
Clojure
Daniel McCarney

COSC 3P93

Material Covered
● What is Clojure?
● Why do we care?
● What isn't it?
● Intro to Functional Programming
● Concurrency Support
● Conclusions

What is Clojure?

The Clojure Rationale

● Created by Rich Hickey in 2007

● A LISP
– LISt Processing (or Lots of Irritating Superfluous Parentheses)

● For functional programming
– Immutable Data

– First Class Functions

● Exploiting Java
– Compiles to bytecode (JVM run)

● Concurrency built-in
– Not an after thought or library

Ok... So what?

Backwards is Forwards

● Backwards compatibility matters
– You already have programmers

– You already have applications & libraries

– You already have hardware

● Need concurrency? Now what?
– Retrain, rewrite, replace, make do?

● Need to be realistic

– A stepping stone to concurrent bliss

Exploit the Market

● Java is well established in the programming
industry

– Lots of trained programmers

– Lots of applications, libraries and support

– “Write once, run anywhere”

● Java Virtual Machine (JVM)

– Incredibly well tested

– Over 10 years of optimization and tuning

● Already established as a platform for non-Java
languages

– Jython, Jruby, Jscheme, Groovy, Scala, etc

● Join the party. Bring a “j”.

Functional, or Dysfunctional?

● Immutable data perfect for concurrency
– If you can't change it, you never need to worry

– Synchronization, deadlock, etc

● “First class” functions
– Make functions on the fly

– Pass them around as data.

– No “side effects”

● “Homoiconic”

– Programs represented in the language's own datastructure

– Code is data, data is code.

● “If you don't think carefully, you might believe that programming is just typing
statements in a programming language.” - W. Cunningham

Threads and Locking? No thanks

● Threads and Locking
– Complex!

– Error prone

– A debug nightmare

– Potentially slow

● Concurrent from the start
– Protect all memory

– Higher level abstractions (like Ada's Tasking)

Too good to be true?

 (defn fitsall? [x] (if (= x 'onesize) nil))

● No panaceas

– one language isn't going to work for any and all applications

● The benefits of the JVM come with drawbacks

– Real hardware hidden.

– Little control of operating system

– No clusters or “bare metal” execution

● Still LISP-y in syntax

● New = Scary

● “There are only two kinds of programming languages: those people always
bitch about and those nobody uses.” - B. Stroustrup

 A Matter of Perspective

LISP?

LISP!?! Why LISP?

● LISP will not die

– John McCarthy, ~1958. Second oldest high level language.

– Almost no core syntax to learn

– Able to adapt to every new programming paradigm.

– Code is data is code -> homoiconic

● A “programmable programming language”

● Ahead of the curve

– Read-Execute-Print model

– “Often emulated, never duplicated”

● Math doesn't get stale!

– “Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I”

– Turing-complete algorithm language

Borrowing Credibility

● “A language that doesn't affect the way you think about programming is not worth knowing.” - A.
Perlis

● “The tools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities.” - E. Dijkstra

Functional Programming
● A lightspeed introduction to FP using Clojure
● If you've taken COSC2P90 – pretend you haven't...
● Resources at the end for the curious

The REPL

● LISP – the origin of iterative development
● A shell for experimental coding

● Read -> Evaluate -> Print -> Loop

● A programmer's best friend

● Code, Documentation, Testing, and
Debugging in one.

Core Datatypes

● Numbers: 4, 1.0, 22/7, -99999999999999
– Convert to BigDecimal as required

– Built in ratio type

● Strings & Chars: “Foo”, \f

– Unicode, pretty much the same as Java.

● List: (+ 5 9 9.0)
– Used for function calls.

– If you think of an “add” method in Java how do you call it? add (5, 9);

– Put the function name inside the brackets too, more orthogonal (add 5 9)

– Now understand that clojure's built in operators are functions too (+ 5 9)

● Vector: [5, 9, 9.0]

Core Datatypes (Cont'd)

● Dictionary/Mapping: { :key “value1” :key2 “value2 }
– Key to Value lookup table.

– Allows for key missing default values, access to just values, just keys.

● Keyword: :key
– Evaluate to themselves, used for fast equality checks

– (:key2 { :key “value1” :key2 “value2” }) results in “value2”

● Symbol: '(someFunc 2 4)
– Code is data, we need a way to express code so it won't be run

– Without the ' shorthand for quote() Clojure will run someFunc(2, 4)

“One sequence to access them all, and in the
bytecode bind them”

● Clojure unifies the majority of the mentioned data types under the Sequence
interface.

● Accessing vectors, lists, maps, sets, and strings uniformly

– first, rest, cons, next, conj, into

● Create sequences on the fly:

– Range, repeat, cycle, interleave

– “for” (see: python list comprehension)

● “Filter” sequences to find elements with specific properties

– filter, take-while, drop-while

● Transform sequences

– map, reduce, sort

● “Any sufficiently advanced technology is indistinguishable from magic.” - A. Clarke

Pics Code or it didn't happen.

The Art of Lazy

● A lazy sequence:

– Elements not calculated until needed

– Postpones expensive computations, delays I/O

– Work with data sets bigger than your memory capacity

● Create “lazy sequences” on the fly out of function results

– See “yield” in some other languages. Concept of a “generator”

● Other sequences already provided “lazy”

● Lazy sequences make it possible to have “infinite sequences”

– If the next value is computable into infinity...

– Compute the ones you need on a lazy basis

Of Wizards and Lambdas

● First class functions mean that we can pass them around as data

– See (reduce + (range 5))

– Passes the '+' function to the higher order function “reduce”

● Further, functions can be nested within other functions

● Functions can be created on the fly.

– A “lambda” is an unnamed function. Similar to an anon. inner class in Java

– Can use the “fn” function to specify a function with formal parameter names

– Can use the %() reader macro to create a function that uses “%1” style tokens
to access arguments

● Returning a function created on the fly to wrap a piece of data is “closing over”
the data. Think: abstraction in OO terms (private member scope).

A while() before loops...

● Looping requires mutable state

– Counter variables (i,j,k), boolean status flags (is_done, has_data)

● Functional programming uses recursion

● Clojure has no loops, only advanced recursion options.

● But what of performance?

– Language support for Memoization

– Partial tail-recursion

– Libraries for easily “trampolining”

Java Inter-op

● Create new Java objects

– (new Random)

● Call methods on the object

– (. (new Random) nextInt)

● Masquerade as a subclass or an interface implementer

– Runtime proxy function

– Lets you take a binding of functions and get an object

– Can save runtime computed bytecode to a .class file

● Clojure functions all implement the Runnable & Callable interfaces

– Can immediately be run on their own thread. No changes required.

"Syntactic sugar causes cancer of the semicolon" A. Perlis

Concurrency

A problem

● Traditional concurrent programming (in particular Java) requires the programmer
manage data access very carefully.

● Locking based schemes used to synchronize access to key resources.

– Allows one one thread access at a time (see: bottleneck)

– Not being careful leads to hard to reproduce deadlock and concurrent
memory access issues.

● Clojure has a natural advantage due to it's pure functions and immutable data.

● For everything else Clojure provides a layer above memory that acts as a
controller for concurrent modification without explicit programmer interaction.

● This layer is based on the concept of ACID transactions from enterprise
database servers.

ACID (hallucination free)

● ACID is defined:

– Atomicity

– Consistency

– Isolation

– Durability

● Atomicity defines “all or nothing” behavior

● Consistency ensures that the system is always in a known state.

● Isolation requires that no other operations can access/view data from an in-
progress transaction

● Durability ensures that once a user has been notified of a successful
transaction result, the transaction will not be lost in the result of a crash.

Software Transactional Memory

● Clojure adapts the concept of ACID transactions to main memory

● References to mutable state created

● The reference can only be changed inside of a transaction

● Transactions are managed in an ACID fashion. If a transaction is queued, it will
retry until successful. STM loses the “Durability aspect”. RAM Only.

● Very optimistic locking

– Read-only access will never block writers or other readers.

– “Speculative evaluation”, things may be undone, or re-tried inside of a
transaction. Changes are isolated and can be undone if required.

● More noticeable overhead on small # of processors

Clojure Concurrency Library

● Clojure provides several options for concurrent code

● At the most fine grain level is the STM implementation and refs.

● Atoms manage uncoordinated, synchronous changes to shared state.

● Agents manage asynchronous changes to shared state.

● Vars manage thread-local state. (Dynamic rebinding)

Clojure Concurrency Library Contd.

● Atoms

● Protect a single ref from uncoordinated synchronous changes.

● Because they protect a singular reference an atom does not need to be updated inside
of a transaction.

● As a side-effect, you can not update two atoms at once in a coordinated fashion.

● Lighter weight than directly using refs and transactions. Less for Clojure to protect you
from.

● Agents

● Specialized for tasks that can proceed independently - minimal coordination.

● Comparable to Ada's tasking approach.

● Wrap an initial state and accept functions to update this state. Update funcs are queued,
eventually run on their own thread.

Some Code
If time has permitted...

Counting node edges

 Extracts a map of node to edge connections from graph g
{ :0 [:1 :2], :1 [:0], :2 [:0] }

 Counts the second element of each keypair (i.e. the value)
(count [:1 :2]) (count [:0]) and (count [:0])

 Creates a list from those count results
 Sorts that list

(1, 1, 2)

Questions?

Resources

 http://clojure.org specifically:
http://clojure.org/rationale
http://clojure.org/concurrent_programming
http://clojure.org/getting_started

 http://norvig.com/
 http://www.paulgraham.com/icad.html
 http://mitpress.mit.edu/sicp/

http://groups.csail.mit.edu/mac/classes/6.001/abelsonsussmanlectures/
 “Programming Clojure” http://bit.ly/dAaKrW
 http://kotka.de/projects/clojure/vimclojure.html

http://clojure.org/
http://clojure.org/concurrent_programming
http://clojure.org/getting_started
http://groups.csail.mit.edu/mac/classes/6.001/abelson-sussman-lectures/
http://bit.ly/dAaKrW
http://kotka.de/projects/clojure/vimclojure.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

