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PARALLEL PROGRAMMING RECIPE
The process of development of parallel programs can be summarized as
follows:
1. Pick up a particular problem of interest;
2. Conceptualize the solution;

3. Split this solution into components to be executed simultaneously as
cooperating processes;

4. Code each component;
5. Arrange components in groups;
6. Allocate to each group a separate processor of suitable type;

7. Execute simultaneously all components, noting overall run time.

A question might be asked:
WHY GROUPS?
Another nasty question:
We hope for speedup > 1.

What if the application of this recipe yields speedup <1 ?
In particular, speedup = 0 implies deadlock!
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WHY PROCESS GROUPS?
We may face two possible situations:

1. If the number of processes <= number of processors and
it is possible to satisfy all processes’ needs for processor types,

then
Allocate each process to a separate processor,
Keeping all processor types compatible with processes’ needs

2. else
We must have groups of processes,
Each group being allocated a single processor, and
All processes within each group running in a time-sharing mode.

NOTE 1: We focus on situation (2), considering situation (1) as special case
of situation (2).

NOTE 2: In general, no brute-force processor allocation approach is feasible,
because there are N ways to allocate P processes among N processors.

However, this approach is feasible for a small N and P, and the evolution
seems to “know” it...

RParallel Computing 2008 V. Wojeilk



Parallel Programming Paracigmm ... Page 3 of ©

THE PROCESSOR ALLOCATION PROBLEM
Given:
1. A computer with N processors (of possibly differing characteristics
like speed, amount of local memory, presence or absence of floating point
facilities, graphics, FFT, etc.)

and

2. An algorithm consisting of a mix of P processes
(of possibly differing processor type preferences)

Decide:
1. Which process(es) to run on which processor(s), when, and for how long?
2. On the order sequence of such assignments;

3. On the computer architecture, facilitating interprocess communication.

Our measure of success will be calculated according to some selected criterion
(like speedup, node efficiency, area efficiency, etc.)
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DISTRIBUTED SOFTWARE LIFE CYCLE
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PARTITIONING CONSIDERATIONS
OBJECTIVES:
* Minimize interprocess communication
* Exploit potential concurrency
* Limit sizes of processes

DIFFICULTIES:

* How to measure effectiveness before allocation?
* Partitioning criteria conflicts.
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TASK ALLOCATION CONSIDERATIONS

Combinatorially, if we have P processes and N processors,
there are N” possible allocations (or more, if we allow replication
to enhance fault tolerance)

Allocation effectiveness depends on the allocation GOAL, like:

Minimize total IPC cost

Minimize total computation and IPC cost
Minimize completion time

Minimize load imbalance

Maximize system reliability

Feasible allocations must meet system constraints, like:

* Memory capacity
* Processing time limits
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