Models of the user
in design

Overview

0 User requirements modelling is concerned with

establishing user needs.
— Socio-technical models represent both human
and technical requirements. ’
— Soft systems methodology takes a broader
view of human and organizational issues.
— Participatory design incorporates the user
directly into the design process.

0 Cognitive models represent users of interactive

systems.
— Hierarchical models represent a user’s task and
goal structure.
— Linguistic models represent the user-system

grammar.
— Physical and device models represent human

motor skills.
— Cognitive architectures underlie all of these

cognitive models.

USER REQUIREMENTS MODELLING

6.1 Introduction

In all engineering disciplines, the designer recruits a selection of models to con-
tribute to the design process. If we were building a new office block, for example,
then we would use models of air circulation to design the ventilation system, struc-
tural models for the fabric and possibly social models for the detailed design of the
office layout.

Some models are evaluative, that is they tell us, after the fact, whether a given
design has appropriate properties. For instance, we could use a structural analysis
program to tell us whether a blueprint for a bridge will stand up to 40 tonne trucks
driving over it. Other models are generative, that is they contribute during the design
process itself, rather than merely commenting afterwards. In practice, all models are
used to some extent in this generative manner. The engineer will have used less pre-
cise structural models in the design of the bridge before submitting it to the detailed
analysis program. Also the program would be expected to say not only whether the
bridge will fall down, but also where the weak spots are, thus contributing to the
next stage of design.

Models are used in other disciplines too. We may analyze the structure of a piece
of music and decide that it is a rondo, or say that a poem is in sonnet form. Further,
we may deliberately set out to write a sonnet, thus imposing the model upon the
creative process. Craft is the art of design within constraint, and models help to
formulate the constraints.

This chapter and the next three describe a range of models that can be used during
the interface design process. Just as in the design of the office block several different
types of model are required for different aspects of the building, so in interface
design we would expect to use a whole selection of complementary methods.

In this chapter we will look at two types of model. First we will consider the capture
of user requirements within its social and organizational context. After this we will
look at cognitive models which address aspects of users’ perceptual and mental
processes. Both types of model are highly user centred. The first looks outwards at
the larger human context, the second is focused inwards at the individual user.

6.2 User requirements modelling

Requirements capture is an important part of all software engineering methodolo-
gies but often this activity focuses primarily on the functional requirements of the
system — what the system must be able to do — with less emphasis on non-functional
human issues such as usability and acceptability. Even where such matters are con-
sidered, they may reflect only the management’s view of the user’s needs rather than
gathering information from the users themselves. User requirements modelling
redresses this balance. There are a number of models and methods which can be
used to capture a broader view of system requirements. In the next three sections we
consider some of them, including socio-technical models, soft systems methodology,
and participatory design.

223

MODELS OF THE USER IN DESIGN

6.3 Socio-technical models

Socio-technical models are concerned with technical, social, organizational and
human aspects of design. They recognize the fact that technology is not developed in
isolation but as part of a wider organizational environment. It is therefore important
to consider social and technical issues side by side. There are a number of socio-
technical models which are applied to the design of interactive computer systems
but we will consider three: User Skills and Task Match (USTM) and its form for
small organizations CUSTOM, Open System Task Analysis (OSTA), and Effective
Technical and Human Implementation of Computer Systems (ETHICS).

6.3.1 USTM/CUSTOM

USTM is a socio-technical approach developed to allow design teams to under-
stand and fully document user requirements [144]. It uses diagrammatic task
models together with English descriptions to bring together structured methods
and human factors. USTM has been customized for use in smaller organizations as
CUSTOM [129], which focuses on establishing stakeholder requirements: all
stakeholders are considered, not just the end-users. A stakeholder is defined as
anyone who is effected by the success or failure of the system. Four categories of
stakeholder are distinguished:

1. Primary those who use the system.

2. Secondary those who don’t directly use the system but receive output from
it or provide input to it (for example, someone who receives a report
produced by the system).

3. Tertiary those who do not fall into 1 or 2 but who are affected by the
success or failure of the system (for example, a director whose profits
increase or decrease depending on the success of the system).

4. Facilitating those who are involved with design, development and
maintenance of the system. '

Example: Classifying stakeholders — an airline booking system
An international airline is considering introducing a new booking system for
use by associated travel agents to sell flights directly to the public.

Primary stakeholders travel agency staff, airline booking staff
Secondary stakeholders customers, airline management

Tertiary stakeholders competitors, civil aviation authorities, customers’
travelling companions, airline shareholders

Facilitating stakeholders design team, IT department staff.

CUSTOM is applied at the initial stage of design when a product opportunity has
been identified. It is a forms-based methodology which provides a set of questions
to apply at each of its stages:

SOCIO-TECHNICAL MODELS

1. Describe the organizational context, including its primary goals, physical
characteristics, political and economic background.

2. Identify and describe stakeholders. All stakeholders are named, categorized ,‘
(as primary, secondary, tertiary or facilitating) and described with regard to 1
personal issues, their role in the organization and their job. For example, \ ‘
CUSTOM addresses issues such as stakeholder motivation, disincentives, ‘
knowledge, skills, power and influence within the organization, daily tasks }
and so on. : ‘\‘ I

3. Identify and describe work-groups. A work-group is any group of people who '
work together on a task, whether formally constituted or not. Again, work-
groups are described in terms of their role within the organization and their
characteristics.

4. Identify and describe task—object pairs. These are the tasks that must be
performed, coupled with the objects that are used to perform them or to
which they are applied.

5. Identify stakeholder needs. Stages 2—4 are described in terms of both the
current system and the proposed system. Stakeholder needs are identified by
considering the differences between the two. For example, if a stakeholder is
identified as lacking a particular skill currently which is required in the
proposed system then a need for training is identified.

6. Consolidate and check stakeholder requirements. Here the stakeholder needs
list is checked against the criteria determined at earlier stages.

A shorter version of CUSTOM stakeholder analysis v
CUSTOM questions investigate a range of stakeholder characteristics, such as

the following:
O What does the stakeholder have to achieve and how is success

measured?

@ What are the stakeholder’s sources of job satisfaction? What are the

O What knowledge and skills does the stakeholder have?

O What is the stakeholder’s attitude towards work and computer
technology?

O Are there any work-group attributes that will affect the acceptability
of the product to the stakeholder?

Q What are the characteristics of the stakeholder’s task in terms of
frequency, fragmentation and choice of actions?

O Does the stakeholder have to consider any particular issues relating
to responsibility, security or privacy?

@ What are the physical conditions in which the stakeholder is working?

sources of dissatisfaction and stress?
|

|

l

\

MODELS OF THE USER IN DESIGN

CUSTOM provides a useful framework for considering stakeholder requirements
and the use of forms and questions (a ‘manual’ for its use is available) makes it rel-
atively straightforward, if somewhat time consuming,. to apply. However, in less
complex situations, it is possible to use a shortened version of CUSTOM stake-
holder analysis (see Box on page 225) for stages 2—4.

6.3.2 OSTA
OSTA [74] attempts to describe what happens when a technical system is intro-
duced into an organizational work environment. In OSTA, the social aspects of the
system (such as usability and acceptability) are specified together with the technical
aspects (such as system functionality).

OSTA has eight main stages:

1. The primary task which the technology must support is identified in terms of
users’ goals.

2. Task inputs to the system are identified. These may have different sources
and forms which may constrain the design.

3. The external environment into which the system will be introduced is
described, including physical, economic and political aspects.

4. The transformation processes within the system are described in terms of
actions performed on or with objects.

5. The social system is analyzed, considering existing work-groups and
relationships within and external to the organization.

6. The technical system is described in terms of its configuration and
integration with other systems. '

7. Performance satisfaction criteria are established, indicating the social and
technical requirements of the system.

8. The new technical system is specified.

The outcomes of OSTA are presented using notations familiar to designers such
as data flow diagrams and textual descriptions.

6.3.3 ETHICS
ETHICS [165] is also concerned with establishing social and technical require-
ments but differs from OSTA in that it addresses the two parallel strands of design

" _ the social and the technical — using different design teams. In the ETHICS

method, the design teams work separately and then attempt to merge their solutions
to find the most effective solution which is compatible with both the social and
technical requirements that have been identified. '

There are six key stages in ETHICS:

1. The problem is identified and the current system described. Objectives and
tasks are identified, as are information needs and job satisfaction requirements.
Constraints on the system, both technical and social, are identified.

SOFT SYSTEMS METHODOLOGY

2. Two design teams are established, one to examine social aspects, the other
technical. The objectives and needs identified in stage 1 are ranked in order
of priority and are checked for compatibility before social and technical
design decisions are made.

3. Alternative social and technical solutions are set out and evaluated against
the criteria already established to determine a short list of possibilities.

4. Solutions from stage 3 are checked for compatibility.

5. Compatible pairs of socio-technical solutions are ranked according to the
criteria already agreed.

6. Detailed designs are developed.

The ETHICS approach attempts to reach a solution which meets both user and
task requirements by having specialist teams rank potential solutions and selecting
the one which ranks highly on both social and technical criteria. The emphasis is on
reaching a solution which ranks highly on job satisfaction to ensure that the solution
is acceptable.

6.4 Soft systems methodology

The socio-technical models we have looked at focus on identifying requirements
from both human and technical perspectives. Soft systems methodology (SSM)
takes an even broader view: that of the organization as a system of which the tech-
nology and people are components. SSM was developed by Checkland [46] to help
designers reach an understanding of the context of technological developments: the
emphasis is therefore on understanding the situation rather than on devising a solu-
tion. SSM has seven stages. A distinction is made between the ‘real world’ stages
(1-2, 5-7) and the systems stages (3—4).

The first stage of SSM is the recognition of the problem and initiation of analy-
sis. This is followed by a detailed description of the problem situation: developing
a rich picture. This will include all the stakeholders, the tasks they carry out and the
groups they work in, the organizational structure and its processes and issues raised
by any stakeholder. Any knowledge elicitation techniques can be used to gather the
information to build the rich picture, including observation (and video and audio
recording), structured and unstructured interviews and questionnaires, and work-
shops incorporating such activities as role play, simulations and critical incident
analysis. In general the less structured approaches should be used initially to avoid
artificially constraining the description. The rich picture can be in any style — there
are no right or wrong answers — but it should be clear and informative to the
designer.

At the next stage we move from the real world to the systems world and attempt
to generate root definitions for the system. There may be several root definitions of a
system, representing different stakeholder perspectives for example. Root definitions
are described in terms of CATWOE:

227

MODELS OF THE USER IN DESIGN

Clients those who receive output or benefit from the system.
Actors those who perform activities within the system.

Transformations the CBanges that are affected by the system. This is a critical
part of the root definition as it leads to the activities which need to be
included in the next stage. To identify the transformations, consider the
inputs and outputs of the system.

Weltanschauung (from the German) or world view. This is how the system is
perceived in a particular root definition.

Owner those to whom the system belongs, to whom it is answerable and who
can authorize changes to it.

Environment the world in which the system operates and by which it is
influenced.

~ Root definition for airline management: airline booking system
An international airline is considering introducing a new booking system for
use by associated travel agents to sell flights directly to the public. That is,
a system owned by the airline management, operated by associated travel
agency staff, working in associated travel agency offices worldwide, operating
within regulations specified by international civil aviation authorities and
national contract legislation, to sell flights to and reserve seats for customers
and to generate a profit for the company.

Client Customer.
Actor Travel agency staff.

Transformation Customer’s intention and request to travel transformed into
sale of seat on flight and profit for organization.

Weltanschauung Profits can be optimized by more efficient sales.
Owner Airline management.
Environment Regulations of international civil aviation authorities and

national contract legislation. Local agency policies worldwide.

Once the root definitions have been developed, the conceptual model is devised. The
conceptual model defines what the system has to do to fulfil the root definitions. It
includes identifying the transformations and activities in the system and modelling
them hierarchically in terms of what is achieved and how it is achieved. This process
is iterative and is likely to take several cycles before it is complete and accurate.

Next we return to the real world with our systems descriptions and compare the
actual system with the conceptual model, identifying discrepancies and thereby
highlighting any necessary changes or potential problems. For example, a particu-
lar activity may have more processes in the real world than in the conceptual model
which may suggest that a reduction of processes for that activity is needed.

PARTICIPATORY DESIGN

In the final stages we determine which changes are necessary and beneficial to the
system as a whole — changes may be structural, procedural or social, for example —
and decide on the actions required to affect those changes.

SSM is a flexible approach which supports detailed consideration of the design
context. However, it takes practice to use effectively. There is no single right (or
wrong) answer — the SSM is successful if it aids the designer’s understanding of the

wider system.

6.5 Participatory design

Participatory design is a philosophy which encompasses the whole design cycle.
Participatory design is design in the workplace, incorporating the user not only as
an experimental subject but as a member of the design team. Users are therefore
active collaborators in the design process, rather than passive participants whose
involvement is entirely governed by the designer. The argument is that users are

experts in the work context and a design can only be effective within that context if .

these experts are allowed to contribute actively to the design. In addition, intro-
duction of a new system is liable to change the work context and organizational
processes, and will only be accepted if these changes are acceptable to the user.
Participatory design therefore aims to refine system requirements iteratively
through a design process in which the user is actively involved.

Participatory design has three specific characteristics. It aims to improve the work
environment and task by the introduction of the design. This makes design and
evaluation context or work oriented rather than system oriented. Secondly, it is
characterized by collaboration: the user is included in the design team and can con-
tribute to every stage of the design. Finally, the approach is iterative: the design is
subject to evaluation and revision at each stage.

Participatory design originated in Scandinavia, where it is noéw promoted in law
and accepted work practices. Although principles have been adopted from the
approach elsewhere, it has not been widely practised. This may be due to the time
and cost involved in what is, by definition, a context-specific design, as well as the
organizational implications of the shift of power and responsibility.

The participatory design process utilizes a range of methods to help convey infor-
‘mation between the user and designer. They include

brainstorming This involves all participants in the design pooling ideas. This
is informal and relatively unstructured although the process tends to involve
‘on-the-fly’ structuring of the ideas as they materialize. All information is
recorded without judgement. The session provides a range of ideas from
which to work. These can be filtered using other techniques.

storyboarding This has been discussed in more detail in Chapter 5.
Storyboards can be used as a means of describing the user’s day-to-day
activities as well as the potential designs and the impact they will have.

i

Il

MODELS OF THE USER IN DESIGN

workshops These can be used to fill in the missing knowledge of both
participants and provide a more focused view of the design. They may involve
mutual enquiry in which both parties attempt to understand the context of
the design from each other’s point of view. The designer questions the user
about the work environment in which the design is to be used, and.the user
can query the designer on the technology and capabilities that may be
available. This establishes common ground between the user and designer
and sets the foundation for the design that is to be produced. The use of role
play exercises can also allow both user and designer to step briefly into one
another’s shoes. "

pencil and paper exercises These allow designs to be talked through and
evaluated with very little commitment in terms of resources. Users can ‘walk
through’ typical tasks using paper mock-ups of the system design. This is
intended to show up discrepancies between the user’s requirements and the
actual design as proposed. Such exercises provide a simple and cheap
technique for early assessment of models.

These methods are obviously not exclusively used in participatory design. They can
be used more widely to promote clearer understanding between designer and user.
Often the design context (for example, the constraints of a particular organization)
does not permit full-blown participatory design. Even if this is the case, methods
such as these are useful ways of encouraging cooperation between the two parties.

6.6 Cognitive models

The remaining techniques and models in this chapter all claim to have some repre-
sentation of users as they interact with an interface; that is, they model some aspect
of the user’s understanding, knowledge, intentions or processing. The level of rep-
resentation differs from technique to technique — from models of high-level goals
and the results of problem-solving activities, to descriptions of motor-level activity,

such as keystrokes and mouse clicks. The formalisms have largely been developed

by psychologists, or computer scientists whose interest is in understanding user
behaviour.

One way to classify them is in respect to how well they describe features of the
competence and performance of the user. Quoting from Simon [221]:

Competence models tend to be ones that can predict legal behaviour sequences
but generally do this without reference to whether they could actually be exe-
cuted by users. In contrast, performance models not only describe what the
necessary behaviour sequences are but usually describe both what the user
needs to know and how this is employed in actual task execution.

Competence models, therefore, represent the kinds of behaviour expected of a user,
but they provide little help in analyzing that behaviour to determine its demands on

GOAL AND TASK HIERARCHIES

N
the user. Performance models provide analytical power mainly by focusing on routine
behaviour in very limited applications.

Another useful distinction between these models is whether they address the
acquisition or formulation of a plan of activity or the execution of that plan.
Referring back to the interaction framework presented in Chapter 3, this classifica-
tion would mean that some models are concerned with understanding the User and
his associated task language while others are concerned with the articulation trans-
lation between that task language and the Input language. The presentation of the
cognitive models in this chapter follows this classification scheme, divided into the
following categories:

0 hierarchical representation of the user’s task and goal structure.
O linguistic and grammatical models
a physical and device-level models.

The first category deals directly with the issue of formulation of goals and tasks.
The second category deals with the grammar of the articulation translation and how
it is understood by the user. The third category again deals with articulation, but at
the human motor level instead of at a higher level of human understanding. '

Architectural assumptions about the user are needed in any of the cognitive
models discussed here. Some of the more basic architectural assumptions were cov-
ered in Chapter 1, such as the distinction between long- and short-term memory.
After discussing models in the three categories above, we will describe two
additional cognitive architectures and how they are relevant for analyzing inter-
active system design.

Many of these nominally cognitive models have a rather computational flavour.
This reflects the way that computational analogies are currently used in cognitive
psychology. The similarity between the language describing the user and that
describing the computer has some advantages and some dangers. On the positive
side it makes communication and analysis of the combined human-—computer
system easier. For instance, cognitive complexity theory (described later) produces
models of both user goals and the system grammar, and can reason about their
interaction. On the other hand, there is a danger that this will encourage a mecha-

nistic view of the user.

6.7 Goal and task hierarchies

Many models make use of a model of mental processing in which the user achieves
goals by solving subgoals in a divide-and-conquer fashion. We will consider two
models, GOMS and CCT, where this is a central feature. However, we will see similar
features in other models, such as TAG (Section 6.8.2) and when we consider task
analysis techniques (Chapter 7).

Imagine we want to produce a report on sales of introductory HCI textbooks. To
achieve this goal we divide it into several subgoals, say gathering the data together,

MODELS OF THE USER IN DESIGN

producing the tables and histograms, and writing the L° riptive material.
Concentrating on the data gathering, we decide to split this into further subgoals:
find the names of all introductory HCI textbooks and then search the book sales
database for these books. Similarly each of the other subgoals is divided up into fur-
ther subgoals, until some level of detail is found at which we decide to stop. We thus
end up with a hierarchy of goals and subgoals. The example can be laid out to
expose this structure:

produce report
gather data
find book names
do keywords search of names database
- << further subgoals >>
sift through names and abstracts by hand
<< further subgoals >>
search sales database
<< further subgoals >>
layout tables and histograms
<< further subgoals >>
write description
<< further subgoals >>

Various issues arise as one attempts such analyses of computer use.

Where do we stop? We can go on decomposing tasks until we get down to the
individual hand and eye movements of the user, or we can stop at a more abstract
level. Where do we start? In a similar way, we can start our analyses at different
points in the hierarchy of goals. At the extreme we could extend our analysis to
larger and larger goals: ‘light oven’ is-a subgoal of ‘boil peas’ and so on to goals such
as ‘have my dinner’, ‘feed’ and ‘stay alive’.

These two questions are issues of granularity, and both of the methods described
below leave this to some extent in the hands of the designer. Different design issues
demand different levels of analysis. However, both methods operate at a relatively
low level; neither would attempt to start with such an abstract goal as ‘produce a
report’ which will involve real creativity and difficult problem solving. Instead they

confine themselves to more routine learned behaviour. This most abstract task is.

referred to as the unit task. The unit task does not require any problem-solving skills
on the part of the user, though it frequently demands quite sophisticated problem-
solving skills on the part of the designer to determine them.

What do we do when there are several ways of solving a problem, or if the solutions
to two subgoals interact? Users will often have more than one way to achieve a goal
and there must be some way of representing how they select between competing
solutions.

Another important issue has to do with the treatment of error. Users are not per-

fect. A goal hierarchy may show how the perfect user would achieve a goal, but what .

can it say about difficulties the user may have along the way? In general, prediction of
error behaviour is poor amongst these hierarchical modelling techniques, though some
(cognitive complexity theory (CCT), for example) can represent error behaviour.

GOAL AND TASK HIERARCHIES

6.7.1 GOMS
The GOMS model of Card, Moran and Newell is an acronym for Goals, Operators,

Methods and Selection [37]. A GOMS description consists of these four elements:

Goals These are the user’s goals, describing what the user wants to achieve.
3 Further, in GOMS the goals are taken to represent a ‘memory point’ for the
| user, from which he can evaluate what should be done and to which he may
return should any errors occur.

Operators These are the lowest level of analysis. They are the basic actions that
the user must perform in order to use the system. They may affect the system
(for example, press the ‘X’ key) or only the user’s mental state (for example,
read the dialog box). There is still a degree of flexibility about the granularity
of operators; we may take the command level ‘issue the SELECT command’
or be more primitive: ‘move mouse to, menu bar, press centre mouse button

Methods As we have already noted, there are typically several ways in which a
goal can be split into subgoals. For instance, in a certain window manager a
currently selected window can be closed to an icon either by selecting the
‘CLOSE’ option from a pop-up menu, Ot by hitting the ‘17’ function key. In
\ GOMS these two goal decompositions are referred to as methods, so we have -
theCLOSE—METHODandtheL7—METHOD:

GOAL: ICONIZE-WINDOW
[select GOAL: USE-CLOSE-METHOD
MOVE—MOUSE—TO—WINDOW-HEADER
POP-UP-MENU
CLICK—OVER—CLOSE—OPTION
GOAL: USE-L7-METHOD
PRESS-L7-KEY]

The dots are used to indicate the hierarchical level of goals.

Selection From the above snippet we see the use of the word select where
the choice of methods arises. GOMS does not leave this as a random choice,
but attempts to predict which methods will be used. This typically depends
both on the particular user and on the state of the system and details about
the goals. For instance, a user, Sam, never uses the 1,7-METHOD, except for
one game, ‘blocks’, where the mouse needs to be used in the game until the
very moment the key is pressed. GOMS captures this in a selection rule for

Sam:

User Sam:
Rule 1: Use the CLOSE-METHOD unless another rule applies.

Rule 2: If the application is ‘blocks’ use the L7-METHOD.

The goal hierarchies described in a GOMS analysis are almost wholly below the
level of the unit task defined earlier. A typical GOMS analysis would therefore con-
sist of a single high-level goal which is then decomposed into a sequence of unit
tasks, all of which can be further decomposed down to the level of basic operators:

MODELS OF THE USER IN DESIGN

. GOAL: EDIT-MANUSCRIPT
GOAL: EDIT-UNIT-TASK repeat until no more unit tasks

The goal decomposition between the overall task and the unit tasks would involve
detailed understanding of the user’s problem-solving strategies and of the applica-
tion domain. These are side-stepped entirely by the method as originally proposed.
It would be possible to use the general notation in order to describe this subgoal
structure (as for instance in the book report example above). This form of high-
level goal description is adopted during zask analysis which will be discussed in
Chapter 7. In particular, the aim of hierarchical task analysis is to produce task
decompositions, which would be similar (but in a different notation) to that in the
book report example.

Analysis of the GOMS goal structure can yield measures of performance. The
stacking depth of a goal structure can be used to estimate short-term memory
requirements. The model of the users’ mental processes implied by this is, of
course, very idealized. Also, the selection rules can be tested for accuracy against
user traces, and changed in response to discrepancies. In early experiments on the
technique, the inventors were able to achieve on average 90% correct prediction
rate of user commands. Further, a very simple method of predicting times (basically
assuming that each operator takes a constant timne) was able to predict actual times
with an error of 33%.

The original GOMS model has served as the basis for much of the cognitive
modelling research in HCI. It was good for describing how experts perform routine
tasks. Coupled with the physical device models discussed later, it can be used to
predict the performance of these users in terms of execution times. It was never
intended to provide the kind of information about the user’s knowledge that could
be compared across different tasks in order to predict things like training or trans-
fer times.

Design Focus
GOMS saves money ‘
A few years ago the US telephone company NYNEX were intending to install
a new computer system to support their operators. Before installation a
detailed GOMS analysis was performed taking into account the cognitive
and physical processes involved in dealing with a call. The particular
technique was rather different from the original GOMS notation as
described here. Because an operator performs several activities in parallel a
PERT-style GOMS description was constructed [123, 101]. The PERT analysis
was used to determine the critical path, and hence the time to complete a
typical task. It was discovered that rather than speeding up operations, the
new system would take longer to process each call. The new system was
abandoned before installation, leading to a saving of many millions of
dollars.

GOAL AND TASK HlERARCHIES

Worked exercise
Create a GOMS description of the task of photocopying an article from a jour-
nal. Discuss the issue of closure in terms of your GOMS description.

Answer

One possible GOMS description of the goal hierarchy for this task is given
below. Answers will vary depending on assumptions about the photocopier
used as the model for the exercise. In this example, we will assume that the
article is to be copied one page at a time and that a cover over the imaging
surface of the copier has to be in place before the actual copy can be made.

GOAL: PHOTOCOPY-PAPER
GOAL: LOCATE-ARTICLE
GOAL: PHOTOCOPY-PAGE repeat until no more pages
GOAL: ORIENT-PAGE
OPEN-COVER
SELECT-PAGE
POSITION-PAGE
. CLOSE-COVER
GOAL: VERIFY-COPY
LOCATE-OUT-TRAY
: . EXAMINE-COPY
GOAL: COLLECT-COPY
LOCATE-OUT-TRAY
. REMOVE-COPY (outer goal satisfied!)
GOAL: RETRIEVE-JOURNAL
OPEN-COVER
REMOVE-JOURNAL
CLOSE-COVER

The closure problem which appears in this example occurs when the copy
of the article is removed from the photocopier out tray, satisfying the overall
goal for the task. In the above description, however, the original journal article
is still on the imaging surface of the photocopier, and the cover is closed. The
user could easily forget to remove the journal. How could the photocopying
procedure be revised to eliminate this problem? One answer is to force the
goal RETRIEVE-JOURNAL to be satisfied before COLLECT-COPY.

6.7.2 Cognitive complexity theory

Cognitive complexity theory (CCT), introduced by Kieras and Polson [128],
begins with the basic premises of goal decomposition from GOMS and enriches the
model to provide more predictive power. CCT has two parallel descriptions: one of
the user’s goals and the other of the computér system (called the device in CCT).
The description of the user’s goals is based on a GOMS-like goal hierarchy, but is
expressed primarily using production rules. We introduced production rules in
Chapter 1 and we further describe their use in CCT below. For the system gram-
mar, CCT uses generalized transition networks, a form of state transition network. This

235

MODELS OF THE USER IN DESIGN

will not be described here, but state transition networks will be discussed in detail
in Chapter 8.
The production rules are a sequence of rules:

if condition then action

where condition is a statement about the contents of working memory. If the condi-
tion is true then the production rule is said to fire. An action may consist of one or
more elementary actions, which may be either changes to the working memory, or
external actions such as keystrokes. The production rule ‘program’ is written in a
LISP-like language.

As an example, we consider an editing task using the UNIX vi editor. The task
is to insert a space where one has been missed out in the text, for instance if we
noticed that in the above paragraph we had written ‘cognitivecomplexity theory’.
This is a reasonably frequent typing error and so we assume that we have developed
good procedures to perform the task. We consider a fragment of the associated
CCT production rules.

(SELECT-INSERT-SPACE
IF (AND (TEST-GOAL perform unit task)
(TEST-TEXT task is insert space)
(NOT (TEST-GOAL insert space))
(NOT (TEST-NOTE executing insert space)))
THEN ((ADD-GOAL insert space)
(ADD-NOTE executing insert space)
(LOOK-TEXT task is at $LINE %COL)))

(INSERT-SPACE-DONE

IF (AND (TEST-GOAL perform unit task)
(TEST-NOTE executing insert space)
(NOT (TEST-GOAL insert space)))

THEN ((DELETE-NOTE executing insert space)
(DELETE-GOAL perform unit task)
(UNBIND %LINE $%COL)))

(INSERT-SPACE-1

IF (AND (TEST-GOAL insert space)

(NOT (TEST-GOAL move cursor))
(NOT (TEST-CURSOR SLINE %COL)))
(

THEN (ADD-GOAL move cursor to %LINE %COL)))

(INSERT-SPACE-2

IF (AND (TEST-GOAL insert space)
(TEST-CURSOR $%$LINE %COL))

THEN ((DO-KEYSTROKE ‘I')
(DO-KEYSTROKE SPACE)
(DO-KEYSTROKE ESC)
(DELETE-GOAL insert space).))

N

