

RelAPS
A Relation Algebraic Proof System

User Manual

Author: Joel Glanfield (glanfield@cs.dal.ca)
Last Updated: August 2008
School: Brock University
Department: Computer Science
Supervisor: Michael Winter (mwinter@brocku.ca)

 RelAPS: User Manual

1

Contents

Figures ...2

1. Introduction...3

1.1 Purpose..3

1.2 Brief Overview...3

2. Getting Started With RelAPS ...4

2.1 Installation...4

2.2 The Startup Screen ..4

3. The User Interface ...6

3.1 Overview..6

3.2 Proof Explorer..8

3.3 Assertions Window... 10

3.4 Assumptions Window... 12

3.5 The Working Area... 13

3.6 Derivations Window... 14

4. Creating Formulas .. 16

4.1 Overview... 16

4.2 Formulas: Grammar ... 16

4.3 Terms: Grammar .. 19

4.4 Examples of Syntactically-Valid Formulas .. 20

5. Creating and Editing Theories .. 21

5.1 Overview... 21

5.2 Creating a New Theory... 21

5.3 Editing a Theory.. 23

6. Defining Operations ... 27

6.1 Overview... 27

6.2 Operations: Grammar .. 28

6.3 Examples of Valid Operations .. 30

7. References.. 32

 RelAPS: User Manual

2

Figures

Figure 1: The Startup Screen ...5
Figure 2: A View of the RelAPS System's Main Interface ..8
Figure 3: The Proof Explorer..9
Figure 4: Assertions Window.. 10
Figure 5: Selecting Part of an Assertion ... 12
Figure 6: Assumptions Window.. 12
Figure 7: An Example Derivation .. 13
Figure 8: Selecting a Term .. 14
Figure 9: Applying a Rule.. 14
Figure 10: The Derivations Window... 15
Figure 11: Formula Editor... 17
Figure 12: Various Rules for Expressing Valid Formulas... 18
Figure 13: More Rules for Expressing Valid Formulas.. 18
Figure 14: Term Rule .. 19
Figure 15: Operation Rules... 19
Figure 16: Theories Dialog.. 22
Figure 17: Theory Details.. 23
Figure 18: Editing a Theory... 24
Figure 19: Edit Theory Dialog ... 25
Figure 20: Axioms for the Theory of Allegories.. 26
Figure 21: Operations Editor .. 28
Figure 22: Rule for Constructing Operations.. 29
Figure 23: More Rules .. 29
Figure 24: Even More Rules.. 30

 RelAPS: User Manual

3

1. Introduction

1.1 Purpose

The purpose of the RelAPS (pronounced “ree-laps”) system is to provide an environment whereby a user
may construct a derivation of provable theorems as if the derivation were done by hand. This provides
the benefits of having a system ensure that an individual proof-step is executed properly, while it
remains the responsibility of the user to complete the proof.

There are several motivations behind the design of RelAPS. Firstly, proof-construction is more intuitive
since the user should have some feeling as if he/she were manually constructing a proof just as if it were
being done on paper. Secondly, it provides a learning environment for those new to the realm of
deductive reasoning; that is, the system provides an environment whereby a user may “practice”
generating proofs.

It should be mentioned that it is not the aim of the system to provide automated deduction.

1.2 Brief Overview

The RelAPS system has several aspects that are worth mentioning. First of all, a user may define custom
(nullary, unary and binary) operations. These operations may be combined with arbitrary axioms to
produce new theories. The base theory of the system is the theory of allegories which consists of the
following operations: the identity, converse, intersection and composition (see [1] for details).

The goal of my undergraduate research was to implement the basic functionality mentioned above.
Once that goal was achieved, I focused on implementing a decision procedure for the equational theory
of allegories. This algorithm was previously described in a PhD thesis by Claudio Gutierrez (PhD) [3]. It
was this algorithm that provided motivation for the main focus of my MSc research.

 RelAPS: User Manual

4

My MSc research was geared towards providing an algorithm that would allow automated proof
generation of provable equations in the theory of allegories [1,2]. The algorithm is an extension of the
decision procedure mentioned above.

2. Getting Started With RelAPS

2.1 Installation

There really is no installation process for RelAPS. Since it was developed using Java, you simply need to
be able to run executable .jar files in order to run the program.

If you don't have Java installed on your machine, you will need at least JRE 1.5 to run RelAPS. Make sure
your CLASSPATH (on Windows) is updated as well, unless you can run executable jar files. If you need
help setting the CLASSPATH, read more here.

Click here to download the appropriate files. Unzip the files to your preferred location.

Open the RelAPS directory, right click on the ‘RelAPS.jar’ file and select ‘Open With’ and then ‘Choose
Program’. If you have Java installed correctly, you should see ‘Java Standard Edition’ in the list (or
something like it). Select it and then press ‘OK’. RelAPS should then start.

If your system is already configured to run executable .jar files, then simply double-click the ‘RelAPS.jar’
file included in the download.

2.2 The Startup Screen

The Startup Screen is the first screen you will encounter upon starting RelAPS and is shown in
Figure 1.

 RelAPS: User Manual

5

This screen allows the user to specify which theory should be used while using RelAPS (this can
be changed later on). When you start the program for the first time, you will be presented with
only one option - namely the (default) theory of allegories.

Under the label ‘Theories:’, you will presented with each theory that is in the system along with
the associated operations. For example, the theory of Allegories has four operations: Identity,
Converse, Intersection, and Composition.

Figure 1: The Startup Screen

Once you learn how to create additional theories and add them to the system, you will then see
them in the list (which currently only shows one theory) whenever you start the program.

To continue using the program, simply select the desired theory (choose ‘Allegories’ if it is the
only one) and press the ‘OK’ button (or press the Return key, or double-click the theory name -
both are shortcuts).

 RelAPS: User Manual

6

3. The User Interface

3.1 Overview

The main interface of the program is shown in Figure 2 on the next page. The interface if divided into
five sub-windows, each of which will be summarized here.

1. Proof Explorer

This window allows the user to view the proofs that are currently being worked on. From this
window the user may open/save proofs, add new proofs, remove current proofs, and add
proven theorems to the system. If multiple proofs exists, the ‘current’ proof (ie. the proof
currently being worked on) will be shown in bold-type in this window.

2. Assertions

This window contains the assertions that the user is currently proving. For example, if the user is
proving some implication A=>B, then the ‘B’ part (i.e. the assertion) will be visible in this
window.

3. Assumptions

This window contains any assumptions that pertain to the current proof. For example, if the
user is proving some implication A&B=>C, then the ‘A’ and ‘B’ (i.e. the assumptions) parts will be
visible in this window.

4. Derivations

This window keeps track of any completed derivations associated with the current proof.

5. Working Area

 RelAPS: User Manual

7

This window is arguably the most important part of the interface, and is likely where the user
will spend most of his/her effort. This window is where derivations are performed. The user will
specify which terms/formulas are to be manipulated, and then within this window will apply
certain rules to perform some derivation.

 RelAPS: User Manual

8

Figure 2: A View of the RelAPS System's Main Interface

3.2 Proof Explorer

The Proof Explorer window allows the user to view the current proofs being worked on. The screenshot
displayed in Figure 3 shows an example where there are several proofs being worked on.

The two main components of this window are: 1) the toolbar, and 2) the tree-view. Both of these will
now be discussed.

1. The Toolbar

The toolbar contains eight buttons that have to do with setting up and storing proofs, along with some
extended functionality recently implemented.

The first button is the ‘Open Proof’ button (with an open-folder icon) and allows the user to open a
previously saved proof.

 RelAPS: User Manual

9

Figure 3: The Proof Explorer

The second button is the ‘Save Proof’ button (with a disk icon) and allows the user to save the ‘current’
proof (recall that the ‘current’ proof is the one in bold-type in the tree-view). The user may save a proof
at any state; it does not have to be complete. If opened, it will continue at the same state at which it
was saved.

The third button is the ‘Start Proof’ button, and it allows the user to create a new formula that will be
derived (the details of creating a formula will be discussed in Section 4). When a formula is added to the
system, it will appear in the tree-view as shown in the screenshot above.

The fourth button is the ‘Remove Proof’ button, and it allows the user to remove any proof from the
tree-view.

The fifth button is the ‘Add Theorem’ button, and it allows the user to store any derived theorem in the
system. Any stored theorem will be associated with the current theory, as selected in the Startup
window.

The sixth button executes the decision algorithm for the equational theory of allegories. The
implementation of this algorithm was mentioned in Section 1.2. When executed, a message will appear
notifying the user whether the formula is provable.

The seventh button (labeled ‘Derive’) attempts to provide a derivation of a provable theorem in the
equational theory of allegories. The algorithm implemented here corresponds to Lemma 72 of Gutierrez’
PhD Thesis (see Chapter 5 of [3]).

The eighth button simply collapses all children nodes on the tree-view so only parent nodes are visible.

 RelAPS: User Manual

10

2. The Tree-View

The tree-view simply lists all of the current proofs being worked on by the user. When proofs are
added/removed to/from the system, the tree-view will reflect the change.

There are several icons that reflect the state any of the proofs:

The ‘thumb-down’ icon shows that a proof has not yet been completed, and hence may not be stored as
a theorem in the system.

The ‘red-checkmark’ icon shows that a proof has been completed. These proofs may be added to the
system (i.e. the ‘add-theorem’ button will be enabled).

The ‘blue-checkmark’ icon shows that a proof-obligation has been proven.

Proof obligations are nested below the main proof to which they belong.

3.3 Assertions Window

The Assertions Window displays the assertion a user wishes to derive. Figure 4 shows an example of
such an assertion.

Figure 4: Assertions Window

 RelAPS: User Manual

11

The Assertions window has a toolbar and a text-area where the actual assertion(s) are displayed. Both of
these components will be explained:

1. The Toolbar

The toolbar contains five buttons:

The first button is the ‘Undo’ button. Whenever the user performs a derivation that modifies an
assertion, this button allows the user to undo the effects of applying the derivation.

The second button is the ‘Redo’ button. This button allows the user to redo the application of a
derivation after it has been undone.

The third button is the ‘Derive’ button. When the user selects (with the mouse) either the left-hand or
right-hand side of an assertion, or even the complete assertion, the ‘Derive’ button will then become
enabled. This allows the user to move the selection to the ‘Working Area’ in order to attempt a
derivation. (See Section 3.5 for details on the Working Area).

The fourth button allows the user to separate an equation into two separate inclusions. If the assertion
is an equation, and the user selects the entire assertion, then this button becomes enabled. If the user
presses the button, then two inclusions are created as proof obligations and must be derived before the
proof is considered complete. NOTE: When the two inclusions are created, the user will immediately
notice that both inclusions appear in the Assertions window. However, since you may only work with
one assertion at a time, you must specify which inclusion you wish to work with be clicking the
corresponding formula in the tree-view of the Proof Explorer window (see Section 3.2 on the Proof
Explorer for more details).

The fifth button allows the user the separate an equivalence into two separate implications. The exact
same procedure and rules apply here as were discussed in the preceding paragraph (except that we are
now talking about two implications and not inclusions).

2. The Text-Area

The text-area simply displays the current state of the assertion being worked with. As was already
noted, you may only work with one assertion at a time. This is specified by clicking the appropriate
assertion in the tree-view of the Proof Explorer window.

It is in this component that you may specify which part of the assertion you wish to modify. You may do
this by either selecting the entire assertion, or by selecting the complete left-hand or right-hand side of
the formula. The screenshot in Figure 5 shows how the selection of the left-hand side of the formula
activated the ‘Derive’ button.

 RelAPS: User Manual

12

Figure 5: Selecting Part of an Assertion

3.4 Assumptions Window

The Assumptions window displays the assumptions that are associated with the formula a user wishes
to derive. Figure 6 shows an example of such a set of assumptions.

Figure 6: Assumptions Window

The Assumptions window has a toolbar and a text-area where the actual assumption(s) are displayed.
Both of these components are used the same way as the related components in the Assertion window
(see the previous section tutorial on the Assertions Window for more details), and the differences will
be covered here.

1. The Toolbar

The buttons on the toolbar work in the same manner as the related buttons in the Assertions window,
with the exception of the last button (which is called the ‘duplicate’ button). The ‘duplicate’ button
allows the user to duplicate any selected assumption (the entire assumption much be selected for this
button to become enabled).

 RelAPS: User Manual

13

2. The Text-Area

The text-area allows for the selection of those parts of any assumption that you may wish to modify. The
difference in this window (as opposed to the text-area in the Assertions Window) is that multiple
assumptions are always in view (if multiple assumptions exist!), and any of them may be selected at any
time.

3.5 The Working Area

The Working Area window is where derivations are performed. Figure 7 shows such a derivation.

Figure 7: An Example Derivation

The Working Area consists of a toolbar and a text-area, both of which will be explained.

1. The Toolbar

The toolbar consists of three buttons:

The first two buttons allow the user to undo/redo any step of the derivation process.

The last button is the ‘Apply’ button which applies the derivation to the appropriate assertion (or
assumption).

 RelAPS: User Manual

14

2. The Text-Area

The text-area is where the details of the derivation are displayed. It also allows the user to select
different terms that will be modified.

When a term is selected, a menu immediately pops up which displays the axioms, assumptions, and
theorems that may be applied to the current selection. The following is a screenshot of this process:

Figure 8: Selecting a Term

In this example, there are four possible axioms that can be applied to the selected term. The user simply
selects the desired axiom, and then the next line of the derivation appears:

Figure 9: Applying a Rule

3.6 Derivations Window

The Derivations window tracks all of the completed derivations. The toolbar only has one button, which
allows you to view the details of any derivation (that is selected in the tree-view). When you view the
details of a derivation, you must click the yellow box that appears in order to hide the details.

 RelAPS: User Manual

15

The screenshot displayed in Figure 10 shows the Derivations Window with a couple of completed
derivations:

Figure 10: The Derivations Window

 RelAPS: User Manual

16

4. Creating Formulas

4.1 Overview

Before any derivation can be performed, a syntactically-valid formula must first be provided by the user.
This involves creating a formula using ASCII characters representing different quantifiers, variables, and
operations. The next few sections will deal with explaining the grammar of valid formulas, as well as the
syntax of different types of operations.

Before you can create a new formula, you must bring up the dialog box that will allow you to do so. This
is done by pressing the ‘Start Proof’ button contained in the toolbar of the Proof Explorer window (see
Section 3.2 for details about the Proof Explorer).

Figure 11 (on the following page) shows the Formula Editor that allows you to input text representing
arbitrary formulas.

Once you've entered some text (the next section deals with syntax), simply press the ‘Check Syntax’
button to find out whether the formula you've entered is syntactically correct.

4.2 Formulas: Grammar

This section describes the grammar used to create syntactically-valid formulas. One thing you will notice
is that there is a restriction as to how valid formulas can be created (e.g. only all-quantifiers can be used
at this time). The grammar will be expanded as the system progresses.

The following rule describes a syntactically-valid formula with the restrictions that currently exist in the
system:

Formula := OBJVARS RELVARS EXPRESSION

 RelAPS: User Manual

17

Figure 11: Formula Editor

The above rule states that a valid formula consists of a set of object variables followed by a set of
relation variables, which are then followed by some type of expression. The rules for the non-terminals
in the above rule are described in Figure 12.

The English-word counterparts of the above (less-obvious) non-terminals are as follows: OBJVARS
stands for ‘Object Variables’, RELVARS for ‘Relation Variables’, and ATOMIC for ‘Atomic Formula’.

 RelAPS: User Manual

18

Figure 12: Various Rules for Expressing Valid Formulas

Note that whenever a token is colored blue, it is a terminal symbol (see Figure 12). For example, if you
are declaring an object variable you must precede it with the keyword ‘forall’ and follow it with a colon
(‘:’) symbol.

The rules in Figure 12 introduce more non-terminals, the rules for which are found in Figure 13.

Figure 13: More Rules for Expressing Valid Formulas

From the rules described in Figure 13 you will notice that the only difference between an object variable
and a relation variable is that an object variable must start with a lowercase letter, whereas a relation
variable must start with a capital letter.

The terminal symbols that make up an atomic formula are equality ('='), less-than/inclusion ('<'), and
greater-than ('>').

With respect to the rule for ATOMIC, you will notice that we introduce a new component to the
formula-grammar, i.e. that of a Term. The next section will deal with the grammar for valid terms.

 RelAPS: User Manual

19

4.3 Terms: Grammar

This section describes the grammar used to create syntactically-valid terms.

The rule in Figure 14 describes a syntactically-valid term in the current system:

Figure 14: Term Rule

From the above rule, it is obvious that a term is made up of operations on relations, or of a single
relation itself. The rules for these operations are shown in Figure 15.

Figure 15: Operation Rules

The rule for NULLARYOP (i.e. nullary operations) shows that you can create such an operation one of
two ways. The first is a shorthand method where the source and target variables are assumed to be the
same (e.g. 'I:a' is interpreted as 'I:a,a'). The second method should be used when the source and target
variables are not the same.

The rule for UNARYOP (i.e. unary operations) shows that you can either create prefix or postfix unary
operations.

 RelAPS: User Manual

20

The rule for BINARYOP (i.e. binary operations) shows that you can either create an infix binary
operation, or a prefix binary operation. The main difference between the two is that an infix binary
operation is made up of a combination of special symbols (see the rule for OP), whereas a prefix binary
operation must start with a lowercase letter.

The rule for OP shows that an operation symbol is made up of a combination of the symbols listed (e.g.
R;R^ is a valid binary operation). If two operations are juxtaposed (e.g. the characters ‘^’ and ‘;’ in the
term R^;R) then it is essential that they are separated by a space (e.g. R^ ;R).

4.4 Examples of Syntactically-Valid Formulas

This section will simply list some valid formulas to give you an idea of how the previous formula and
term grammars should be used:

• forall a: forall b: forall Q:a->b: Q < Q;Q^ ;Q
• forall a: forall R:a->a: R; -R = R
• forall a: forall b: forall Q:a->b: forall R:a->b: Q <=> Q&(-R) = O:a,b
• forall a: forall b: forall c: forall Q:a->b: forall R:b->c: forall S:a->c: Q;R&S < (Q&S;R^);R
• forall a: forall b: forall R:a->b: I:a;R = R
• etc...

Many of the operations contained in the above formulas are user-defined. The system starts with some
default operations, but any additional must be defined by the user. This process will be explained in
Section 6.

 RelAPS: User Manual

21

5. Creating and Editing Theories

5.1 Overview

In RelAPS, a ‘Theory’ is composed of the following:

• a name
• a set of operations
• a set of dependencies
• a set of axioms
• a set of theorems

The first property is self-explanatory: each theory is given a name.

When a theory is first created, the user specifies which operations are to be associated with the theory.

A theory may be dependent upon other theories in terms of hierarchy. For example, you may wish to
add a theory that combines the default theory, ‘Allegories’, with the universal relation. The new theory
would then only have one new operation, possibly ‘top’, and also would have the theory 'Allegories' as a
dependency.

A theory is also given a set of axioms. Axioms are simply formulas, the construction of which was
described in the previous section.

Whenever a valid theorem is derived, it is added to the active theory.

The procedure for accomplishing the above tasks will be explained in the following sections.

5.2 Creating a New Theory

 RelAPS: User Manual

22

Before any formula can be created and proven, a theory must be created to give context to the formula.
Since the default theory ‘Allegories’ is loaded each time the system is started, there is always at least
one theory to work with. However, any formula that is created under this theory may only use the
operations associated with it.

If the user wishes to create formulas that require additional operations (to those contained in the theory
of allegories), new theories must first be created.

To create a new theory, start by opening the Tools menu and drill down to Theories -> Edit Theories.
You will then be presented with the window shown in Figure 16

Figure 16: Theories Dialog

You will notice that the default theory ‘Allegories’ already exists in the list of available theories. To
create a new theory, press the New button, and you will then be presented with the window shown in
Figure 17.

 RelAPS: User Manual

23

Figure 17: Theory Details

Here you will notice that an available list of operations and potential dependencies is presented to the
user. Each new theory must extend from the default theory, which is why ‘Allegories’ is checked
automatically. As for the list of operations, if the user has not created any new operations, then this list
will be blank. Creating new operations will be explained in Section 6.

For now, you may create a new theory by simply specifying a name and pressing the OK button. You will
then be returned to the previous window where your new theory will now be listed. If you want to add
axioms to your new theory, then you will need to read the next section.

5.3 Editing a Theory

Editing a theory will allow you to add and/or remove axioms, and view theorems associated with a given
theory.

To edit a theory, follow the same steps as you would to create a theory, except that once you see the
window with the theories listed, simply select the theory you wish to edit and press the ‘Edit’ button.
Figure 18 displays the Theories Dialog with one theory selected to be edited.

 RelAPS: User Manual

24

Figure 18: Editing a Theory

Once the edit button is pressed, the ‘Edit Theory’ window appears displaying the details of the theory.
This time you will notice that there are two additional tabs, one for adding/removing axioms and the
other for viewing theorems. See Figure 19 for a visual.

To add an axiom to the theory simply select the ‘Axioms’ tab and then press the ‘Add’ button. This will
display the Formula Editor, and allow you to enter a valid formula representing an axiom (details on
creating valid formulas were discussed in Section 4). Entering a valid formula and pressing ‘OK’ will then
add the formula as an axiom to the current theory. Figure 20 displays the axioms associated with the
theory ‘Allegories’.

 RelAPS: User Manual

25

Figure 19: Edit Theory Dialog

 RelAPS: User Manual

26

Figure 20: Axioms for the Theory of Allegories

 RelAPS: User Manual

27

6. Defining Operations

6.1 Overview

Before creating a new theory, you will need to define some new operations that can be used in the
theory. This section will focus on how to do so.

To bring up the ‘Operations Editor’, click the ‘Tools’ menu and drill down to Operations -> Operation
Editor. You will then be presented with the window shown in Figure 21.

 RelAPS: User Manual

28

Figure 21: Operations Editor

You will notice that the operations that currently exist in the system are listed in this window. They are
listed as valid operation-strings that were parsed to create the actual operation itself. To create a new
operation, you will need to enter a valid string that can be parsed as a nullary, unary, or binary
operation.

Once you have entered a string, simply press the ‘Check Syntax’ button to determine whether it is
syntactically correct. If it is, you will then be able to press the ‘Add’ button and add it to the system for
use in a new theory.

The next section will focus on the grammar for syntactically-valid operations.

6.2 Operations: Grammar

The main rule that gives an overall picture of what operations are available is shown in Figure 22.

 RelAPS: User Manual

29

Figure 22: Rule for Constructing Operations

As is evident from the above rule, the system current allows Nullary, Unary and Binary operations. The
rules described in Figure 22 demonstrate the syntactic structure of these operations:

Figure 23: More Rules

Nullary operations consist of a constant (excluding the letter ‘X’) followed by some type information
(the rule for both of these non-terminals is given in Figure 24).

Unary operations consist of a symbol, followed by an optional ‘prefix’/‘postfix’ specification (if left out,
the default is ‘prefix’) and then some typing information.

Binary operations consist of either a string or symbol followed by some type information. If the
operation symbol is a ‘LOWERSTR’, then the binary operation will be prefix and will have a function-like
appearance. If the operation is represented by a symbol, then it will be interpreted to be an infix binary
operation.

The rules for the remaining non-terminals are given in Figure 24.

 RelAPS: User Manual

30

Figure 24: Even More Rules

The rule for CONST excludes the letter ‘X’ since it is used in the rule for binary operations.

The rules for LOWERSTR and SYMBOL are exactly like those explained in the grammar for formulas.

The rule for TYPEINFO describes how you can specify the typing for an operation. Each variable in the
typing information is simply a sequence of letters and digits, but must start with a lowercase letter.

Examples of syntactically-valid operations will be given in the next section.

6.3 Examples of Valid Operations

This section contains examples of syntactically-valid operations.

Nullary Operations

• L :: (a->b)
• O :: (a->b)
• I :: (a->a)

Unary Operations

• - :: (a->b) -> (a->b)
• - :: prefix (a->b) -> (a->b)

 RelAPS: User Manual

31

• ^ :: postfix (a->b) -> (b->a)

Binary Operations

• & :: (a->b) X (a->b) -> (a->b)
• | :: (a->b) X (a->b) -> (a->b)
• cmp :: (a->b) X (b->c) -> (a->c)
• ; :: (a->b) X (b->c) -> (a->c)
• \ :: (a->b) X (a->c) -> (b->c)

 RelAPS: User Manual

32

7. References

1. Peter J. Freyd and Andre Scedrov. Categories, Allegories. North-Holland, 1990.

2. Joel Glanfield. Towards Automated Derivation in the Theory of Allegories. MSc thesis, Brock
University, 2008.

3. Claudio Gutierrez. The Arithmetic and Geometry of Allegories – normal forms and complexity of a
fragment of the theory of relations. PhD thesis, Wesleyan University, 1999.

