmable user models (or PUMs) [266]. Given a designer’s description of an
intended procedure or task that is to be carried out with an interactive system, an
analysis of that procedure produces the knowledge that would be necessary and
available for any user attempting the task. That knowledge is encoded in the prob-
lem space architecture of Soar, producing a ‘programmed’ user model (the PUM)
to accomplish the goal of performing the task. By executing the PUM, the stacking
and unstacking of problem spaces needed to accomplish the goal can be analyzed
to measure the cognitive load of the intended procedure. More importantly, if the
PUM cannot achieve the goal because it cannot find some knowledge necessary
to complete the task, this indicates to the designer that there was a problem with
the intended design. In this way, erroneous behaviour can be predicted before
implementation.

6.11.2 Interacting cognitive subsystems

Barnard has proposed a very different cognitive architecture, called interacting
cognitive subsystems (ICS) [17, 18, 19]. ICS provides a model of perception, cogni-
tion and action, but unlike other cognitive architectures, it is not intended to
produce a description of the user in terms of sequences of actions that he performs.
ICS provides a more holistic view of the user as an information-processing
machine. The emphasis is on determining how easy particular procedures of action
sequences become as they are made more automatic within the user.

ICS attempts to incorporate two separate psychological traditions within one
cognitive architecture. On the one hand is the architectural and general-purpose
information-processing approach of short-term memory research. On the other
hand is the computational and representational approach characteristic of psycho-
linguistic research and AI problem-solving literature.

The architecture of ICS is built up by the coordinated activity of nine smaller
subsystems: five peripheral subsystems are in contact with the physical world and
four are central, dealing with mental processes. Each subsystem has the same
generic structure. A subsystem is described in terms of its typed inputs and outputs
along with a memory store for holding typed information. It has transformation
functions for processing the input and producing the output and permanently
stored information. Each of the nine subsystems is specialized for handling some
aspect of external or internal processing. For example, one peripheral subsystem is
the visual system for describing what is seen in the world. An example of a central
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subsystem is one for the processing of propositional information, capturing
the attributes and identities of entities and their relationships with each other (a
particular example is that propositional information represents ‘“knowing” that
a particular word has four syllables, begins with “P” and refers to an area in central
London’ [18]).

ICS is another example of a general cognitive architecture which can be applied
to interactive design. One of the features of ICS is its ability to explain how a user
proceduralizes action. Remember in the discussion of CCT we distinguished
between novice and expert use of an interactive system. Experts can perform com-
plicated sequences of actions as if without a thought, whereas a novice user must
contemplate each and every move (if you do not believe this distinction is accurate,
observe users at an automatic teller machine and see if you can tell the expert from
the novice). The expert recognizes the task situation and recalls a ‘canned’ proce-
dure of actions which, from experience, results in the desired goal being achieved.
They do not have to think beyond the recognition of the task and consequent invo-
cation of the correct procedure. Such proceduralized behaviour is much less prone
to error. A good designer will aid the user in proceduralizing his interaction with
the system and will attempt to design an interface which suggests to the user a task
for which he already has a proceduralized response. It is for this reason that ICS has
been suggested as a design tool which can act as an expert system to advise a
designer in developing an interface.

6.12 Summary

In this chapter, we have discussed a wide selection of models of the users of inter-
active systems, including socio-technical and systems models and cognitive models.
Socio-technical models focus on representing both the human and technical sides
of the system in parallel to reach a solution which is compatible with each. SSM
models the organization, of which the user is part, as a system. Participatory design
sees the user as active not only in using the technology but in designing it. Cognitive
models attempt to represent the users as they interact with a system, modelling
aspects of their understanding, knowledge, intentions or processing. We divided
cognitive models into three categories. The first described the hierarchical struc-
turing of the user’s task and goal structures. The GOMS model and CCT were
examples of cognitive models in this category. The second category was concerned
with linguistic and grammatical models which emphasized the user’s understanding
of the user—system dialog. BNF and TAG were described as examples in this cate-
gory. Most of these cognitive models have focused on the execution activity of the
user, neglecting their perceptive ability and how that might affect less planned and
natural interaction strategies. The third category of cognitive models was based on
the more solid understanding of the human motor system, applicable in situations
where the user does no planning of behaviour and executes actions automatically.
KLM was used to provide rough measures of user performance in terms of execu-
tion times for basic sequences of actions. Buxton’s three-state model for pointing
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devices allowed for a finer distinction between execution times than with KLM. We
concluded this chapter with a discussion of cognitive architectures, the assumptions
of which form the foundation for any cognitive models.-In addition to the basic
architectural distinction between long- and short-term memory, we discussed two
other cognitive architectures — the problem space model and ICS — which apply
different assumptions to the analysis of interactive system.

Exercises

6.1

6.2

6.3

6.4

A group of universities has decided to collaborate to produce an information
system to help potential students find appropriate courses. The system will be
distributed free to schools and careers offices on CD-ROM and will provide
information about course contents and requirements, university and local
facilities, fees and admissions procedures. Identify the main stakeholders for
this system, categorize them and describe them and their activities, currently
and with regard to the proposed system.

For the scenario proposed above:

O  Produce a rich picture showing the problem situation (you can use any
format that you find helpful).

O  Produce a root definition, using CATWOE, of the system from the
viewpoint of the university.

O  What transformations or activities are required to make sure that the
root definition is supported?

Recall the CCT description of the rule INSERT-SPACE-2 discussed in
Section 6.7.2: ‘

(INSERT-SPACE-2

IF (AND (TEST-GOAL insert space)
(TEST-CURSOR $%LINE %COL) )

THEN ( (DO-KEYSTROKE ‘I’)

(DO-KEYSTROKE SPACE)

( DO—KEYSTROKE ESC)

(

DELETE-GOAL insert space) ))

As we discussed, this is already proceduralized, that is the rule is an expert
rule. Write new ‘novice’ rules where the three keystrokes are not procedural-
ized. That is, you should have separate rules for each keystroke and suitable
goals (such as GET-INTO-INSERT-MODE) to fire them.

One of the assumptions underlying the programmable user model approach
is that it is possible to provide an algorithm to describe the user’s behaviour
in interacting with a system. Taking this position to the extreme, choose some
common task with a familiar interactive system (for example, creating a col-
umn of numbers in a spreadsheet and calculating their sum, or any other task
you can think of) and describe the algorithm needed by the user to accom-
plish this task. Write the description in pseudocode. Does this exercise
suggest any improvements in the system?
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