Parallel Programming Paracigmm ... Page 1 of 6

PARALLEL PROGRAMMING RECIPE
The process of development of parallel programs can be summarized as
follows:
1. Pick up a particular problem of interest;
2. Conceptualize the solution;

3. Split this solution into components to be executed simultaneously as
cooperating processes;

4. Code each component;
5. Arrange components in groups;
6. Allocate to each group a separate processor of suitable type;

7. Execute simultaneously all components, noting overall run time.

A question might be asked:
WHY GROUPS?
Another nasty question:
We hope for speedup > 1.

What if the application of this recipe yields speedup <1 ?
In particular, speedup = 0 implies deadlock!

RParallel Computing 2008 V. Wojeilk



Parallel Programming Paracigmm ... Page 2 of 6

WHY PROCESS GROUPS?
We may face two possible situations:

1. If the number of processes <= number of processors and
it is possible to satisfy all processes’ needs for processor types,

then
Allocate each process to a separate processor,
Keeping all processor types compatible with processes’ needs

2. else
We must have groups of processes,
Each group being allocated a single processor, and
All processes within each group running in a time-sharing mode.

NOTE 1: We focus on situation (2), considering situation (1) as special case
of situation (2).

NOTE 2: In general, no brute-force processor allocation approach is feasible,
because there are N ways to allocate P processes among N processors.

However, this approach is feasible for a small N and P, and the evolution
seems to “know” it...

RParallel Computing 2008 V. Wojeilk



Parallel Programming Paracigmm ... Page 3 of ©

THE PROCESSOR ALLOCATION PROBLEM
Given:
1. A computer with N processors (of possibly differing characteristics
like speed, amount of local memory, presence or absence of floating point
facilities, graphics, FFT, etc.)

and

2. An algorithm consisting of a mix of P processes
(of possibly differing processor type preferences)

Decide:
1. Which process(es) to run on which processor(s), when, and for how long?
2. On the order sequence of such assignments;

3. On the computer architecture, facilitating interprocess communication.

Our measure of success will be calculated according to some selected criterion
(like speedup, node efficiency, area efficiency, etc.)

RParallel Computing 2008 V. Wojeilk



Parallel Programming Paracigmm ... Page 4 of 6

DISTRIBUTED SOFTWARE LIFE CYCLE

Application
Problem

Requirements |«
Analysis

Requirements
Specs

Partitioning

Design Specs Design Specs
(Process 1) (Process N)

Y Y

Allocation

Implementation <
Y
System Source
Version | Code
Y Testing Y
Dynamic Static
—
Solution

RParallel Computing 2008 V. Wojeilk



Parallel Programming Paracigmm ... Page 5 of 6

PARTITIONING CONSIDERATIONS
OBJECTIVES:
* Minimize interprocess communication
* Exploit potential concurrency
* Limit sizes of processes

DIFFICULTIES:

* How to measure effectiveness before allocation?
* Partitioning criteria conflicts.

i s
S
S
e
i

W

o

e
ok
2%

R

RN AR et e
i

:

oy eleCatio
R I

'y % TR Tath
2 AR
B i
A
e R Sy
I b

S,
AR

RParallel Computing 2008 V. Wojeilk



Parallel Programming Paracigmm ... Page 6 of ©

TASK ALLOCATION CONSIDERATIONS

Combinatorially, if we have P processes and N processors,
there are N” possible allocations (or more, if we allow replication
to enhance fault tolerance)

Allocation effectiveness depends on the allocation GOAL, like:

Minimize total IPC cost

Minimize total computation and IPC cost
Minimize completion time

Minimize load imbalance

Maximize system reliability

Feasible allocations must meet system constraints, like:

* Memory capacity
* Processing time limits

RParallel Computing 2008 V. Wojeilk



