Lab 5
MARS Introduction

In this lab you will be introduced to the MARS (MIPS Assembler Runtime Simulator) application. When you complete this lab you will be able to assemble simple MIPS assembly programs.
Part 1.
Before you begin. Be sure to save all your work in this lab for future reference. Future assignment may make use of the material in the labs.
[image:]Open MARS. You will be operating MARS in 1 of 2 possible states. Edit or Execute. Obviously, Edit mode is where you will by entering your source code. Let’s start by entering a simple “Hello World” program. From Edit Mode create a new source file File -> New. Save it as “HelloWorld.asm”.
[image:]Once entered, you can assemble the program, Run -> Assemble. If you had no errors, the screen will flip into Run Mode.
Run the Program. At the bottom of the screen you should see hello world.
Part 2.
[image:]MARS has many features, including an extensive help facility. This can be accessed with F1. It should be used as a reference where needed. Note that the syscalls which make up the bulk of the IO capability are extensively listed. Let’s expand on the hello world program. We will write a program to read in a string and then print it back out.
[image:]

Create a new program, and using “Hello World” as a template, add the above code. Buffer is an empty memory space of size 256 bytes. We will read our string into the buffer, which will add the null terminator. $a1 is the max number of bytes to read. Run your program.

Part 3.
[image:]Write a program which will compute the average of 3 numbers, the numbers come from stored values in memory, v1, v2 and v3. Ave will be of type integer. To the right is the start of the program. You will be required to fill in the details as a lab exercise. Notice, I have not define where the solution is to be stored. For now, compute the solution to a register, if you wish, output the result to the console.
[image:]Once completed and you run your program, notice to the far right of the run screen a list of the registers. These will contain the results as you go through your computation. You should be able to locate the final solution within 1 of these registers. Note: everyone will likely of used different registers, these would be programmer specific.
Let’s further the investigation. Reset the program, reset command under Run. F7 and F8 allow you to step through the code 1 line at a time. Try this and watch the register values change. Notice the source line is highlighted as you step.
Part 4.
[image:]Modify the above code to write the result back into memory using an appropriate variable name. If you have not done so, print the average to the console. Once run, you can directly look at the info stored in memory. Any label defined - references a memory location. Clicking on the label, will highlight the memory location and thus the data saved to that location.

Part 5.
[bookmark: _GoBack]Let’s go back to the 2nd program. Make a copy of the program call it “printByChar.asm” or something descriptive. We want to read the string as you did in part 2, except this time we will replace the print string with: print the string char by char. Note: all strings will have a null character at the end, this is effectively a zero. The pseudo code will look as follows:
[image:]
[image:]Work on this for the rest of your lab.
Comment your code with Name and Student number at the top. Groups of assembly code can be given a nice descriptive semantic comment. The example to the right describes an if else statement. The comments should enhance the understanding of code blocks and not repeat the code.
Page 2

image5.png
.data

Lword 10
Lword 20
Lword 30

Ltexe

#tour code nere]

image6.png
Coproc 0

Value

‘Number

Registers | Coproc 1

Name.

=

ot

svo
sv1
ca0

ca1
a2
<23
lse0
sl

image7.png
Label Address A
Ave3Num.asm

start 020000000

vi 0x10010000

2 0x10010004

0x1001000¢]

ave 0x1001000¢]

image8.png
load a pointer P with base address of buffer
Lead the byce B pointed to by B, use 1b load byce
iE (B 13 zero) goro Line 8

prine B, L.e. & syscail

Tncrencat ? by 1

fead B poinced to by P

goto iine 3

e is dond]

image9.png
else:

end:

1isel, 0
begz sel, else
la 5e2, false
b end

1a 5e2, true

#10ad value to be tested
#test if 5tl is zero, if not skip to else part
#othenvise false

image1.png
msg:

-data
Ltexe

11 sv0,
1a 5a0,

syscall

11 5v0,
syscall

"Hello World!”

1
nsg

10

Systeacall code print_str

Systencall code exit

image2.png

image3.png
MIPS | MARS | License | BugsiComments | Acknowledgements | Instruction Set Song

Operand Key for Example Instructions

label, target any textual label

st1, st2, §t3 any integer register

sr2, $14, 576 even-numbered floating point register

sf0, $11, $63 ‘any floating point register
Kl

Basic Instructions | Extended (pseudo) Instructions | Directives | Syscalls | Exceptions | Macros

bs.d 512,564 Floating point absolute value double precision : Set §£2 to absolute value of 524,
ebs.s 550,521 Floating point absolute value single precision : Set §£0 to absolute value of 571,
add st1,5t2, 583 Addition with overflow : set $tl to (5t2 plus §t3) o
add.a 52,524,556 Floating point addition double precision : Set $£2 to double-precision floating poir
ladd. s $£0,561, 653 Floating point addition single precision : Set $£0 to single-precision floating poir
edas scl,5t2,-100 Addition immediate with overflow : set $tl to (¢t2 plus signed 16-bit immediate)
laddiu $t1,512,-100 Addition immediate unsigned without overflow : set $tl to (¢t2 plus signed 16-bit ig
eddu stl, 512,563 Addition unsigned without overflow : set $tl to (§t2 plus $t3), no overflow
and 5t1,5t2, 563 Bitwise AND : Set §tl to bitwise AND of $t2 and §t3
nds stl, 512,100 Bitwise AND immediate : Set ST to bitwise AND of $t2 and zero-cxtended 16-bit immed
fbc1£ 1,1abel Branch 1f specified FP condition flag false (ECIF, not BCLF) : If Coprocessor 1 con
Ibc1£ label Branch if FP condition flag 0 false (ECLF, not BCLE) : If Coprocessor 1 condition £
fbeic 1,1abel Branch if specificd FP condition flag true (BCIT, not BCLT) : If Coprocessor 1 cond:
Ibcic label Branch if FP condition flag 0 true (BCIT, not BCLT) : If Coprocessor 1 condition fl
foeq 511,562, label Branch if equal : Branch to statement at label's address if $tl and $t2 are equal
fogez 511, 1abel Branch if greater them or equal to zero : Branch to statement at label's address if
fogezal st1,1abel Branch if greater then or equal to zero and link : If §tl is greater than or equal
fogtz 511, 1abel Branch if greater then zero : Branch to statement at label's address if $tl is grea

image4.png
pusser:

-data
~space 256
Ltexe

La $a0, butfer
1i sal, 256

1i5v0, 8
syscall

