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Simplifying contextual structures
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Abstract. We present a method to reduce a formal context while retaining much its information content.
Although simple, our ICRA approach offers an effective way to reduce the complexity of concept lattices
and / or knowledge spaces by changing only little information in comparison to a competing model which
uses fuzzy K-Means clustering.

1 Introduction

A very simple data structure is a triple C = hU,V,Ri where R is a binary relation between elements of U

and elements of V which we shall call a formal context [17]. From this, various data representations can be
constructed, one of the more popular ones being the concept lattice obtained from C introduced by Wille
[17]. With each concept a line diagram can be associated which depicts the concept lattice in a consolidated
way. For lack of space we shall not describe his further; For details we invite the reader to consult, for
example, [18] or [6].

As a context C grows large, the construction of the concept lattice is costly and it is difficult to interpret
the structure and its associated line diagram. Therefore, various techniques have been proposed to reduce
a formal context C = hU,V,Ri or its associated concept lattice such as the stability indices of [13], the
reduction using fuzzy K-Means clustering (FKM) [12], or reduction based on objects similarity [2]. Cheung
& Vogel [1] propose a way to obtain a quotient – like concept lattice by identifying rows of a context and
then considering the resulting concept lattice. However, this approach was shown to be flawed [11].

All these techniques can be subsumed under one of two strategies:

1. Omit attributes (or objects), or
2. Merge attributes (or objects) which are similar according to some criterion.

Both types change the adjacency matrix of R. However, reducing the matrix does not guarantee that the
associated concept lattice will be reduced as well, see Example 3 of [11]. In this paper we propose a simple
algorithm to reduce the concept which does not increase the size of the associated concept lattice.
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2 Notation and definitions

Throughout we suppose that U = {p1, . . . , p

n

} is a finite set of objects (such as problems) and V = {s1, . . . ,s
k

}
is a finite set of attributes (such as skills). R ✓U ⇥V is a binary relation between elements of U and elements
ofV . For each p 2 U we set R(u)

df
= {s 2 V : pRs}, and R

df
= {R(u) : u 2 U}. The identity relation on U is

denoted by 10
U

. The relational converse of R is denoted by R ,̆ and �R is the complement of R in U ⇥V .
The set R is partially ordered by ✓. The adjacency matrix of R has rows labeled by the elements of U , and
columns labeled with the elements of V . An entry hu,vi is 1 if and only if u

i

Rs

j

, otherwise, the entry in this
cell is left empty.

A formal context hU,V,Ri gives rise to several modal–style set operators:

hRi(X) = {b 2V : (9a 2 X)aRb}= {b 2 B : R˘(b)\X 6= /0}, (Possibility)(2.1)
[R](X) = {b 2V : (8a 2U)[aRb ) a 2 X ]}= {b 2 B : R˘(b)✓ X}, (Necessity)(2.2)

[[R]](X) = {b 2V : (8a 2U))[a 2 X ) aRb]}= {b 2 B : X ✓ R˘(b)} (Sufficiency).(2.3)

It is well known that for all X ,X 0 ✓U ,

hRi(X [X

0) = hRi(X)[hRi(X 0),(2.4)
[R](X \X

0) = [R](X)\ [R](X 0),(2.5)
[[R]](X [X

0) = [[R]](X)\ [[R]](X 0).(2.6)

The mappings hRi and [[R]] are, respectively, the existential (disjunctive) and universal (conjunctive) exten-
sion of the assignment x 7! R(x) to subsets of U , since it follows immediately from the definitions that for
all x 2U,X ✓U ,

hRi({x}) = [[R]]({x}) = R(x),(2.7)

hRi(X) =
[

x2X

R(x),(2.8)

[[R]](X) =
\

x2X

R(x).(2.9)

The operators [[R]] and [R], as well as hRi, are related since, clearly,

[[R]](X) = [�R](U \X),(2.10)
hRi(X) =V \ [[�R]](X).(2.11)

For unexplained notation and concepts in lattice theory we refer the reader to [8].

3 Data models based on modal operators

Suppose we have a formal context C= hU,V,Ri which we regard as “raw data”. The image sets R(x) are our
basic constructs.
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As a first approach to a data model (a structural representation of data) based on hU,V,Ri, we define a
quasiorder � on U by setting x � y if and only if R(x)✓ R(y). We also define the incomparability relation

by

x#y

df() (x 6� y) and (y 6� x).(3.1)

From this starting point, several more involved data models can be developed. One of the better known
models are those based on the sufficiency operators [[R]] (“intent”) and [[R˘]] (“extent”): For each X ✓ U ,
[[R]](X) is the set of all attributes, common to all elements of X , and for Y ✓ V , [[R˘]](Y ) is the set of all
objects which possess all attributes in Y . A pair h[[R˘]][[R]](X), [[R]](X)i is called a formal concept. The set
of all formal concepts can be made into a lattice which can be drawn as a consolidated line diagram [17] as
in Figure 1 3. Each node of the diagram represents a formal concept, and for each object x, R(x) is the set of

R v1 v2 v3 v4
u1 1 1 1
u2 1 1 1
u3 1
u4 1
u5 1 1

Fig. 1: A context and its line diagram

all attributes above the node labelled x (we interpret “above” and “below” as reflexive relations). In the line
diagram of R, x � y if and only if x and y label the same node or the node labelled by y is below the node
labelled by x.

In our problem/skill interpretation, [[R]](X) is the set of all skills the possession of which is required by all
problems in X . Such conjunctive problem assignment is an assumption e.g. of the “Deterministic Inputs,
Noisy And” gate (DINA) model [14,9,10] and the rule space model [16].

A data model which in some sense complements concept lattices are the knowledge spaces introduced in [4].
These are set systems closed under union and can be related to the modal operator hRi which is called the
span operator in [3]. It was shown in [7] that the models arising from [[R]] and hRi have the same expressive
power and are useful in situations different from those where conjunctive assignments are employed.

Taking {R(x) : x 2U} as a starting point, the set of spans and the set of intent go into different directions: It
follows from (2.7) and (2.9) that K

R

df
= {hRi(X) : X ✓U} is the [ – semilattice generated by {R(x) : x 2U},

and I
R

df
= {[[R]](X) : X ✓U} is the \ – semilattice generated by {R(x) : x 2U}. For X ✓U , [[R]] is the set

3 The diagrams were drawn by the ConExp package [19]
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of all attributes lying above all objects in X , and hRi({x}) is the set of all attributes not upwards reachable
from object x in the line diagram of �R.

4 Reducing the complexity

The simplest way to change the adjacency matrix is to change one bit at a time, according to a given criterion.
The question arises which criterion we shall use. If � is a linear quasi order – i.e. if any two objects of U are
comparable – then K

R

and I
R

coincide and are equal to hK
R

,✓i (possibly with added /0 or V ); nothing is
gained by going from the simple model h|C,�i to one of the more involved ones. At the other extreme, if no
two different elements of U are comparable with respect to #, then the representations obtained from C very
strongly depend on the modal operator used and may widely differ. Consider the simple relation depicted in
Figure 2. There, I

R

consists of the singletons {v

i

} and the empty set, while K
R

is the set of all nonempty
subsets of V . If we consider the complement of �R, then situation is reversed, see Figure 3. Therefore, if

R v1 v2 v3 v4
u1 1
u2 1
u3 1
u4 1

Fig. 2: # =U

2 \10
U

, 1st example

-R v1 v2 v3 v4
u1 1 1 1
u2 1 1 1
u3 1 1 1
u4 1 1 1

Fig. 3: # =U

2 \10
U

, 2nd example
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the incomparability relation is large, choosing one operator over the other may not provide a meaningful
interpretation, and it may not be the wisest choice at the outset to prefer one over the other. Keeping in
mind the problem/skill situation, we suggest the relative incomparability of objects as a measure of context
complexity which we aim to reduce: If C= hU,V,Ri is a formal context and u 2U , then we let

incomp(u)
df
= {v 2U : u#v}, incomp(C)

df
=

|{hu,vi : u#v}|
n

2 �n

,

where n = |U |. Now, incomp(C) = 0 if and only if � is a linear quasiorder, and incomp(C) = 1 if no two
different elements are � – comparable. The measure of success is the reduction of incomp(C) relative to the
number of bit changes.

Our InComparablity Reduction Analysis algorithm (ICRA)4 is based on a simple steepest descent method:
We consider objects u for which |incomp(u)| is maximal and then invert a bit – i.e. an entry in the adjacency
matrix of the relation under consideration – for which the drop of the number of overall incomparable pairs
is maximal. This will increase the comparability of objects with respect to � or, equivalently, of sets R(x)
without increasing the number of intents, respectively, knowledge states. Indeed, in most cases we have
looked at, the complexity of the concept lattice was significantly reduced. If after inverting one bit so that
the resulting relation is R

0 and x �
R

0
y then there will be a path from y to x in the line diagram of R

0 as well
so that the new representation is closer to the data as represented by R.

The stop criterion is a predetermined relative value of incomparable pairs, i.e. a value for incomp(C), where
C is the current context, or no more reduction is possible. As a rule of thumb we suggest to require that 50%
of pairs with different components should be comparable (Median InComparablity Reduction Analysis). An
overview of the pseudocode the ICRA algorithm is shown in Figure 4.

noEntry := FALSE.
pout:= p . Initialize stop criterion to 0  p  1.
Unmark all object-attribute-pairs. . No pair changed yet.
repeat

Find the set OBJ of objects belonging to unmarked pairs for which incomp(u) is maximal.
if incomp(C) pout then . Goal reached

NoEntry := TRUE
else

Using OBJ find the object-attribute-pairs, which maximally reduce the incomparability,
when inverting one bit of the matrix under consideration.
if no reduction is achieved for any of these then

NoEntry := TRUE
else

Invert the entry of one of the maximal object-attribute-pairs and use the new relation.
Mark the chosen object-attribute-pair.
Replace C with the revised context.

end if

end if

until NoEntry = TRUE.

Fig. 4: Pseudocode of the algorithm

4 The algorithm is implemented in R [15] and the source code is available at .
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5 Experiments

Even though our procedure is simple, it compares well with other reduction measures. As a case in point we
shall consider the reduction using fuzzy K-Means clustering (FKM) proposed in [12]. This method is based
on partitioning a set of vectors into k fuzzy clusters, specifying to what degree a vector belongs to the cluster
centre. Owing to lack of space we cannot explain their method in detail and refer the reader to [12]. The
context C of their first example relates documents with keywords and it is shown in Figure 5 along with its
context lattice. The relative incomparability of C is 94%.

D1 D2 D3 D4 D5 D6 D7
Baby 1 1 1 1
Child 1 1
Guide 1 1
Health 1
Home 1 1
Infant 1 1

Proofing 1 1
Safety 1 1

Toddler 1 1

Fig. 5: Example from [12], p 2699

After applying FKM based clustering with k = 2, the columns D1 – D2 are identified and the entry hT
i

,D1‘�
�D4i of the resulting adjacency matrix is max{hT

i

,D1i, . . . ,hT
i

,D4i}. The reduced context C1 and its con-
cept lattice are shown in Figure 6.

D1–D4 D5 D6 D7
Baby 1 1 1
Child 1
Guide 1 1
Health 1
Home 1
Infant 1

Proofing 1 1
Safety 1

Toddler 1

Fig. 6: Example from [12], p 2699, reduced
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To achieve the FKM result C1 fromC requires to change 15 bits for a relative incomparability of 49%; this
includes the effort to identify columns. In comparison, our algorithm needs only 4 bits for a 50% incom-
parability, and 9 bits for 0% incomparability. The resulting context along with its line diagram is shown in
Figure 7. It has the same number of concepts as the concept lattice obtained from FKM (9), and the same
number of edges (14).

5 bits D1 D2 D3 D4 D5 D6 D7
Baby 1 1 1 1
Child 1 1
Guide
Health 1
Home 1 1
Infant 1

Proofing 1 1
Safety 1 1

Toddler 1 1

9 bits D1 D2 D3 D4 D5 D6 D7
Baby 1 1 1 1 1
Child 1 1 1
Guide
Health 1
Home 1 1 1
Infant 1

Proofing 1
Safety 1 1

Toddler 1 1

Fig. 7: Reduction of Example 1 from [12] using ICRA

In classification tasks, there is often a trade – off between the (relative) number of correctly classified objects
and, for example, the (relative) cost of obtaining the classification or the clarity of a pictorial representation.
In some instances, this may be expressed as the amount of errors we are prepared to allow to achieve another
aim. A case in point are curves based on receiver operating characteristics (ROC), where the sensitivity
(benefit) of a binary classifier is plotted as a function of its FP rate (cost), see [5] for an overview. We can
plot the relative incomparability as a function of the number of bits changed to achieve it, see the reducibility
graph in Figure 8. If we interpret (in-)comparability as sensitivity and the number of changed bits as cost to
retrieve the original data, this can be interpreted as a ROC curve.
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Fig. 8: Reducing relative incomparability with ICRA

The next example for [12] investigates a dataset consisting of various species of bacteria and 16 phenotypic
characters, shown in Table 1.

H2S MAN LYS IND ORN CIT URE ONP VPT INO LIP PHE MAL ADO ARA RHA

ecoli1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1
ecoli2 0 1 0 1 1 0 0 1 0 0 0 0 0 0 1 0
ecoli3 1 1 0 1 1 0 0 1 0 0 0 0 0 0 1 1

styphi1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
styphi2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
styphi3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0
kpneu1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1
kpneu2 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1 1
kpneu3 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1
kpneu4 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1
kpneu5 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1

pvul1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0
pvul2 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
pvul3 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0

pmor1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0
pmor2 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0

smar 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0

Table 1: Bacterial dataset from [12]

For this context C, the incomparability incomp(C) turns out to be 81%. C is reduced with the FKM method
for k = 5 and k = 9, resulting in contexts C5 and C9 with incomp(C5) = 34.5% and incomp(C9) = 64.7%.
40 bits are required to reduce C to C5, and the reduction to C9 with 64.7% incomparability needs changing 11
bits. In contrast, our algorithm requires changing 19 bits to achieve an incomparability reduction to 34.6%,
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and 8 bits for a reduction to 66.1%. Changing 11 bits (as in the FKM reduction with k = 9) results in a
reduction to 60.2%. The ICRA reducibility graph is shown in Figure 9.

Fig. 9: Reducing relative incomparability of the bacterial dataset with ICRA

6 Conclusion and outlook

We have introduced a simple algorithm ICRA to reduce a formal context, the success criterion of which
is a prescribed reduction of incomparable pairs. As a rule of thumb, we propose a relative frequency of
incomparable pairs of objects of 50%. This seems a fair compromise between closeness to the data on the
one hand, and the additional structure introduced by the chosen model on the other. We have compared the
success of our algorithm with several examples of [12] and have found that fewer bits are needed than FKM
to obtain similar incomparability ratios. Furthermore, the FKM algorithm requires much more effort and
additional model assumptions so that its cost/benefit ratio is much smaller than for the median comparability
algorithm. Furthermore, it is not clear which k should used for the reduction.

In the available space, only an indication of the impact of the median comparability algorithm could be
given. Further work will include investigation of the powers and limitations of the ICRA algorithm using
both theoretical and practical analysis. In particular, we shall consider its effects on implication sets and
association rules.
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