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Abstract—
Distributed virtual simulations can always undergo load

imbalances during run-time due to their dependency on un-
derlying shared resources. Such imbalances are commonly
generated by external background load, improper deploy-
ment of simulation elements, and dynamic oscillations of
simulation load. High Level Architecture (HLA) was de-
vised as a simulation framework that simplifies the design
and management of distributed simulations. Even though
the framework presents services for the coordination of sim-
ulations, it does not provide any tool for identifying and
reacting to load imbalances. Due to the importance of bal-
ancing simulation load, many schemes have been developed,
aiming to reduce simulation time through analysis of spe-
cific metrics. These schemes are limited to issues from spe-
cific simulation applications, or they disregard large-scale
environmental characteristics. In order to overcome the
drawbacks of previous balancing approaches, a distributed
balancing scheme has been designed. Nevertheless, this
scheme, as well as the others, is not concerned with mi-
gration latencies when redistributing simulation load. Mi-
gration delays are directly involved with balancing respon-
siveness and efficiency, and they can cause simulation per-
formance loss instead of performance improvement if they
are not considered in the redistribution analysis. Thus, a
migration-aware balancing scheme is proposed to include
migration latency analysis in its load redistribution algo-
rithm. Extensions are also proposed to improve the anal-
ysis of migration delays by enabling necessary costly mi-
grations in iterative analysis. Experiments have been con-
ducted to evaluate the proposed migration-aware balancing
schemes by comparing performance when costly migrations
are present in simulations.

Index Terms—Distributed Simulations, HLA, Perfor-
mance, Load Analysis

I. Introduction

Distributed virtual simulations have become increasingly
important and have gained a great deal of attention with
the growing interest in simulating complex systems or de-
veloping large-scale virtual environments. Such simula-
tions, based on HLA framework for the coordination of
simulation interactions in large-scale systems, can expe-
rience performance loss, as any distributed system. This
performance loss is inherent due to the distribution and the
resources that run the simulation parts, and it is mostly
caused by improper placement of simulation elements on
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resources and simulation load changes (oscillations) that
might occur during run-time. In both cases, load imbal-
ances in distributed virtual simulations are directly related
to performance loss since they produce inappropriate con-
sumption of shared resources. Oscillations in the dynamic
load of simulations, heterogeneity of resources, and exter-
nal background processing that might also have dynamic
characteristics can produce load imbalances in such large-
scale environments. Due to the need to prevent such im-
balances, static and dynamic balancing schemes have been
devised. Even though static deployment and partitioning
of simulation load can prevent imbalances caused by het-
erogeneity of resources and simulation entities, this type of
balancing is incapable of reacting to dynamic load changes.
Therefore, in order to avoid such dynamic imbalances, dy-
namic balancing of simulation load is necessary.

High Level Architecture (HLA) [1] was devised to facili-
tate the design and management of distributed simulations
through a framework. This framework supports large-scale
simulations and introduces a design standard that aims at
re-usability of simulation components and interoperability
among simulation entities. Basically, the framework con-
sists in a set of rules that delimit the boundaries of design-
ing HLA simulations, interface definitions that delineate
the method by which simulation entities interact in simu-
lations, object templates that describe the data exchanged
in simulations, and management services that coordinate
virtual simulation progress. Simulation entities, called fed-
erates, access such services to interact with other federates
and retrieve information dynamically, and the services are
responsible for controlling the federates’ actions to keep
the entire simulation consistent. The management services
are provided by a Run-time Infrastructure (RTI), which
runs together with federates, composing a virtual simu-
lation, called federation. Since HLA framework only co-
ordinates simulations to prevent inconsistencies, it cannot
detect load imbalances or any issue regarding the under-
lying resources that are used to run the simulations. As a
result, a balancing scheme is required for such simulations
to avoid performance loss.

In order to determine the placement of simulation el-
ements and to redistribute simulation load on shared re-
sources, many balancing schemes have been devised. In
summary, the designed balancing systems consider compu-
tational and communication load characteristics to detect
and redistribute simulation load. Focusing on the balanc-
ing of computational load, the majority of the previous
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schemes do not fully cover the aspects of balancing large-
scale distributed simulations. Therefore, a distributed bal-
ancing scheme [2] has been devised to provide a load redis-
tribution algorithm to consider such aspects and improve
balancing effectiveness. Nevertheless, this decentralized
balancing approach, and other previous balancing schemes,
disregards the migration latencies when reorganizing load
distribution, so delays can be introduced in simulations by
a balancing system through considerable migration laten-
cies, jeopardizing simulation performance instead of im-
proving it.

Therefore, a distributed, dynamic balancing scheme is
proposed to introduce awareness of migration latencies
in its load redistribution algorithms, as designed in [3].
The design of this proposed balancing system is simi-
lar to the distributed balancing approach [2]; its scheme
is divided into monitoring, redistribution, and migration
phases. Working in balancing cycles, the proposed system
periodically monitors simulations to enable responsiveness
to imbalances. Moreover, measurements of metrics related
to federate migrations are used in the proposed balanc-
ing system to analyze and evaluate modifications on the
load distribution which consider migration costs. This
migration-aware balancing scheme lacks efficiency; thus,
extensions to the migration-aware balancing scheme are
introduced to increase the balancing efficiency by improv-
ing analysis techniques applied on gathered migration mea-
surements.

The remainder of this paper is organized as follows. In
Section 2, the related work is delineated and challenging
issues are presented. In Section 3, the proposed balancing
system is described by showing its architecture and the
functioning of its redistribution algorithms. In Section 4,
the extensions for the migration-aware balancing scheme
are detailed. In Section 5, the experimental scenario is
defined, and the obtained results are discussed. In Section
6, the conclusion is presented, and future work directions
are delineated.

II. Related Work

Distributed virtual simulations, like any other dis-
tributed application, rely completely on the underlying re-
sources to execute properly or maintain a reasonable per-
formance, returning the processing result consistently and
on time; consequently, load balancing becomes essential
to such simulations. Due to its importance, several bal-
ancing schemes have been devised, aiming at the increase
of simulation performance, which results in a decrease of
execution time. These balancing systems attempt to im-
prove the utilization of available resources and to detect
more efficient methods of consuming them for the ben-
efit of processing performance. For distributed simula-
tions, the balancing schemes generally observe computa-
tional load and simulation inter-dependency aspects to re-
distribute simulation elements. While simulation inter-
dependencies present an indirect result on performance
through application-dependent delays, computational load
aspects directly influence simulation processing perfor-

mance through the consumption of resources’ computing
power. Even though the analysis of such aspects can be
performed statically in some of the already designed bal-
ancing approaches, most of the approaches present dy-
namic balancing techniques to enable the detection and
response to run-time load imbalances.

For the observation of internal dependencies within sim-
ulations, balancing systems commonly use look-ahead and
communication rate as metrics to prevent or decrease de-
lay effects on distributed simulation performance. Look-
ahead is a metric totally involved with simulation char-
acteristics and is employed in balancing systems to indi-
rectly indicate the dependencies among simulation enti-
ties, evidencing simulation interaction latencies that might
increase simulation execution time [4] [5]. Communica-
tion rates and latencies in distributed simulations enable
balancing systems to directly identify which dependency
causes delays in a simulation and to quantify the amount
of delay that is introduced in the simulation system. Such
communication delays between interacting parts are gen-
erated basically by the network distance and overhead on
the communication resources. In order to detect such de-
lays and to reorganize the simulation distribution, static
analysis can be performed through critical communication
path analysis [6], [7], or dynamic analysis can be conducted
through periodic measurements and the balancing of sim-
ulation interactions [8], [5], [9], [10], [11], [12], [13], [14].
Some of these balancing schemes also consider proximity of
resources and the network topology in their schemes [15],
[16], [17], [18]. Even though the balancing of simulation
inter-dependencies enables improvement in performance,
it does not solve the performance issues caused by imbal-
anced load on shared resources, which is the focus of the
proposed balancing scheme in the next section.

The computational load aspects employed in the previ-
ously devised balancing schemes can be classified through
simulation-centred and resource-centred approaches. The
balancing schemes using the simulation-centred approach
evaluate the load distribution through simulation char-
acteristics. Load imbalances generated on the resources
are indirectly reflected on the simulation execution pace,
and based on simulation aspects, the balancing of load al-
lows the improvement of simulation execution by increas-
ing the relative execution speed of each simulation entity
[19], [20], [21], [22]. On the other hand, balancing sys-
tems based on the resource-centred approach measure and
analyze the load aspects that directly influence execution
performance. Basically and with a more general purpose
solution, this type of balancing scheme observes shared re-
sources’ load distribution, detects the load discrepancies
among resources that might be decreasing simulation ex-
ecution pace, and attempts to evenly maximize consump-
tion of resources’ computational capacity [23], [24], [25],
[26], [27], [28], [29], [12], [13]. All these listed computa-
tional load balancing approaches present limitations that
impede them to cover critical aspects for distributed vir-
tual simulations, such as resource heterogeneity, causal-
ity inconsistencies, and external background load. Ob-
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serving such issues, parameters are used in a balancing
scheme specifically designed for optimistic simulations [30]
to identify the existence of external load and the differ-
ences of computational capacities between resources. Even
with such a load management system, a balancing design is
needed for the context of HLA-based simulations that also
directly observes the influence of load on simulation ele-
ments. In recognition of such characteristics’ importance,
two schemes [31], [2] have been proposed to consider such
aspects in the balancing scheme.

However, the two last cited computational load balanc-
ing approaches, as well as the others, do not evaluate mi-
gration latencies when rearranging simulation load distri-
bution. Considering such latencies in balancing schemes
is crucial since migration delays can grow as the execu-
tion state of simulation entities (federates) grow with the
complexity of simulation designs. When reorganizing load
through migration, these migration delays might generate
more overhead on systems than improvements on execution
time, jeopardizing simulation performance rather than im-
proving it. As a result, a balancing scheme, and its exten-
sion, that measures and analyzes migration latencies while
redefining simulation load distribution is proposed.

III. Proposed Migration-Aware Balancing
System

Load migration latency is completely involved with re-
distribution performance because it is directly related to
balancing responsiveness, which dictates the frequency in
which simulation entities of virtual simulations can be
moved. For load redistribution, only essential migra-
tions are required to be performed. Thus, minimizing the
amount of migrations or allowing only essential modifica-
tions on load distribution enables better performance gain.
Precipitated migrations generate imbalances by transfer-
ring load to resources that become overloaded. Besides
generating simulation overhead with new imbalances, pre-
cipitated load transfers produce unnecessary migration la-
tencies, which are included in the final simulation time.
Even if precipitated migrations are not produced, migra-
tions that are vital for evenly distributing the virtual sim-
ulation load may also generate overhead, and this over-
head needs to be considered in the balancing algorithms
to evidence the advantage of load transfers for the benefit
of performance. Since the performance gain provided by
some load moves might be less than the overhead caused by
their migrations, such migration moves need to be avoided
in order to maintain execution performance of virtual sim-
ulations.

The majority of previously devised balancing schemes
only considers computational and communication load im-
balances and availability of resources in their load bal-
ance analysis, without measuring the inherent disadvan-
tages of moving simulation load between resources. Even
though some balancing systems observe migration latency
in their schemes, they do not perform direct analysis of mi-
gration latency influence on simulation performance. As
an approach in such balancing schemes, their redistribu-

tion thresholds are defined with static values to introduce
performance loss caused by migrations in their analysis of
simulation load distribution. The static values that delimit
these balancing systems are obtained through extensive ob-
servation of experiments, which might lead the balancing
system to react to specific load patterns and not to general
load distributions.

The main objective of the proposed balancing scheme is
to introduce the measurement and analysis of migration la-
tency in the load redistribution algorithm of a distributed
balancing system [2]. Through such measurements and
analysis, costs of migrating load among resources are in-
corporated into the decision-making of the balancing algo-
rithms to introduce awareness of migration latency by cal-
culating estimations of migration delays, as defined in [3].
Since real migration latency values can only be obtained
after migrations are performed, estimations are needed and
are based on the past simulation load migrations to enable
cost analysis before migration calls are issued to modify
load distribution. In order to make possible awareness of
migration latencies, migration metrics are measured and
monitored so they may be evaluated together with load
measurements of resources and simulations. As a result,
the balancing algorithms’ phases are modified to accom-
modate migration-aware analysis in the scheme.

A. Architecture

Because migration awareness is introduced on an already
defined balancing algorithm, the proposed scheme is de-
fined similarly to the architectures described in [2], [31].
As depicted in Figure 1, the Cluster Load Balancer (CLB)
is the main element in the balancing system whereas it
coordinates all the other balancing elements in a domain
and conducts the main tasks of the balancing procedure.
A CLB collects measured load status data in two scopes:
simulation and resource. For the gathering of information
concerning resources’ load status, a Monitoring Interface
is accessed. The Monitoring Interface obtains the data by
requesting Monitoring Information Services, which can be
represented by a third-party monitoring tool that retrieves
load status data from a set of resources; in this implemen-
tation of the balancing system, Grid Services [32] are used
to provide such data, which consists in the processor queue
length of each resource. For retrieving information related
to federates’ load of virtual simulations, Local Monitor-
ing Interfaces are accessed through Local Load Balancers
(LLB). Such interfaces gather and aggregate load metrics
that represent the CPU consumption of federates for de-
tecting imbalances and migration-related metrics for the
awareness of migration latencies.

Since the gathered data contains information from all
resources that compose the distributed environment and
from federates that are placed on the distributed system,
filtering is applied to remove unnecessary information that
might lead the balancing scheme load analysis to generate
improper modifications on load distribution. The filtering
is primarily concerned with the elimination of load infor-
mation related to resources that cannot be managed or to
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Fig. 1. General Architecture of the Dynamic Load Balancing System

overloaded resources that do not contain any simulation
elements running on them.

A LLB acts as an interface between the balancing system
and virtual simulations; the interface enables the manage-
ment of federates in each resource. Placed on each re-
source, a LLB obtains the information about each feder-
ate’s load consumption, aggregates this information, and
sends it to the respective CLB, which has initially placed
a load status request. The data gathering performed by
a LLB is achieved by accessing each Computation Load
Monitor through a Local Monitoring Interface. The Com-
putation Load Monitor obtains the CPU consumption of a
federate by accessing a Java monitoring library interface,
ThreadMXBean, every time it is triggered. Upon request,
this Computation Load Monitor provides the amount of
time a federate has used the CPU of a resource. The Local
Monitoring Interface gathers this federate’s load data dur-
ing a balancing time interval and sends it upon request.
Together with this load data, migration measurements are
also collected and sent to a CLB for analysis. The LLB
also forwards migration calls from the CLB to the respec-
tive federate. Such migration calls are transmitted to a
Migration Manager (MM), which is instantiated for each
federate.

A MM coordinates all the steps for the federate migra-
tion procedure, so the transfer of federates between re-
sources can be conducted consistently and without loosing
data. In order to perform this migration procedure effi-
ciently and effectively, a two-phase federate migration pro-
tocol [33], [34] is employed in the scheme. This federate
migration technique basically divides the reallocation of a
federate between resources through transfers of static in-
formation and dynamic data. For the transfer of static ini-
tialization information, a third-party tool, Grid Services,
is employed in the system for transferring data reliably.
For the transfer of dynamic execution state information, a
peer-to-peer technique is used between MMs.

Accessed by the Monitoring Interface and the MM, Grid
Services provide general information about the load re-
source status through third-party monitoring tools while
also providing static federate information through reliable
data transfer mechanisms. The Monitoring Information
Service and the Reliable File Transfer (RFT) are mecha-
nisms available in resource management systems that fa-
cilitate the management of distributed application and re-
sources. As devised in Grid computing [35], a Grid is a
resource management system that controls the access of
individuals and institutions to distributed resources, coor-
dinating the execution and delegation of distributed appli-
cations. In aspects of implementation of such devised ser-
vices, Globus Toolkit [36] is the de facto middleware stan-
dard that enables the resource sharing system; it is based
on Open Grid Services Architecture (OGSA) [32], which
incorporates service oriented architecture on Grid Services.
The OGSA consists in monitoring resources and applica-
tions, and scheduling and allocating shared resources ac-
cording to application requirements [37]. For the proposed
balancing system, these services are accessed to retrieve re-
sources’ load status through the Ganglia Monitoring Sys-
tem and to transfer federate’s static data between resources
through GridFTP in WS-GRAM service.

The entire proposed balancing system is hierarchically
structured between CLBs and LLBs, and it presents a
distributed structure for the relations among CLBs when
performing inter-domain load balancing. Because LLBs
are responsible for federates placed on resources, they are
grouped by a CLB; the CLB manages the load of a domain,
which comprises a cluster of resources. This group, hier-
archically delimited by a CLB, corresponds to a branch in
the whole balancing system structure. These branches are
not required to be organized in a hierarchy whereas a set
of CLBs can be inter-connected in any structure. However,
since CLBs might be placed according to the availability
of distributed resources, the balancing system might follow
the topological structure of resources. A CLB can also be
connected to other N CLBs; a larger number of connec-
tions enables fast responsiveness to imbalances since dis-
tances between CLBs are shortened, and load changes are
more effectively transferred to the rest of the distributed
system. The load transfers between CLBs are directed by
the redistribution algorithms in the balancing scheme ac-
cording to predefined relations between CLBs [2].

B. Proposed Migration-Aware Balancing Algorithm

Essentially, the proposed migration-aware balancing
scheme [3] is divided into monitoring, redistribution, and
migration phases, as delimited in [2]. Such phases impose
a sequential processing and determine the balancing algo-
rithm. The division of the algorithm into the aforemen-
tioned phases simplifies the balancing problems by han-
dling the issues from each phase separately. According
to the description in Algorithm 1, the balancing scheme
is triggered in cycles to enable responsiveness to load im-
balances based on the current distribution of load status.
In a balancing cycle, monitoring is the first phase to be
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Algorithm 1: Main Load Balancing Algorithm
while TRUE do1

loads⇐ query MDS()2
current loads⇐ filter MDS data(loads)3
current loads⇐ normalize loads(current loads,benchmark)4
overload cand⇐ select overload(current loads)5
spec loads⇐ request LLBs(overload cand)6
mng loads⇐ filter(current loads,spec loads)7
mean,bds⇐ calculate mean bds(mng loads)8
over,under⇐ select(mng loads,mean,bds)9
mig moves⇐ redistribute local(mng loads)10
mig moves⇐ analyze migration latency(mig moves)11
send migration moves(mig moves)12
if mig moves = ∅ then13

data neighbours⇐ request Neighbour Load Data()14
else15

if relFactor ≥ random number(1,100) then16
data neighbours⇐ request Neighbour Load Data()17

else18
data neighbours⇐ ∅19

end20

end21
wait( ∆t )22

end23

conducted because detecting imbalances directly regulates
the redistribution algorithm. As a scope of the proposed
balancing scheme, only metrics of computational load are
observed in redistribution analysis. In order to enable fast
responses to imbalances, a greedy technique is employed
in the redistribution phase; this problem solving heuristic-
based technique provides load reallocation for a delimited
set of resources, which enables a global sub-optimal bal-
ancing solution. Based on the identified imbalances, the
rearrangement of load is defined, and migration calls are
issued to simulation federates to conduct migration proce-
dures.

Due to its importance in enabling responsiveness to dy-
namic, unpredictable simulation load changes, monitor-
ing is crucial and necessary for the redistribution algo-
rithm. The monitoring starts with data gathering by ac-
cessing a Monitoring Information Service through a call
(query MDS()) from a CLB to its respective Monitor-
ing Interface. Upon receiving information about the re-
sources’ and simulation’s load status requested from the
monitoring services, data filtering is employed to elimi-
nate non-managed resources or overloaded resources that
do not contain any simulation element: i.e., a resource
that cannot have its load lowered. Also, normalization of
load values (normalize loads(current loads,benchmark))
is applied to solve the inherent issues of resources’ het-
erogeneity by using benchmarks that define computa-
tional capacities. Based on the selection of overloaded re-
sources (select overload(current loads)) in the gathered
data sample, the balancing system requests more detailed
load data (request LLBs(overload cand)) through each
LLB: the CPU consumption of each federate, which is used
to locally rank federates according to their load. Accord-
ing to the responses from the LLBs, overloaded resources
without simulation entities, federates, are then identified
and disregarded (filter(current loads, spec loads)). All
the collected information is relevant to load status mea-
surements; migration-related metrics also need to be pro-

vided by each LLB, which provides these metrics together
with the simulation load data. The migration-related met-
rics are gathered to enable the analysis of migration la-
tency when redistributing simulation load. The migration
metrics measured and gathered consist of migration de-
lay, migration distance, and federate state size. Migration
delay mostly represents the time in milliseconds spent to
transmit a federate’s execution-state data and incoming
messages. Migration distance contains the topological dis-
tance, as well as the communication latency, between the
two resources involved with the migration of a federate.
Federate state size provides the amount of data transmit-
ted through peer-to-peer data transfer. A migration la-
tency estimation is then calculated based on these three
metrics.

The detection/redistribution phase of the balancing
scheme is triggered just after all the monitoring data is
retrieved and gathered in a CLB, as detailed in Algo-
rithms 1 and 2. The balancing algorithm is composed
of local and inter-domain scopes, and the inter-domain
load reallocation is triggered based on migrations gener-
ated in the local scope of the redistribution algorithm.
As a premise for the balancing algorithm, the local load
rearrangement is applied as a means of diminishing the
load discrepancies of resources delimited in a domain (clus-
ter). In the load redistribution for local scope, the gath-
ered information is analyzed by identifying differences
on load distribution based on a calculated average load
(calculate mean bds(mng loads)). The analysis comprises
ordering the resources according to their load and match-
ing pairs of them (overloaded and underloaded) in order to
achieve a close-to-even distribution of load in a cluster of
resources (select(mng loads,mean, bds)), as described in
Algorithm 3. Based on this selection of resources, federate
migrations are determined and analyzed according to their
estimated delays.

The inter-domain load redistribution is conducted
when modifications of local distribution are not pro-
duced (mig moves = ∅) or a set of domains (clusters)
show substantial load imbalances, evidencing the con-
tinuous need of simulation load’s transfers (relFactor ≥
random number(1, 100)). The inter-domain imbalances
are defined by the distribution factor (relFactor), which
represents the ratio between the total number of inter-
domain migrations and the total number of selected over-
load resources in the previous balancing cycle for a local
CLB; this evidences the degree of imbalance between a lo-
cal domain and its neighbours. The relFactor contains a
value that ranges between 0 and 1, which then is multi-
plied by 100 in order to be compared with the randomly
generated number. Constant triggering of inter-domain re-
distribution is prevented in the balancing scheme since the
inter-domain redistribution requires costly data gathering,
and a low distribution factor in the past balancing cycle
might incapacitate the detection of current substantial im-
balances through a biased threshold. Therefore, a random,
uniformly distributed number is used to add uncertainty
to the analysis for the need of inter-domain balancing since
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Algorithm 2: Inter-Domain Redistribution Algorithm
Require: neighbours data1
neighbours⇐ identify Neighbour Less Load()2
order neighbours by load(selectionParameter)3
if neigbours = ∅ then4

neighbours⇐ select Neighbours(extStD,localStD)5
order neighbours by load(selectionParameter)6

end7
foreach neighbour IN neighbours do8

overloaded RSCs⇐ select(neighbour)9
federates⇐ select(spec loads,overloaded)10

end11
if overloaded RCSs 6= ∅ then12

sort list load(overloaded RSCs)13
sort list load(neighbour RSCs)14
moves⇐ redistribute(overloaded RSCs,neighbour RSCs)15
moves⇐ analyze migration latency(moves)16

end17
send migration moves(moves)18
adjust factor(relFactor,overloaded RSCs,moves)19

load can oscillate dynamically.
In summary, the redistribution algorithm in both scopes

act similarly; the difference concerns the inter-domain
scope, which requires load status data from the resources in
the neighbour domains for the detection of imbalances and
load redistribution (request Neighbour Load Data()).
The retrieved inter-domain load information is used to de-
tect large load differences between a local domain and its
neighbours, evidencing the largest imbalance and conse-
quently producing the largest number of migrations. As
delineated in Algorithm 2, the underloaded domains are
first selected (identify Neighbour Less Load()) and then
ordered (order neighbours by load(selectionParameter))
for the next step in the load analysis if any under-
loaded domain is detected. In iterations, a set of un-
derloaded neighbour CLBs is selected, and local over-
loaded resources are determined (overloaded RSCs ⇐
select(neighbour)) according to the redistribution algo-
rithm described in 2. The redistribution algorithms
in both scopes present lists of resources organized in
descending order based on the load, and the most
overloaded resources are selected first to perform pair-
match evaluations with the most underloaded resources
(redistribute(overloaded RSCs,neighbour RSCs)). This
matching continues subsequently in the list until all over-
loaded resources are assigned to a migration move or
if the difference of load between overloaded and under-
loaded resources does not reach the threshold for cre-
ating a migration move. After federate migrations are
determined, they are analyzed according to the migra-
tion latency they can generate in the simulation execution
(analyze migration latency(moves)).

As detailed in Algorithm 3, the pair-match algorithm
compares the load of an overloaded resource and an un-
derloaded resource. Such a comparison consists in de-
tecting the difference of load between the two resources
and analyzing it based on thresholds (min ∗ φ, min ∗ δ,
and number fed(src rsc)): if the difference exceeds a
certain value, a migration move is generated. In or-
der to enable migration-aware analysis, estimations are
defined for the migration moves that are created. For

Algorithm 3: Pair-Match Evaluation Algorithm
Require: src rsc,dst rsc1
selected federate⇐ select federate smallestLatency(src rsc)2
if dst rsc < min then3

if number fed(src rsc)≥ 1 & src rsc > (min ∗φ) then4
∆t′⇐∆t×α5
create migration move(src rsc,dst rsc,selected federate)6

else if number fed(src rsc) > 1 then7
∆t′⇐∆t8
create migration move(src rsc,dst rsc,selected federate)9

end10

else if (dst rsc− src rsc) > (min ∗ δ) then11
if number fed(src rsc)≥ 1 AND12
(dst rsc− src rsc) > (min ∗φ) then

∆t′⇐∆t×α13
create migration move(src rsc,dst rsc,selected federate)14

else if number fed(src rsc) > 1 then15
∆t′⇐∆t16
create migration move(src rsc,dst rsc,selected federate)17

end18

end19
if migrationMove then20

estimatedGain⇐ estimateMigGain(dst rsc,src rsc,∆t′)21
estMigTime⇐22
estMigTime(dst rsc,src rsc,selected federate)
Return: migrationMove,estimatedGain,23
estimatedMigTime

end24

each pair of resources and a selected federate, the mi-
gration delay (estMigT ime()) and the performance gain
(estimateMigGain()) are determined. Based on its load
and migration time, a federate from the overloaded re-
source is selected for the migration move. The measure-
ments of its last migration move are used to produce an
estimation, which is evaluated later in the migration filter-
ing. For creating the migration move, the federate with the
lowest load consumption is selected for migration if it is el-
igible. A federate is considered eligible for migration only
if it does not have any restriction for running on a specific
resource, such as interfacing the rest of a distributed sim-
ulation to a user. The estimations use the past migration
distance, migration delay, and federate state size to define
the current migration delay. As a result, the migration
moves are determined, and migration delays are analyzed
and compared to obtain the candidates that most benefit
simulation performance.

After all possible pair-matches are analyzed, a list of
migration moves is obtained. Migration latency and per-
formance gain estimations are defined for each migration
move in such a list based on simple rules of proportionality.
The migration delay estimation (te) of a federate is calcu-
lated with the migration latency and the distance obtained
from the last migration move conducted for a federate, as
described in Formula 1. Based on the distance between the
source and destination resources in the migration move, la-
tency is proportionally estimated with the past and current
distances. Similarly to migration latency, the performance
gain is defined through Formula 2. Essentially, the gain
(td) is estimated in time (milliseconds) for the purpose of
comparison, and it is computed according to a relation be-
tween the loadsrc and the loaddst resources. The difference
of computational load between such resources provides the
performance gain in matters of load, which is then factor-
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ized into time when multiplied to ∆t.

te =
timemig × distmig

distdst
(1)

• te: estimation of migration delay;
• timemig: time of past migration;
• distmig: distance of past migration;
• distdst: distance of estimated migration.

td =
∆t× (loadsrc −minload − loaddst)

loadsrc
(2)

• td: estimation of time gain;
• loadsrc: current load of source resource;
• minload: estimated minimum load;
• loaddst: current load of destination resource.
∆t is employed as a time factor that delimits the base

for estimating the improvement in performance for a mi-
gration move. This factor is introduced in the calculation
since a more consistent time value truly representing the
virtual simulation time cannot be used in the balancing
scheme. When keeping the balancing system transparent
for distributed simulations and consequently minimizing
modifications on simulations’ design framework, there is
no technique or method that can provide a value that rep-
resents the time that a simulation runs. There is no predic-
tion mechanism that can be used by the balancing system
to obtain a simulation execution time because simulations
can be designed for different purposes and objectives, and,
hence, with different, unpredictable simulation execution
times. Therefore, the balancing cycle interval is employed
in the estimation calculations as the base parameter to de-
fine the performance gain in a short period of time whereas
no value can be used in the balancing system to represent
the total real simulation time.

With the list of migration moves containing the perfor-
mance gain and migration latency estimations, the redistri-
bution algorithm identifies the migrations that can really
provide performance improvement for distributed simula-
tions. In this case, improvement is basically accomplished
by allowing migrations that produce a time gain larger
than the migration delay. As defined in Algorithm 4, the
filtering procedure is applied on the whole set of migra-
tion moves in each scope (local or inter-domain). Com-
parisons are conducted between the accumulated final es-
timations of performance gain and migration latency. For
these accumulated estimations, it is assumed that the fi-
nal migration latency is determined by the largest time
and the performance gain by the sum of time gains, as de-
scribed in Formula 3. For latency calculation, the largest
value produces most of the delay added to simulations, and
other values have a slight impact on the final result with-
out majorly contributing to it, as detailed in Formulas 4
and 5. A simple comparison is performed between such
accumulated estimations: performance gain (timeGain)
and migration delay (expectedMigrationDelay). Filter-
ing is repeatedly applied while gain is smaller than de-
lay. The filtering is comprised of removing the migration
move with the lowest gain from the list of migration moves

Algorithm 4: Migration Latency Filtering Algorithm
Require: mig moves1
if mig moves! = ∅ then2

timeGain⇐ calculateGain(mig moves)3
expectedMigrationDelay← calculate(mig moves)4
while timeGain≤ expectedMigrationDelay do5

mig moves⇐ eliminate smallest gain(mig moves)6
timeGain⇐ calculateGain(mig moves)7
expectedMigrationDelay⇐ calculate(mig moves)8

end9

end10
Return: mig moves11

(eliminate smallest gain(mig moves)). In each iteration,
the accumulated gain and latency are calculated and com-
pared until the accumulated gain shows performance im-
provement on the simulation time.

tds =
n∑

i

tdi
(3)

• tds: overall sum of migration time gains;
• tdi

: time gain of each migration move.

tes = telargest
+

α×∑n
i 6=elargest

tei

(n− 1)
(4)

• tes: overall estimation of migration delays;
• telargest

: largest migration delays in the set of migra-
tion candidates;

• α: influence of other migration delays on overall esti-
mation;

• tei : delay of a migration move candidate;
• elargest: migration move with the largest delay.

α =
2× t̄e − 1 + telargest

2× telargest

∗ (k + 1) (5)

• α: influence of other migration delays on overall esti-
mation;

• t̄e: the mean of migration delay;
• telargest

: largest migration delay;
• k: number of migrations with delay larger than mean.
At the end of the migration-aware analysis (filtering),

the resulting list of migration moves are forwarded to their
respective resource to advance with the migration calls, as
shown in Algorithm 1 and 2. Such calls are then issued to
their respective MM in the LLB. As soon as the migration
procedure finishes in the remote resource by restoring the
migrating federate’s execution state, new migration met-
rics are measured and registered in the balancing system
to provide up-to-date measurements and improve the re-
distribution decision making in the next balancing cycles.
In the inter-domain scope, after the migrations are issued
to their respective source resources, adjustments are cal-
culated to redefine relFactor for the next balancing cycle
(adjust factor(relFactor,overloaded RSCs,moves)).

IV. Extension

The proposed migration-aware balancing scheme is able
to avoid costly migrations and to not jeopardize simula-



8 REPRINTED FROM: IEEE TRANS. ON INSTRUM. MEAS.

tions’ performance through modifications in the load dis-
tribution. However, the proposed scheme presents some
drawbacks and requires modifications to overcome some is-
sues and improve the load redistribution. The needed mod-
ifications are incorporated as an extension to the current
scheme. Under observation of the balancing behaviour, the
extension attempts to mitigate the absence of migration
history for simulation federates, to overcome the reduction
in the number of redistribution possibilities after migration
latency filtering is applied, to use the parallelism of load
redistribution as an aspect to improve the filtering, and to
reformulate the method used to analyze migration delays
in filtering of migration moves.

A. Absence of Migration History

As delimited in the migration-aware balancing scheme,
the migration information of each federate is kept locally
in the Local Monitoring Interface of each LLB. Since an
interface is instantiated for each federate and runs simul-
taneously with it in order to provide information related to
a federate, the interface needs to store all the information
locally and to provide it upon request of the LLB. Thus,
a federate’s migration information exists only if the feder-
ate has been migrated in any moment of its past execution
time. For initial execution of simulations, there is no mi-
gration data that can be used to filter and to determine
current migration moves. Even for simulations that have
advanced execution time, this migration information might
be scarce if simulations are composed of a large number of
federates when compared to the number of resources, or if
load imbalances are not detected so often in the distributed
system.

Since information of the previous migration process is
vital for the migration-aware analysis, the scarcity of this
information leads the balancing system to ignore migration
delays when redistributing load. In this case, for every sim-
ulation and without exception, there exists a period of time
in which the load balancing is not aware of the federate’s
migration delays. This situation occurs due to the absence
of migration history, which feeds the proposed balancing
system and allows it to react properly, based on each pre-
vious migration latency. Because of its importance, the
lack of migration information needs to be prevented or
minimized. Therefore, measurements of other federate’s
migration processes are used to calculate estimations and
improve the filtering of load redistribution.

The most recent migration delay or the average of N mi-
gration delays of other federates can be used to determine
and define a federate’s unknown migration time. The most
recent delay provides metrics that evidence the most accu-
rate data about the conditions and load status of the com-
munication resources for migration purposes. This tech-
nique also enables the matching of federates with similar
migration distance, decreasing the discrepancies when as-
signing other migration delays to a federate. On the other
hand, even though the technique increases the chances of
existing migration data for the analysis, a small number
of migrations still might lead to an absence of migration

history. The average of delays is based on a set of feder-
ate’s migration time values, so it does not represent the
most recent measurement of resource conditions for feder-
ate migrations since the average might contain old samples.
However, the absence of measurements is minimized with
this approach since the calculation of the average requires
the existence of only one migration time in the set of fed-
erates that is considered in the average calculation. The
average also provides a value that represents the measure-
ments of a set of federate migrations in the data sample,
resulting in a more generic characteristic that can be ap-
plied to the estimation of a federate without any migration
history.

With the utilization of migration averages, the set of N
federates needs to be defined to feed the calculation of the
average. In the distributed balancing system, the LLBs
aggregate some federates in a resource and can store the
average migration information for the federates that run
locally in the resource. A CLB can also aggregate all the
migration information of federates that are running in a
cluster of resources. The latter approach, aggregation of
an average in a CLB, avoids the burden of transmitting
averages from LLBs to a CLB for redistribution filtering
and the introduction of more complexity into the redistri-
bution algorithm. Therefore, a migration latency average
is obtained based on the migration moves generated in the
last balancing cycle and stored in the CLB; as soon as
a federate migration procedure finishes, the migration in-
formation is transmitted to the CLBs involved with the
particular migration process.

A set of federate migrations might contain load transfers
with different characteristics based on transfer distance,
execution state size, and time aspects. Since transfer dis-
tance and execution state size directly influence the mi-
gration time, they need to be considered in the estimation,
as well as in the calculation of averages. Same or similar
migration end-points are needed to calculate the estima-
tion that best predicts the current migration of a federate.
Since this condition leads to a scarce migration history
due to the difficulty in matching migrations with the same
source and destination resources, it cannot be used. Even
similar migration distances between end-points can restrict
the matching of a previous federate migration procedure
to the characteristics of the current prediction of a migra-
tion move. As a result, as a matter of simplification for
comparison and for estimation purposes, averages are then
calculated for distance, state size, and migration delay;
thus, the average distance and average state size are used
to directly and proportionally obtain a migration delay.

B. Reduced Number of Redistribution Possibilities

In the migration delay analysis of the proposed scheme,
the filtering of migration candidates is performed based on
the set of migrations identified in the load redistribution
algorithm. This filtering prevents costly migrations that
might introduce a delay larger than the time gain produced
by the simulation load rearrangement. However, the filter-
ing might also prevent the balancing system from iden-
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Algorithm 5: Extended Main Load Balancing
while TRUE do1

loads⇐ query MDS()2
current loads⇐ filter MDS data(loads)3
current loads⇐ normalize loads(current loads,benchmark)4
overload cand⇐ select overload(current loads)5
spec loads⇐ request LLBs(overload cand)6
mng loads⇐ filter(current loads,spec loads)7
mean,bds⇐ calculate mean bds(mng loads)8
over,under⇐ select(mng loads,mean,bds)9
mig moves⇐ redistribute local(mng loads)10
while mig moves 6= ∅ do11

moves⇐ analyze migration latency(mig moves)12
moves excluded⇐ determine moves excluded()13
add RSCs to list(overloaded RSCs,moves excluded)14
add RSCs to list(neighbour RSCs,moves excluded)15
sort list load(over)16
sort list load(under)17
moves⇐ redistribute(overloaded RSCs,18
neighbour RSCs,moves excluded)

end19
mig moves⇐ analyze migration latency(mig moves)20
send migration moves(mig moves)21
if mig moves = ∅ then22

data neighbours⇐ request Neighbour Load Data()23
else24

if relFactor ≥ random number(1,100) then25
data neighbours⇐ request Neighbour Load Data()26

else27
data neighbours⇐ ∅28

end29

end30
wait( ∆t )31

end32

tifying beneficial migration moves. The initial migration
moves are selected based on the most suitable resource,
and federate candidates are selected based on a load analy-
sis; after some migrations are excluded from the list, there
might be other pair-matches or other federates that can
still provide performance gain with load transfers.

In order to enable more migration moves, an iterative
load redistribution and migration filtering is introduce in
the scheme. Consequently, the redistribution algorithm is
executed while there still exists possibilities of modifying
the simulation load distribution, and the iterations stop
when there are no more overloaded resources or there are
no more possible load changes (underloaded resources that
can receive a federate). For enabling this iterative load
redistribution, the existent proposed scheme needs to be
modified. The redistribution algorithms, as shown in Algo-
rithm 1 for local scope and in Algorithm 2 for inter-domain
scope, are extended to accommodate the iterative load re-
organization and filtering, as described in Algorithm 5 and
Algorithm 6.

In the non-extended redistribution algorithm, as soon
as a migration move is generated, the resources involved
with the move are removed from, or unchecked in, the
list of resources; thus, they are not used for the next
pair match selection. Both extended redistribution
algorithms continue performing this same technique;
however, they re-insert the resources that were in the
migration moves and were rejected in the filtering
(add RSCs to list(overloaded RSCs, moves excluded)
and add RSCs to list(neighbour RSCs,moves excluded))
into the list of resources (overload and underloaded). As
these resources are inserted in the lists, the lists are

Algorithm 6: Extended Inter-Domain Redistribution
Require: neighbours data1
neighbours⇐ identify Neighbour Less Load()2
order neighbours by load(selectionParameter)3
if neigbours = ∅ then4

neighbours⇐ select Neighbours(extStD,localStD)5
order neighbours by load(selectionParameter)6

end7
foreach neighbour IN neighbours do8

overloaded RSCs⇐ select(neighbour)9
federates⇐ select(spec loads,overloaded)10

end11
if overloaded RCSs 6= ∅ then12

sort list load(overloaded RSCs)13
sort list load(neighbour RSCs)14
moves⇐ redistribute(overloaded RSCs,neighbour RSCs)15
while moves 6= ∅ do16

final moves⇐ analyze migration latency(moves)17
moves excluded⇐ determine moves excluded()18
add RSCs to list(overloaded RSCs,moves excluded)19
add RSCs to list(neighbour RSCs,moves excluded)20
sort list load(overloaded RSCs)21
sort list load(neighbour RSCs)22
moves⇐ redistribute(overloaded RSCs,23
neighbour RSCs,moves excluded)

end24

end25
send migration moves(final moves)26
adjust factor(relFactor,overloaded RSCs,moves)27

reorganized (sort list load(overloaded RSCs) and
sort list load(neighbour RSCs)), and the load redis-
tribution is executed again to identify more needed
modifications on the load distribution, reconsidering the
resources that were rejected in the previous iteration. This
migration filtering and load redistribution is conducted
in iterations while no more federate migration moves are
generated (moves 6= ∅).

However, adding resources for redistribution analysis af-
ter the filtering might lead the matching process to an
endless loop. It is most likely to match the same pair of
resources for the purpose of performing the load compari-
son, and the selected migration move is then rejected in fil-
tering. Thus, when observing the extension on algorithms,
another modification is realized, adding the excluded mi-
gration moves for the redistribution analysis. During the
evaluation of resources before pair-matches are conducted,
the resources’ conditions are compared with the respec-
tive migration moves generated and rejected in the past
iterations. The comparison consists in first determining if
there is any other federate with a smaller migration delay
than the federates selected in the past migration moves for
the same distance. Federates are likely to present different
execution state sizes and consequently different estimated
migration times for the same migration distance. Thus,
if there is any other federate that matches this condition,
another attempt to create a migration move with the same
pair resources is realized. On the other hand, if there is no
other federate with a smaller migration delay, other under-
loaded resources are searched for and selected to match an
overloaded resource following the redistribution procedure.

The load rearrangement and filtering iterations are fi-
nalized when there is no migration move produced by the
redistribution algorithm. This attempt to perform addi-
tional searches for resources’ pair-matches might not pro-
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duce considerable improvement on simulation execution
performance, but it can improve the balancing responsive-
ness to load imbalances.

C. Migration Parallelism of Load Redistribution

As described in Formulas 3 and 4, the migration moves
defined in a balancing cycle tend to be performed in par-
allel since they are launched mostly at the same time and
last for a certain time interval (migration delay). Because
these migrations occur in a semi-parallel trend, the effect
on the simulation execution time is calculated based on
Formula 4, and the gain is estimated in Formula 3 as the
sum of every migrating federate’s execution time improve-
ment. Nevertheless, the analysis based on these two esti-
mations, migration delay and performance gain, leads to
the production of migration moves that generate perfor-
mance loss in a simulation. Since the overall gain estima-
tion is obtained through a sum, the analysis wrongly allows
the execution of more migrations than are necessary for the
achievement of a gain. Therefore, the estimation of overall
performance gain needs to be redefined by considering that
just a sum as estimation cannot represent the real gain of
a load redistribution.

Since the gain affects the simulation performance by
speeding up the processing of a federate’s tasks, the small-
est gain determines most of the gain generated by the mi-
gration moves defined in the load rearrangement algorithm.
The smallest gain corresponds to the federate that is pre-
dicted to present the slowest processing, based on the dif-
ference of loads. Because a federate’s load cannot be pre-
cisely predicted due to its dynamic execution characteris-
tics, it is assumed that a migrating federate’s execution
acts according to information obtained through compar-
ing the load of its hosting resource with that of the re-
source designated for migration. As a result, as described
in Formula 6, the smallest performance gain estimation
(tdsmallest

) is used to calculate the overall gain (tds). The
gain of other federate migrations are considered in the cal-
culation, but they have less influence on the final overall
estimation value.

tds = tdsmallest
+

β ×∑n
i 6=dsmallest

tdi

(n− 1)
(6)

• tds: overall time gain;
• tdsmallest

: smallest time gain in migration moves;
• β: influence of other time gains on overall estimation;
• dsmallest: migration move with the smallest time gain;
• tdi : time gain of a migration move.

β =
2× t̄d − 1 + tdlargest

2× tdlargest

∗ (k + 1) (7)

• β: influence of other time gains on mean;
• t̄d: the mean of time gain;
• tdlargest

: smallest time gain in migration moves;
• tdlargest

: largest time gain in migration moves;
• k: number of time gains larger than the mean.

As defined in Formula 7, β restricts the influence of the
average gain in a set of migrations. Similarly to α in For-
mula 5, β consists in representing the influence that the
performance gains exercise on the simulation execution
time; the value of β is determined proportionally to the
amount of gain close to tdlargest

. k in the formula repre-
sents the number of time gains with value over tdlargest

/2.
Even though, theoretically, the gain is limited by the small-
est performance gain, the overall gain might be influenced
by other factors, or it may present a different real final gain
after the migrating federates resume their execution. Since
all analysis is based on estimations, which might present
final effects on simulations different from the ones that are
expected, the final load redistribution gain also includes
the estimations of other migrations. Consequently, other
gains might also present a slight influence on the simula-
tion performance; this influence is defined and represented
by β. Based on this assumption, less migration moves are
enabled and a more conservative responsiveness, regarding
the awareness of migration latencies, is introduced.

D. Reformulation of Migration Analysis

As defined in Formula 2, the proposed analysis employs
a static time interval (∆t) as a base for the gain estima-
tion. This time interval is used to evaluate the migration
moves because of the difficulty in predicting the period of
time required for the conclusion of a simulation execution:
the simulation can run for a long period of time or can
end its execution in the next simulation time step. Conse-
quently, the fixed parameter is defined as a base of compar-
ison between migration delays and performance gain, but
this value might not really represent the time that can be
used to compare with delays. Moreover, the formula used
in the analysis can be redefined to represent performance
in time with improved accuracy.

D.1 Modification on the Estimation Formula

In Formula 2, the design is defined by a rule of pro-
portion to provide a gain when compared to the execution
status of a federate placed on an overloaded resource. Con-
sequently, the difference of load between a pair of resources
dictates the amount of gain based on the time spent to pro-
duce the work for ∆t with load on the source resource. The
calculation based on proportionality provides a reasonable
solution for obtaining a time value out of ∆t, but load is
used as the major aspect to perform the calculation. On
the other hand, gain can be represented by the work that
can be produced with the available resources and time (
w = t× r ), in which available resources is inversely pro-
portional to the load of a CPU. Therefore, as delineated in
Formula 8, td is also obtained through a rule of proportion,
but it is based on the difference of available resources be-
tween an overloaded resource and an underloaded resource.

td =
∆t× (loadsrc −minload − loaddst)

2× loaddst
(8)

• td: estimated delay of a migration move;
• ∆t: balancing time interval;
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• loadsrc: load of source resource;
• minload: estimated minimum load;
• loaddst: load of destination resource.

D.2 Pseudo-Dynamic Time Interval

The use of a static, predefined time interval in the for-
mula might mislead the migration delay analysis. The
analysis might allow costly migration moves or block use-
ful, fast migration procedures when compared to the total
remaining simulation time. Thus, as an attempt to intro-
duce some dynamic aspects on the time interval used in the
decision-making of the migration delay analysis, the value
of ∆t is modified in certain circumstances to enable the
production of migration moves that are considered costly
in the analysis but possibly useful for the simulation per-
formance.

In each balancing cycle, after migration moves are fil-
tered, the value of ∆t is incremented based on the ratio
between the number of generated migration moves and
the total number of source resources (r = moves/RSCs).
With this approach, the balancing system might enable
useful costly migration moves by introducing some toler-
ance to migration delays. The ratio represents the need
to redistribute load for the distributed system and pro-
vides an assessment to identify and measure the amount
of tolerance the balancing system can allow through the in-
crease of ∆t value. This adjustment on the time interval is
performed only if there is no filtered migration move, and
the approach is executed in iterations. The incremented
time interval (∆t′) is obtained by adding up to 50% of its
value based on the ratio (∆t′ = ∆t + r×∆t/2). Such in-
crements are applied until any migration move is in the
filtered list. In summary, with this technique migration
moves are blocked until the cost/benefit ratio reaches a
threshold that enables it to pass through the migration
delay filtering. Thus, even migrations considered as costly
by the proposed scheme are allowed to be conducted; this is
undergone with the expectation that the move is beneficial
to the simulation performance.

V. Experimental Results

Experiments have been conducted to evaluate the effec-
tiveness of the proposed and extended balancing schemes,
observing the balancing efficiency gain when improving
simulation performance. In the experiments, the proposed
migration-aware balancing scheme, the extended version
of the proposed approach, and the distributed balancing
scheme [2] are compared using a testbed. The testbed
used in the experiments was an environment composed
of two computing clusters inter-connected through a fast-
Ethernet network link. One cluster was comprised of a
set of 24 computing servers that were connected through a
Myrinet optical network, which enabled data transfers of
up to 2 gigabits per second. Each computing server con-
sisted of a Quadicore 2.40GHz Intel(R) Xeon(R) CPU and
8 gigabytes of RAM memory. The second cluster was com-
posed of a set of 32 computing servers that were connected
through a gigabit Ethernet network. Every server in this

cluster presented a Core 2 Duo 3.4 GHz Intel(R) Xeon(R)
CPU and 2 gigabytes of RAM. All the computing servers
had Linux operating system installed on them. HLA RTI
version 1.3 was used to consistently coordinate the execu-
tion of the distributed virtual simulations. Globus toolkit
was installed to provide Grid Services to the balancing sys-
tems deployed in both clusters.

The experimental scenario consisted in evenly deploying
the simulation federates on all available shared computing
servers except the dedicated server that received the HLA
RTI executive. With this deployment, an equal or similar
amount of load (number of federates) was assigned to the
55 servers in both clusters. This deployment of simula-
tion components and entities was also used as the baseline
in performance gain comparisons; with this placement of
load, even the most simplistic scenario (static simulation
load) presented imbalances due to the heterogeneity of re-
sources: the servers with Quadicore CPUs approximately
outperformed by 4 times the other CPUs in computing
power aspects. Moreover, for all the evaluated balancing
systems, each LLB was deployed on a computing server in
order to monitor each set of local federates, and a CLB was
placed on the management node of each cluster to manage
the federates running in a cluster.

The distributed simulation scenario comprised of the
movement control of tanks’ teams for training operations
in a two dimensional routing space. The teams were com-
posed of interactive tanks that required data exchange to
determine positions, which moved according to a time-
stepped simulation model. Running for 100 simulation
time steps, each simulation ranged from 1 to 1000 fed-
erates. Each federate coordinated the movement of only
one tank (simulation object), published the resulting cal-
culated tank’s position to related federates, and subscribed
for tanks’ updates based on the interest regions related to
the position of its own tanks in the routing space. Be-
cause the calculation of tanks’ movement did not impose
considerable load on the CPUs involved with the simula-
tion, synthetic load [38], [39] was added into each federate.
This produced intensive computing processing, which gen-
erated enough load to totally consume a processor’s com-
putational resource for a whole simulation time step. The
synthetic load was intended to create a static, intensive
load for all federates that could identically replicate load
scenarios for comparison purposes. In dynamic scenar-
ios, the simulation load was randomly selected to change
its processing intensity to complex or simple calculations
each 40 seconds and thus dynamically increase or decrease
the CPU consumption of a resource. Furthermore, addi-
tional objects were incorporated into federates in order to
increase their execution state size, but these objects did
not participate in the simulation model for the purpose of
minimizing the influence of communication load and em-
phasizing aspects of computational load. The number of
these additional objects assigned to each federate were 1,
200, 400, and 600. Since the network resources provided a
high bandwidth connection for data transfers, even a high
number of objects exerted little influence on the migration
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Fig. 3. Performance Gain Analysis for an Increasing Number of Federates with Static Load and Migration Latency of 200 objects

latency. Thus, a latency proportional to the number of ob-
jects was also added to the migration process to simulate
the transmission in high latency networks.

A. Static Simulation Load

As described previously, the simulation in this study case
scenario presents static load that constantly consumed the
CPU resources with the same intensity. In this set of ex-
periments, the efficiency of reacting to static imbalances is
evaluated by comparing the distributed, migration-aware,
and extended balancing schemes with a base line, initial
even static distribution of load. Also, in this case study,
four different migration delays are applied on the system
in order to analyze the efficiency of detecting delays and
reorganizing simulation load distribution by the migration-
aware approaches.

As shown in Figure 2(a), the three balancing schemes
were able to present similar performance gains for the
simulation. They also showed approximately the same
amount of migrations required to reach simulation perfor-
mance improvement, as described in Figure 2(b). Since
the core algorithms of proposed balancing schemes are
based on the distributed balancing approach, it was ex-
pected that they would show simulation performance im-

provements with close values in simulations that have little
migration overhead. However, in Figure 2(a), migration
latency was increased by adding 199 objects to the migra-
tion transfer, and the distributed balancing scheme pre-
sented a significant performance loss due to the migration
delays when comparing its curve to the imbalanced static
distribution’s curve for simulations under 500 federates.
Consequently, the discrepancy in simulation performance
gain increased between the migration-aware approaches
and the distributed approach, presenting a maximum dif-
ference of 49% in simulation time. This improvement in
performance was confirmed in Figure 3(b), which depicts
the amount of migrations in which simulation performance
improved. In this case, where the simulation performance
gain reached the maximum difference between the dis-
tributed and extended migration-aware techniques in the
graph, the extended migration-aware technique presented
a 69% decrease in the number of migrations. This signif-
icant improvement in the balancing efficiency of the ex-
tended scheme outperformed the migration-aware scheme
due to the modifications in the migration delay analysis,
such as allowing more parallel migrations, whose delays did
not sum up to result in an influence on simulation time. A
particular balancing behaviour was also evidenced in both
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Fig. 4. Performance Gain Analysis for an Increasing Number of Federates with Static Load and Migration Latency of 400 objects
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Fig. 5. Performance Gain Analysis for an Increasing Number of Federates with Static Load and Migration Latency of 600 objects

Figures 2 and 3, as well as any other experimental result;
when the experiments reached 1000 federates, all curves in
any simulation performance analysis graph converged to
a single point, and all curves in any number-of-migration
analysis graph showed zero or nearly zero migrations. This
specific behaviour developed from the saturation of the dis-
tributed environment; the federates which were deployed
on shared resources caused very high overload on the entire
environment, and no migration move was able to improve
the simulation performance.

As the migration latency introduced in the federate
transfers increased, the difference in performance gain
between the migration-aware and distributed balancing
schemes grew. As shown in Figures 4(a) and 5(a), the
distributed balancing technique only caused overhead to
simulations with any number of federates. This was a re-
sult of its lack of awareness of migration latency because
its redistribution algorithm continued to perform migra-
tion as the migration delays were nonexistent. Figures 4(b)
and 5(b) highlight the performance loss introduced by the
distributed technique; it produced a larger number of mi-
grations, generating 5.04 times more migrations for 400
objects and 8.84 times more migrations for 600 objects
with simulations of 700 federates. When comparing the

extended approach to the original migration-aware tech-
nique, the extended approach was able to improve balanc-
ing efficiency: to decrease simulation time and the number
of migrations. For the 400-object migration scenario, the
extended version could improve performance gain 22.6%
with a reduction of 29% in the number of migrations, and
for the 600-object migration scenario, the extended version
produced 22.8% performance improvement and a 27.2% re-
duction in migrations. These results show that the exten-
sion for the migration-aware scheme could improve the bal-
ancing efficiency, even allowing more migrations to be per-
formed when conducting filtering, as described in Sections
B and C. However, the migration-aware scheme showed a
trend among the migration analysis graphs (200, 400, and
600); as the amount of migration latency increased be-
tween the experiments (graphs), this balancing technique
presented a number of migrations that were closer to the
extended version of it. The behaviour originated from the
migration latency, which was prevented due to its high
values, even without the improvements on the load redis-
tribution scheme.
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Fig. 6. Performance Gain Analysis for an Increasing Number of Federates with Dynamic Load and Migration Latency of 1 object
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Fig. 7. Performance Gain Analysis for an Increasing Number of Federates with Dynamic Load and Migration Latency of 200 objects

B. Dynamic Simulation Load

In this case study scenario, simulations with dynamic
load changes were used to evaluate the balancing schemes.
Such simulations presented load that oscillated during run-
time: totally consuming CPU resources or producing lit-
tle load. The introduction of dynamic load changes en-
abled the observation of the balancing response to unpre-
dictable load behaviour. As described in the previous sec-
tion, the three balancing schemes were evaluated by com-
paring them with a baseline: a simulation statically de-
ployed and without any dynamic balancing. Four experi-
ments were conducted in this study case; each of them was
conducted with a different migration latency in order to
analyze the balancing efficiency loss as migration latencies
were introduced in the system.

As depicted in Figure 6(a), the low latency scenario al-
lowed the balancing schemes to perform their redistribu-
tion of simulation load as no migration delay existed. The
distributed balancing scheme showed a slightly better sim-
ulation performance gain: a maximum of 6.1% time de-
crease when compared with other balancing approaches. It
also produced less migrations when reaching similar per-
formance gain: a reduction of 48.8% in number of migra-
tions, as described in Figure 6(b). This occurred due to

the enforcement of producing essential migrations in the
migration-aware balancing system when migration delays
did not influence the performance gain. However, when a
200-object latency was introduced in the federate migra-
tions, this favourable scenario changed, as shown in Fig-
ures 7(a) and 7(b). The distributed approach presented
a decrease in efficiency; it performed a larger number of
migrations, 77.7% more migrations, and resulted in worse
simulation times for all simulations. The migration-aware
approach also introduced performance loss to simulations
through a larger number of migrations, resulting in a simi-
lar amount of migrations as the distributed approach. The
extension still provided performance gain to the simula-
tions with a decrease in number of migrations when com-
pared with the other two approaches. The improvement in
efficiency of the extended scheme was achieved through for-
mulas that calculate performance, which produced a lower
value that increased as the imbalances grew.

In the simulations described in Figures 8(a) and 5(a), all
the balancing systems were unable to produce any simu-
lation performance gain. The migrations in this case gen-
erated substantial time overhead on the system and any
modification on the load distribution was useless due to
the time spent transferring migrating objects. The dis-
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Fig. 9. Performance Gain Analysis for an Increasing Number of Federates with Dynamic Load and Migration Latency of 600 objects

tributed balancing scheme, unaware of the migration de-
lays, caused a large performance loss in the simulations;
this can be observed in the large amount of migrations pro-
duced, as detailed in Figures 8(b) and 9(b). The migration-
aware scheme also generated overhead in the simulations
instead of improvements in execution time, but the loss
it introduced was much smaller than the distribution ap-
proach’s loss: 23% smaller for the 400-object scenario and
43% smaller for the 600-object scenario. The extension
also did not provide any improvement, but the overhead
produced for the simulation time was much smaller than
the original migration-aware technique: 21.1% for the 400-
object migrations and 21.7% for the 600-object migrations.
These cases resulted from the prevention of costly migra-
tions: 29% less in the 600-object migrations. However, for
the 400-object scenario, the migration-aware approach pro-
duced less migrations than the extension did. In this case,
the extension enabled the creation of a group of migrations
that produced less overall migration delays to simulations.
Using the concept that migrations have a high probabil-
ity of occurring in a parallel manner, the extended tech-
nique enabled migrations that could achieve performance
improvement even with considerable migration delays.

The migration-aware balancing scheme and its exten-

sion were able to improve simulation performance in such
dynamic load scenarios. The results showed substantial
improvement due to the chosen case study, which had an
emphasis on migration delay. In experimental scenarios
with simulations composed of federates with different mi-
gration delays, the schemes are still able to detect the de-
lays and produce load redistribution properly. However,
the overall gain provided by the balancing systems is in
this case similar or slightly less than the described re-
sults because of the smaller influence of migration delay
on simulation time. In another simulation scenario, feder-
ates with dynamically-changing migration delays can also
be detected; however, because of the varying migration
time, the estimations might be misled proportionally to
the frequency and intensity of delay variations: increasing
or decreasing the balancing responsiveness.

VI. Conclusion

In this paper, a migration-aware load redistribution
scheme and an extension are proposed to manage the load
of distributed virtual simulations in the case of federate
migration latencies. Both balancing schemes rely on the
measurement of load and migration metrics, detection of
imbalances, redistribution of load, filtering of migration
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moves, and execution of migration procedures. All these
tasks are divided into monitoring, redistribution, and mi-
gration phases, which reallocate simulation load in local
and inter-domain scopes. The architectural components of
the schemes are organized hierarchically in domains, fol-
lowing the placement of resources in an environment. In or-
der to introduce awareness of migration costs, estimations
are calculated based on measurements of migration met-
rics, such as migration time, migration distance, and feder-
ate state size. Such estimations enable valuable migration
moves to be determined for improving simulation perfor-
mance. The extension introduced some modifications on
the balancing algorithms and calculations to improve the
analysis of such migration costs.

Experiments have been conducted in order to analyze
the improvement in simulation performance and the bal-
ancing efficiency of the proposed balancing schemes. For
such experiments, a testbed containing different predefined
migration latencies has been used to identify the balanc-
ing response when costly migrations exist. The evaluation
of these schemes consisted in comparing the reduction of
simulation time and the number of migrations of the pro-
posed migration-aware balancing scheme and its extended
version with a distributed balancing scheme. As delin-
eated in the experimental results, both proposed schemes
were able to react to load imbalances according to mi-
gration latencies that were imposed by the experimental
distributed simulations. The extension also improved the
original migration-aware balancing approach by allowing
necessary costly migrations or by grouping such migra-
tions so their influence on simulation performance would
be minimized. As future work, additional experiments will
be performed to observe the responsiveness of the proposed
balancing schemes in simulations containing federates with
variable execution state sizes. These variations in size re-
quire further improvement of estimations to determine the
correct migration costs. The difficulty in defining ∆t still
remains due to the complexity of predicting the total simu-
lation execution time; thus, additional studies are required
to better define flexible (variable) time values to determine
more precise estimations; the balancing system may mea-
sure the reaction of system distribution and simulation per-
formance to enforce modifications on such time intervals.
These variations in execution size require further improve-
ment on estimations to determine the correct migration
costs. Such an improvement is achieved through further
analysis of the current or additional estimation methods,
regarding the accuracy in defining the cost and benefit of
migrations. As another method to improve estimations,
dynamic adjustments on ∆t can also be introduced ac-
cording to adaptive techniques that observe and react to
the balancing behaviour.
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