
Towards Automated Derivation in the Theory of Allegories

Joel Glanfield, MSc.

MSc in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Math and Science, Brock University
St. Catharines, Ontario

c© June, 2008



Abstract

We provide an algorithm that automatically derives many provable theo-

rems in the equational theory of allegories. This was accomplished by notic-

ing properties of an existing decision algorithm that could be extended to

provide a derivation in addition to a decision certificate. We also suggest

improvements and corrections to previous research in order to motivate fur-

ther work on a complete derivation mechanism. The results presented here

are significant for those interested in relational theories, since we essentially

have a subtheory where automatic proof-generation is possible. This is also

relevant to program verification since relations are well-suited to describe the

behaviour of computer programs. It is likely that extensions of the theory of

allegories are also decidable and possibly suitable for further expansions of

the algorithm presented here.
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Chapter 1

Introduction

The equational theory of allegories (ALL) is a decidable fragment of the
theory of relations (see [7], [10]). It is considered a fragment (or sub-theory)
simply because its signature is made up of operations corresponding to the
theory of relations. A brief overview of the theory will be given in the next
chapter.

Past research has not only demonstrated the decidability of ALL, but
has also produced a decision algorithm [10]. Other extensions of ALL have
been shown to be decidable with the decision algorithm being implemented
in software [3]. The question of interest at this point is as follows:

• using previous work on decidability as a basis, can we automatically
generate a derivation for any provable theorem in ALL in addition to
providing a decision certificate?

Hence, using a decision procedure as a starting point, we are now inter-
ested in automatic proof-generation. This is an important aspect of computer
science and especially within the field of relational methods since provid-
ing proofs of various theorems is often required throughout research, and
is potentially tedious. Producing a derivation algorithm for ALL will al-
low researchers to worry less about simpler proofs and focus attention on
more challenging problems. Also, the development of such an algorithm
may provide motivation to research other possibilities in terms of automatic
proof-generation for other fragments of the theory of relations. As relational
methods continue to gain popularity, especially with respect to reasoning
about computer programs, one cannot overstate the potential benefit of such
work.
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We will demonstrate a derivation algorithm that derives many provable
theorems in ALL by first providing some context while reviewing a known
decision algorithm. Also, we will review a complete framework for reasoning
about terms in ALL that was proven in [10]. By combining aspects of the
decision procedure and the framework mentioned, we will demonstrate that
a derivation algorithm can be obtained. We will show that due to some
problems with the previous research we are using as a basis, it is impossible to
develop a complete derivation algorithm when the algorithm is based solely
on that research. Also, by showing that standardization techniques allow
us to relate terms in the same equivalence class, we will demonstrate that
rules used may always be applied directly to a subterm of any given term
throughout the proof. Thus, our methodology will provide enough detail for
potential implementation in new or existing software proof assistants.

As relational reasoning in computer science has become more important
over the last few decades, an increased market for modern application has
grown. As described in [2], relations are well suited for describing certain
types of problems and also contribute to making some proofs easier to supply.
The following quotation offers this insight:

Relations, unlike functions, are essentially nondeterministic and
one can employ them to specify nondeterministic problems. For
instance, an optimisation problem can be specified in terms of
finding an optimal solution among a set of candidates without
also having to specify precisely which one should be chosen. Every
relation has a well-defined converse, so one can specify problems
in terms of converses of other problems [2].

Hence, any attempt to streamline the process of relation reasoning would
be of benefit especially to those interested in program semantics and correct-
ness. Our motivation to automatically generate proofs involving the use of
operations found in the signature of ALL can thus be viewed as contributing
to the simplification of relational reasoning, leaving more complex reasoning
to be sorted out.

This is the first work we know of that goes beyond decidability with
respect to ALL. It has the potential to provide the basis for providing au-
tomatic proof generation for other fragments of relational theory (for those
fragments that are decidable). For example, if one could determine how to
add the union operation to the signature (something akin to distributive al-
legories) and prove it’s decidability, perhaps our derivation algorithm could

2



be extended to provide proofs for the extended theory. We also provide
motivation for future work geared towards producing a complete derivation
algorithm for ALL.
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Chapter 2

Background

2.1 A Brief Overview of Allegories

It will be assumed that the reader has some background in category theory.
We take the categorical approach to defining Allegories as outlined in [7],

which defines an allegory as follows:

Definition 1. An ALLEGORY is a category with the signature 〈1,◦ , ; ,∩〉
where 1 is a constant, ◦ is the unary operation Converse, ; is the binary op-
eration Composition and ∩ is the binary operation Intersection. The category
has the following identities (we use juxtaposition to represent the operation
;):

1. 1R = R = R1

2. R(ST ) = (RS)T

3. R ∩R = R

4. R ∩ S = S ∩ R

5. R ∩ (S ∩ T ) = (R ∩ S) ∩ T

6. R◦◦ = R

7. (RS)◦ = S◦R◦

8. (R ∩ S)◦ = R◦ ∩ S◦
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9. R(S ∩ T ) ⊆ RS ∩RT

10. RS ∩ T ⊆ (R ∩ TS◦)S

where ⊆ denotes inclusion and is defined by x ⊆ y ⇐⇒ x ∩ y = x.

The above definition is also related to categorical approaches introduced
in [13] and mentioned in [8, 14, 15].

We should mention here that our work is restricted to the equational
theory, i.e., where simple equations can be proven, but not Horn formulae.
Along these lines, the following definition provides the set of equations used
in [10] to describe the equational theory of allegories and which describe
the geometry involved when reasoning about graphs representing terms in
ALL. The notation will be that which is used in [10] and which we will use
throughout the remainder of this paper (e.g. the operation ; will be omitted).

Definition 2 (Definition 6 in [10]). ALL is the equational theory over the
signature Σ = {; ,∩, ()◦, 1} axiomatized by the set of equations EALL = Es ∪
Eop where Es and Eop are defined below.

The set Es consists of the following ‘static’ equations:

1. x1 = x

2. x(yz) = (xy)z

3. x ∩ (y ∩ z) = (x ∩ y) ∩ z

4. x ∩ y = y ∩ x

5. x◦◦ = x

6. (xy)◦ = y◦x◦

7. (x ∩ y)◦ = x◦ ∩ y◦

The set Eop consists of the three ‘operational’ equations:

8. x ∩ x = x

9. x(y ∩ z) = x(y ∩ z) ∩ xy

10. xy ∩ z = (x ∩ zy◦)y ∩ z

5



It has already been shown that this axiomatization is equivalent to that
mentioned in Definition 1 (see Lemmas 7 and 10 in [10] for proof).

It should be mentioned here how a concrete allegory is defined.

Definition 3 (Concrete Allegory). A concrete allegory consists of:

1. a class of sets as objects

2. a set of binary relations for each pair of objects a and b, i.e., a subset of
the powerset of the cartesian product of a and b, which is closed under
the set-theoretic operations ∩, ; , ()◦, and 1 (in the case where a = b).

A representable allegory is any allegory which is isomorphic to a concrete
allegory.

2.2 Previous Work with Allegories

It has already been mentioned that a decision algorithm exists for the theory.
This will be covered in detail in Section 2.3.

Much of the previous work on ALL either makes use of some aspect of
graph theory or is related to it in some manner (e.g. circuit design, networks,
etc.). Even when exploring the decidability of ALL or related theories it is
often desirable to represent terms in the theories as some type of graphical
structure.

An example of exploring decidability of an extended theory is some work
done by G. Hutton with deciding equations in the theory of allegories with
products. He has shown that a simple algorithm exists for deciding equations
in this extended theory [11]. Terms in the theory are represented as networks;
this is related to how terms are represented in theory of allegories without
products, as will be demonstrated shortly. To prove equality, Hutton has
shown that two terms are equal if and only if homomorphisms exists between
the two networks representing the terms. See [11] for a description of an
implementation of the algorithm in the Gofer system[12]. Not unlike our
current context, Hutton’s work is also limited to the equational theory.

Another practical approach to the study of ALL is found in [4] where
allegorical equations are used to reason about circuit design. One specific
type of allegory, called a pretabular allegory (which is essentially the same
as allegories with products, mentioned in the previous paragraph), is used in
this research (for more info on different types of allegories see [2]).
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Other work involving allegories can be found in [1], where it is shown that
it is desirable to approach aspects of generic programming from a relational
standpoint and to use allegories to add further abstraction. Also, other appli-
cations involve using allegories to aid in the derivation of programs and more
specifically to solve optimization problems [2]. The decision algorithm men-
tioned in this work has been implemented using the programming language
Haskell [5].

2.3 Previous Work on Decidability

One example of major work done on ALL is an NP -time decision algorithm
presented in [10]. Our main work in this paper is motivated by this decision
algorithm. We will discuss the details of the decision algorithm in this section.

The decision algorithm presented in [10] is based on a graph-theoretical
framework where the terms in ALL are represented by graphs. We provide
a simple definition of the types of graphs we are concerned with.

Definition 4. A labelled graph g = {V,E, L, l(g), s(g), f(g)} consists of a
set of vertices V , a set of edges E ⊆ V × V , a set of labels L, unique start
and finish vertices, and is both connected and directed. Edges of a graph are
labelled via the function l : E → L; start and finish vertices are denoted s(g)
and f(g) (or using the short forms s and f , respectively).

For an arbitrary graph g, we denote by V (g) the set of vertices and by
E(g) the set of edges of g.

One may consider that a relational variable is represented by a graph
consisting of a single directed edge (labelled by the variable) connecting two
vertices representing the source and target of the relation. Every term in the
theory of allegories has a corresponding graph. Before discussing the details
of the algorithm, we will consider the set of graphs PLIX which correspond
to the terms in ALL.

The most basic graphs are 1 and 2a. The graph 1 consists of a single ver-
tex which is both the start and finish and which has no outgoing or incoming
edges, and represents the term 1, i.e., the identity. The graph 2a is the graph
which has one edge representing a single relation, as discussed in the above
paragraph. The graph operations are parallel composition (g1‖g2), sequen-
tial composition (g1|g2), and converse (g−1), which relate to the theoretical
operations intersection, composition and converse respectively (diagrams of
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(1 ∩ xx◦) sf

x

x

(dom(x)) sf
x

Figure 2.1: Graphs representing the terms 1 ∩ xx◦ and dom(x).

these operations are given in Figure 2.2. Some circumstances arise during
execution of the algorithm where branching occurs in a graph, hence the
corresponding operation br(g) was added to PLIX . As a consequence, the
dom (domain) operation is added to ALL as an operational extension that
allows us to deal with such situations in order to allow a term to be con-
structed from every graph in PLIX . The motivation here is that the graph
corresponding to 1 ∩ xx◦ is in PLIX , but it’s subgraph (found by removing
one of the edges) is not a member of the same set (Figure 2.1 gives a visual-
ization of these graphs). Adding dom to the signature of ALL allows us to
close PLIX under subgraphs. The bottom graph in Figure 2.2 is an example
of a case requiring the branching operation in order to allow an equivalent
term in ALL. Since this graph has equal start and finish vertices, there is
no respective term in ALL which naturally occurs. Therefore, the following
equation was introduced to define the dom operation:

Equation 1. dom(x) = 1 ∩ xx◦

Thus, the set PLIX is the set of all graphs that can be constructed from
the most basic graphs mentioned above using the graph operations (also men-
tioned above). Figure 2.3 shows some example terms with their respective
graphs which are constructed from the operations mentioned above.

A relatively simple decision procedure consists of finding homomorphisms
between graphs representing allegorical terms where homomorphisms in PLIX

are defined as follows (and is similar to the more general case presented as
Definition 59 in [10]:

Definition 5 (Homomorphisms in PLIX). Given two graphs g1, g2 ∈ PLIX ,
a homomorphism ϕ : g1 → g2 in PLIX is a pair of functions ϕV : V (g1) →
V (g2) and ϕE : E(g1) → E(g2) that

8



(1)
sf

(x) s f
x

(xy) s f
x y

(x ∩ y) s f

x

y

(x◦) s f
x

(dom(x)) sf
x

Figure 2.2: Sample graphs representing the basic graphs 1, 2x, and the op-
erations g1|g2, g1‖g2, g

−1 and br(g) in PLIX . The corresponding terms are
listed to the left of each graph.

(1 ∩ x)(xy ∩ z)

s

f

x

xz

y

(r ∩ qs◦)(s ∩ r◦q) s f

r s

q s r
q

Figure 2.3: Sample terms in ALL with their respective graphs in PLIX .
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1. Preserve edges and direction, i.e., for all v, w ∈ V (g1), if e is an edge
in g1 between v and w, then ϕE(e) is an edge in g2 between ϕV (v) and
ϕV (w).

2. Preserve labels, i.e., for all e ∈ E(g1), l(e) = l(ϕE(e)).

3. Preserve start and finish vertices, i.e., ϕV (s(g1)) = s(g2) and
ϕV (f(g1)) = f(g2).

We normally write a single ‘ϕ’ instead of separating it into two functions.

We can say that two terms are equal (in the representable case) if and only
if there are are homomorphisms between their respective graphs [7]. This can
be weakened to reason about inclusions by looking for a homomorphism in
a single direction. However, since we are concerned about non-representable
allegories as well as those which are representable, we are interested in those
homomorphisms which correspond to equations in ALL. Since we are inter-
ested in considering the arrows corresponding to morphisms between graphs,
we must consider the categorical context of PLIX . Before doing so, we repeat
the definition of an n-arrow as defined in [10] for convenience.

Definition 6 (n-arrow, see Def 63 in [10]). Let ϕ : g1 → g2 be an arrow in
DX. We call ϕ : g1 → g2 a n-arrow if and only if

|V (g1)| ≤ |V (ϕ(g1))| + n

In practical terms, a 1-arrow corresponds to the process of identifying at
most two vertices in a graph where edge-direction, labels, and the start and
finish vertices are all preserved.

We are now ready to present the categorical context of PLIX . The fol-
lowing definition is also similar to the more general case presented in Lemma
60 of [10].

Definition 7 (The category PLI1X). The category PLI1X contains, as objects,
the graphs in the set PLIX where the morphisms are compositions of 1-arrows.

We now consider arbitrary compositions of 1-arrows, or morphisms in
PLI1X .

Theorem 1. ∀t1, t2 ∈ ALL, t1 ⊆ t2 ⇐⇒ there is a morphism in PLI1X
gt2 −→ gt1. We can prove equality of the same terms if and only if there are
two arbitrary morphisms gt1 −→ gt2 and gt2 −→ gt1 both in PLI1X.

10



However, it is the process of proving the above theorem that has mo-
tivated our current work. We give credit to the following insight found in
[10]:

It turns out that studying the relation 
 (defined as g1 
 g2 if
g1 −→ g2 and g2 −→ g1) in a more general setting, that of cate-
gory theory, is more fruitful and simple. We show that under very
general conditions 
 is an equivalence relation and has normal
forms. Moreover, there is a confluent and terminating rewrite
system that generates them.

Not only is the categorical setting more fruitful and simple, but it provides
a framework whereby we have been able to extract a mechanism to also
provide a derivation for many provable equations. We refer the reader to [10]
to learn the categorical setting, but give some commentary here to provide
context for our current work.

While considering the category PLI1X , we will discuss the normalization
technique shown in [10]. This will in turn allow us to see why it is important
to consider morphisms in PLI1X .

If we are to determine whether two different terms are equal, we can
perform a series of reductions on the graphs representing the terms until
a normal form for each graph is found. These two normal forms are then
checked for an isomorphism. Instead of having to consider arbitrary compo-
sitions of 1-arrows between two graphs, this normalization process generates
the required 1-arrows which can be analyzed in order to yield a derivation by
giving a deterministic method of finding a composition of 1-arrows between
two graphs.

Figure 2.4 demonstrates the normalization process. As the figure demon-
strates, we start with two terms and their respective graphs. These graphs
are reduced (a finite number of times) until a normal form is produced. It is
then determined whether the normal forms of the two graphs are isomorphic.

If we consider that the process of identifying one set of vertices corre-
sponds to a single step in the normalization process, then there are n ≥ 0
steps which must occur before a normal form of a graph can be found (the
trivial case being that the original graph is already in normal form). To
determine whether a reduced graph is indeed in normal form, there are two
conditions which must hold. First, no further steps in the normalization
process are possible; and second, we must check to see whether there is an

11
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nf(g1)
∼=

nf(g2)

Figure 2.4: Normalization process of graphs representing terms in ALL

monomorphism in PLI1X from the reduced graph to the original. The normal-
ization process computes an epi-mono factorization of the arrows from gt1 to
gt2 and vice versa (if they exist). Therefore, the normal form must always be
a subgraph, i.e., there must be a monomorphism from the reduced graph to
the original. (We refer the reader to Chapter 4 of [10] for the characterization
of epimorphisms and monomorphisms in PLI1X .)

We have already defined n-arrows and mentioned their theoretical impli-
cation. In practice, however, since we are concerned about monomorphism
and epimorphisms (since we attempt to find a normal form which by defi-
nition is a subgraph) we consider a 1-arrow to be the process of identifying
two vertices in a graph where one of the vertices has at least the same set
of edges as the other. This allows us to now state exactly how an arbitrary
graph would be reduced to its normal form.

The process of finding the normal form of a graph is as follows. A series
of steps are performed by generating a composition of 1-arrows on a graph.
At each step of the composition a vertex is removed from the graph. The
composition ends when there is no longer a possibility of identifying two ver-
tices. Given two graphs g1 and g2, if we find a subgraph after a single step
has been performed (recall that a step in the normalization process corre-
sponds to identifying exactly two vertices), then we say g1 has been reduced
to g1

′. However, it is possible that the identification of two vertices does
not produce the desired subgraph. Hence, we continue to reduce the original
graph by identifying more vertices until we find a subgraph (if one can be
found); and thus we have a composition of arrows where the overall reduction

12



is an epimorphism and monomorphism (i.e. results in a subgraph). Referring
again to Figure 2.4 for a visual, one can see that the entire reduction-process,
including isomorphism checks between normal forms, provides an epi-mono
factorization of the original morphisms from g1 to g2 and from g2 to g1 re-
spectively. Figure 2.4 also gives an overall picture of a general epi-mono
factorization. Instead of considering arbitrary homomorphisms — which are
compositions of 1-arrows — between the original graphs, we reduce the first
graph to its normal form and thus have an epimorphism from the graph to its
normal form. We then reduce the second graph to its normal form and thus
have a monomorphism from the normal form to the second graph. Since the
normal forms of both graphs are isomorphic, we now have an epi-mono fac-
torization of the original graph morphisms, and as a consequence we obtain
a series, or composition, of 1-arrows from one graph to the other.

Looking for subgraphs at each individual step of the normalization process
is what has motivated some of our results, as will be shown hereafter. Recall
that a single reduction may be a composition of 1-arrows (i.e. it may take
several steps before we find a subgraph).

The obvious benefit of the work mentioned is that it has provided the
foundation for relevant future work. For example, decidability for other
theoretical fragments of the theory of relations can be researched. It has also
provided motivation for this current work. Combining this work with the
work in [10], one should be able to produce a complete derivation algorithm.
Hence, in any case where an equation is shown to be provable according to the
decision algorithm just described, one should also be able to automatically
generate a derivation.

This leads us to some of the drawbacks of the previous work mentioned.
While describing the graph machinery used to describe the rewrite system
described in [10], we have found that cases should have been mentioned but
which are missing. Also, a fundamental error in the proof of Lemma 74 of
the same work provides a major stumbling block when trying to produce a
complete derivation procedure. This error must be corrected before com-
pleteness can be shown. Some suggestions towards this end will be presented
in this work.
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Chapter 3

The Problem of Derivation

3.1 Motivation

We desire to extend previous work on decidability to the point where a deriva-
tion of any provable theorem in ALL can be produced. Although it is de-
sirable to show completeness, we will demonstrate throughout this chapter
that a complete derivation algorithm that is based on previous work in [10]
cannot be produced.

Specifically, our main goal was to extend the work done in [10] on decid-
ability. By the very nature of the decision algorithm itself, it seems clear that
a relatively simple derivation algorithm could be extracted. This is for two
reasons. First, the reduction mechanism used throughout the decision algo-
rithm results in a number of steps proportional to the size of the input graph.
Since graphs representing terms in most interesting equations are relatively
small, the number of steps required to find the normal form is also usually
relatively small. For example, assuming that the start and finish vertices
of a graph are distinct, one can easily show that the graph in normal form
will have at least those two vertices. Since every 1-arrow in a composition of
1-arrows identifies exactly two vertices, we would generally find this normal-
ized graph quite quickly, i.e., in at most as many steps as there are vertices in
the graph. Secondly, the graph machinery presented in [10] describes a small
finite number of cases that describe all possible 1-arrows where the target is
a subgraph of the source. Each of these cases is described by a theorem in
ALL. Naturally, not every 1-arrow results in a subgraph, but the proof of the
decision procedure accounts for this drawback. Hence, since at a first glance
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it seems that a consequence of the proof of the decision procedure is that
one can describe all possible 1-arrows using theorems in ALL, it is natural
to assume that a complete derivation procedure could be extracted from the
decision algorithm.

The question of whether this can be done has not been answered. The
work in [10] stops after decidability. Other work involving implenting the de-
cision procedure or even implementing procedures for other decidabile frag-
ments does not explore derivation (see, for example [5] and [11]). These
related works have already been discussed in the previous chapter.

Why are we even intersted in the automated derivation of provable the-
orems in ALL? Any work towards automating the proving of theorems is
always interesting to researchers involved in relational reasoning. One of the
past criticisms of the language of relations is the large ‘number of operations
and laws one has to memorize in order to do proofs effectively’ [2]. Any
effort towards simplifying the proving process would be beneficial to anyone
attempting to prove relational theorems. Furthermore, as relational reason-
ing becomes more popular when used as a methodology to verify computer
programs, it will become more desirable to implement as much automated
reasoning as possible. Also, we desire to motivate future work on automated
reasoning with other theoretical fragments.

Several provisos should be mentioned here. We are not interested in
automated theorem proving from an artificial intelligence paradigm. We
make no attempt to pass the well-known Turing test. We do not consider
the search-space of all possible proofs, make use of heuristics, or attempt
proof reduction. Furthermore, we are not interested in finding the most
elegant proofs, nor are we concerned with the length of generated proofs.
Our primary goal and focus is to simply provide an algorithm that generates
proofs. Future research may be concerned with elegance and length. For the
reader interested in these topics in general we refer to [16] and [6].

Since we are not concerned with search-space, we are not confined to using
well-known algorithms like brute-force or depth-first search whose running
time is less than desirable. As already mentioned, the decision algorithm
itself hints towards the possibility of providing a relatively short proof in a
relatively small amount of time.

Our approach will be very mechanical. As will be shown, the overall
methodology will actually be quite similar to that of a researcher attempt-
ing to prove a theorem, i.e., every step of a derivation is the result of the
application of some rule that moves us closer to the goal.
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3.2 Drawbacks of Previous Work

In this section we demonstrate that no complete derivation mechanism can
be extracted from the previous work on decidability found in [10]. As will
be shown, this is due to some errors in the proofs of some of the lemmas
that would have allowed us to extract the mechanism. We will describe the
limitations so as to provide no doubt that they indeed exist. Discussion as
to how to overcome these limitations will be reserved for the next chapter.

We will start by assuming that a complete derivation mechanism can be
extracted from previous work on decidability. By taking this approach we
can show how the mechanism should be derived, demonstrate exactly where
problems arise, and then give motivation for needed improvements.

Recall the decision procedure outlined in Section 2.3. Since a sequence of
1-arrows leads to a normal form of a given graph, and since 1-arrows can be
described using equations in ALL, we can show that by connecting each part
of an epi-mono factorization that we should be able to provide a complete
derivation of a theorem. Before doing so, we will recap some previous work
in order to provide context. We will discuss some details regarding arrows
between graphs in PLI1X that will provide the basis for our discussion.

3.2.1 A Rewrite System for ALL

In [10], a ‘rewrite system which gives a complete computational procedure
for doing arithmetic in the theory of allegories’ is presented. The proof of the
completeness of this system is the combination of several lemmas which we
will outline here (the proofs for each of which can also be found in [10]). It is
the proofs of these lemmas that have motivated this work, since the mechanics
of the proofs provide hints of how to extract a derivation procedure.

Lemma 2 (Lemma 71 in [10]). Let ≈ denote the congruence in PLI1X gener-
ated by the equations in Eop, and let r,t be terms in TΣ(X) (the term algebra
of the signature Σ over X). Then the following statements hold:

1. r = t in ALL if and only if gr ≈ gt in PLI1X

2. r = t in Es ∪ {(71), (72), (73), (74)} if and only if gr ≈ gt in PLI1X,
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where equations 71-74 are outlined in [10] as:

a ∩ a = a, a ∈ X ∪ {1}(71)

xy ∩ xy = (x ∩ x)(y ∩ y)(72)

(x ∩ x)(y ∩ y ∩ z) = x(y ∩ z) ∩ xy(73)

x(y ∩ y) ∩ z ∩ z = (x ∩ zy◦)y ∩ z(74)

Lemma 3 (Lemma 72 in [10]). Let h be a graph in PLIX. If ϕ : h → h is
an arrow which identifies exactly one pair of vertices, then h ≈ ϕ(h).

Claim 4 (‘Lemma’ 73 in [10]). Let g,h be a graphs in PLIX . If there is a
0-arrow ϕ : h→ g, then g ≈ g‖h in PLI1X .

Claim 5 (‘Lemma’ 74 in [10]). Let g,h be graphs in PLIX. The following
statements hold:

1. If there is a 1-arrow h→ g in PLI1X, then g ≈ g‖h in PLI1X.

2. If there is an arrow h→ g in PLI1X, then g ≈ g‖h in PLI1X.

3.2.2 Extracting the Derivation Procedure

In order to extract a derivation procedure, we start by considering individual
reduction steps throughout the normalization process. The individual steps
of the normalization process were discussed in Section 2.3, but here we are
concerned with those compositions of 1-arrows where the target graph is a
subgraph of the original. Before proceeding, we formally define the notion of
an n-reduction to simplify our discussion.

Definition 8 (n-reduction). Let g, g′ ∈ PLIX. g′ is an n-reduct of g if and
only if the following hold:

1. there is an embedding e : g′ → g

2. there is a composition of 1-arrows f : g → g′, i.e., fnfn−1...f1

3. there is no graph in g1, ..., gn−1 such that there is an embedding into g.

g, g′ together with the functions f and e form what we call an n-reduction.
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Figure 3.1: A 1-arrow that is difficult to characterize.

Lemma 3 allows us to reason about the trivial case, 1-reductions, using
equations in ALL (see Definition 2). Every time we reduce a graph (i.e.
identify one pair of vertices), we consider the minimum algebraic subgraph
induced by the reduction. The minimum algebraic subgraph is the smallest
subgraph that contains the identified vertices v and v′ and the edges incident
to v and v′ (for a formal definition we refer the reader to Chapter 5 of [10]).
The general case is described in Figure 18 of [10]. The specific cases (twelve in
total, modulo symmetries) are then described. We offer some improvements
to these cases in Appendix A. The proof suggests that the cases outlined
are sufficient to reason about all possible algebraic subgraphs resulting from
arbitrary 1-reductions.

The problem now arises when attempting to reasoning about n-reductions
where n > 1. The individual reduction steps of such an n-reduction corre-
spond to those 1-arrows where the target graph is not a subgraph of the
source graph. Consider the 1-arrow demonstrated in Figure 3.1 as an exam-
ple. The graph on the left-hand side of the arrow corresponds to the term
dom(xy)xy, while the graph on the right-hand side corresponds to the term
x(dom(y))y. The minimal algebraic subgraph extracted from this reduction
corresponds to the equation dom(x)x = x (see case 2 of Lemma 72 in [10]).
There is no obvious application of this equation to the present scenario re-
gardless of the fact that the overall terms are provably equal (use the decision
procedure described in Section 2.3 to prove this fact). The suggested solution
to overcoming this problem lies in the mechanics of the proofs of Lemmas 3-
5. We will describe these details and then demonstrate how they would help
overcome this problem and also lead to a more general derivation procedure
were it not for some errors in the proofs.

Referring back to Part 1 of Lemma 5, we can see that whenever we have
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a 1-arrow, ϕ, between two graphs h and g we can show that g ≈ g‖h in
PLI1X . From the proof of this lemma we see that a new graph h∗ must be
constructed to prove this congruence. h∗ is constructed by taking the image
of h, ϕ(h), and adding a single vertex and any edges required such that an
embedding exists from h to h∗. We then extend ϕ to ϕ∗ : h∗ → h∗ in the
obvious way since h, ϕ(h) are both subgraphs of h∗. We can then use Lemma
3 to conclude g ≈ g‖ϕ(h) ≈ g‖ϕ(h)‖h ≈ g‖h. Figure 3.2 gives an example
where a graph h∗ is generated based on the source and target of a 1-arrow.
The boldly-outlined vertex in the graph h∗ is the vertex inserted to generate
the embedding from h to h∗. From Part 2 of Lemma 5 we can see that in the
case where we have a composition of 1-arrows we can still show that g ≈ g‖h
still holds. Although we are really interested in finding a proof for the terms
relating to h ≈ ϕ(h), we will demonstrate that deriving g ≈ g‖h is just
as beneficial when combined with aspects of Lemmas 2 and 4 to prove the
overall equation in question. Before doing so, we must show that a derivation
of the terms relating to g ≈ g‖h can always be produced.

Theorem 6. Consider the relation g ≈ g‖h in PLI1X. The equation t1 =
t2, where t1 is the term corresponding to the graph g and t2 is the term
corresponding to the graph g‖h, can always be derived.

Proof. A result of Part 1 of Lemma 2.

In practise, we will derive the equation corresponding to g ≈ g‖h using
aspects of both Lemmas 2 and 4. We will demonstrate how this is done in
the next section.

Lemma 4 states that whenever a 0-arrow exists (between two graphs h
and g) we can show that g ≈ g‖h in PLIX . In practice, a 0-arrow will occur
whenever we remove an edge without identifying two vertices. This implies
that the result is an embedding from g to h. The key insight here as that if
an equation is decidable, then there are embeddings from the normal forms
of each side of the equation to both terms in the original equation. We will
now prove this fact.

Theorem 7. Let t1, t2 ∈ ALL and let gt1 , gt2 ∈ PLIX correspond to the
graphs of the terms t1 and t2. Now, consider the equation t1 = t2, and let
nf(gt1) and nf(gt2) be the normal forms of gt1 and gt2 respectively. If the
equation t1 = t2 is provable according to the decision algorithm described in
Section 2.3, then the following embeddings exist:
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Figure 3.2: An example of generating the graph h∗.

1. ϕ1 : nf(gt1) → gt1

2. ϕ2 : nf(gt2) → gt2

3. ϕ3 : nf(gt1) → gt2

4. ϕ4 : nf(gt2) → gt1

Proof. To prove Part 1, we know that the equation t1 = t2 is provable,
therefore the embedding ϕ1 exists by virtue of the decision procedure. Part
2 is similar to Part 1. For Part 3, we know that the equation t1 = t2
is decidable, therefore an isomorphism exists between nf(gt1) and nf(gt2).
Hence, there is an embedding from both nf(gt1) and nf(gt2) to gt2 . Part 4
is similar to Part 3. See Figure 3.3 for embeddings that occur during the
decision procedure.

The proof of Lemma 4 uses induction to show that a simple derivation
of the terms relating to g ≈ g‖h can be accomplished using the equation
a ∩ a = a.

We can now proceed to combine aspects of the proofs of Lemmas 3, 4
and 5 to provide a general mechanism for extracting a derivation from the
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t1 gt1 gt2 t2

nf(t1) nf(gt1) nf(gt2) nf(t2)

ϕ1 ϕ2

∼=

Figure 3.3: Some embeddings that occur during the decision procedure (i.e.
the solid arrows represent the embeddings, while ϕ1,ϕ2 represent composi-
tions of 1-arrows).

decision procedure. By considering the morphisms that occur during the
decision process and by relating them to the lemmas just mentioned, we
should be able to extract a method of combining different proofs to provide
an overall proof of an equation (e.g. like one would combine several lemmas
to prove an overal theorem).

Consider the morphisms that are shown in Figure 3.4. Due to the mor-
phisms that occur during the decision procedure, we can apply Lemmas 4
and 5 and thus generate a derivation of the equations mentioned in the next
Theorem:

Theorem 8. Let t1, t2 ∈ ALL, and consider the graphs gt1, gt2, nf(gt1) and
nf(gt1) ∈ PLIX . If t1 = t2 is provable according to the decision algorithm
described in Section 2.3, then the following equations hold:

1. gt1 ≈ gt1‖gt2

2. gt2 ≈ gt2‖gt1

Proof. Part 1:

gt1 ≈ gt1‖nf(gt2) (Lemma 4, emb. nf(gt2) → gt1)

≈ gt1‖nf(gt2)‖gt2 (Lemma 5, arrow gt2 → nf(gt2))

≈ gt1‖gt2 (Lemma 4, emb. nf(gt2) → gt1)
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t1 gt1 gt2 t2

nf(t1) nf(gt1) nf(gt2) nf(t2)

ϕ1 ϕ2

∼=

e e
mm

Figure 3.4: Some epimorphisms (e) and monomorphisms (m) that occur dur-
ing the decision procedure that allow us to extract a derivation mechanism.

Part 2:

gt2 ≈ gt2‖nf(gt1) (Lemma 4, emb. nf(gt1) → gt2)

≈ gt2‖nf(gt1)‖gt1 (Lemma 5, arrow gt1 → nf(gt1))

≈ gt2‖gt1 (Lemma 4, emb. nf(gt1) → gt2)

Since we already know that the individual steps of the proof of Theorem
8 correspond to Lemmas 3, 4, and 5, we know that a derivation of the term-
equations (corresponding to each step of the proof) can always be provided.
We are left to show how this can be done. Doing this will should allow
us to provide a general mechanism that will generate a derivation of any
equation t1 = t2 ∈ ALL where t1 = t2 is decidable (and which we attempt to
demonstrate in the next section). We say that a general mechanism should be
demonstrable because of some errors we have found in the proofs of Lemmas 3
and 4. We will proceed as if were going to produce the general algorithm and
then discuss the errors in the proofs that stop us from showing completeness.

3.2.3 The Pseudo-Algorithm

We give a general outline of the derivation algorithm that we attempt to
produce, followed by specific details as to how each equation of the outline
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can always be derived. When we speak of ‘deriving’ a graph-equation, we
mean that we derive the corresponding term-equation.

The simplest way to provide a derivation would be to use the results
of Lemma 2 by applying the appropriate case to each graph-reduction. If
each 1-arrow during the normalization process always corresponded to an
n-reduction where n = 1, we would simply apply the appropriate rule to
derive the term corresponding to the reduced graph. However, we attempt
to provide a more general, but more involved derivation mechanism that
accounts for the cases where n-reductions are of size n > 1. This is why we
are interested in the results of Theorem 8, where instead of deriving gt1 ≈ gt2

directly, we derive gt1 ≈ gt1‖gt2 ≈ gt2 .
In order to derive gt1 ≈ gt1‖gt2 we start by deriving two smaller equations.

We follow the same process when deriving gt2 ≈ gt2‖gt1. The process of
deriving gt1 ≈ gt1‖gt2 would occur in three steps:

1. Derive: nf(gt1) ≈ nf(gt1)‖gt1

2. Derive: gt2 ≈ gt2‖nf(gt1)

3. Use (2) followed by (1) to derive: gt2 ≈ gt2‖gt1

We would then derive gt2 ≈ gt2‖gt1 in a similar fashion:

4. Derive: nf(gt2) ≈ nf(gt2)‖gt2

5. Derive: gt1 ≈ gt1‖nf(gt2)

6. Use (5) followed by (4) to derive: gt1 ≈ gt1‖gt2

The last step would be to combine the derivations of gt2 ≈ gt2‖gt1 and
gt1 ≈ gt1‖gt2 to show a complete derivation of gt1 ≈ gt2 , i.e.,

8. Combine the derivations of (3) and (7) to produce the complete deriva-
tion of: gt1 ≈ gt2

Part 1 follows from the fact that the decision procedure results in a com-
position of 1-arrows from gt1 to nf(gt1). Part 2 follows from the embedding
that exists from nf(gt2) to gt2. Both parts 1 and 2 were used in the proof
of Theorem 8 to show that the equations corresponding to gt1 ≈ gt1‖gt2 and
gt2 ≈ gt2‖gt1 can always be derived. The same follows for parts 4 through
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6. The bottom line is that we should be able to show that following steps
1 through 7 comprises an algorithm that derives any provable equations in
ALL.

At this point we are left to show exactly how these equations should be
derived using equations in ALL. We will proceed by attempting to prove that
each equation can be derived using the mechanics of the proofs of Lemmas
2 through 5. We will then demonstrate how errors in the proofs of these
lemmas stop us from showing completeness.

Claim 9. Let t1, t2 ∈ ALL and E→ be the set of equations representing the 1-
arrows mentioned in Lemma 2. If the terms of the equation t1 = t2 correspond
to the graphs in the equation nf(gt1) ≈ nf(gt1)‖gt1, then E→ ∪ a ∩ a = a `
t1 = t2.

Proof. We attempt to prove this claim in three parts:
Part 1 corresponds to the trivial case where nf(gt1) = gt1 (i.e. no vertices

were identified). In this case the derivation is trivial.
Part 2 corresponds to the case where the normal form of gt1 is found in

one step (i.e. only one set of vertices is identified). In this case we would
generate the graph h∗ as described in Section 3.2.2. The derivation would
then be extracted from the following:

nf(gt1) ≈ h∗ (Lemma 3)

≈ h∗‖gt1 (Lemma 4)

≈ nf(gt1)‖gt1 (Lemma 3)

The term equation corresponding to the first line of the derivation would
be derived using an equation from the set E→, since there is a 1-arrow and
an embedding from nf(gt1) to h∗ (by virtue of how h∗ is constructed). The
second line is derived by applying the rule a ∩ a = a to the subterm (of the
previous line) corresponding to the graph gt1 (which is a subgraph of h∗).
The rule a ∩ a = a is applied because of the proof of Lemma 4 since there
is an embedding from gt1 to h∗. The third line is then derived in a similar
manner as the first line.

Part 3 of the proof corresponds to the case where the normal form of gt1

is found in more than one step. Again, we rely on the construction of the
graph h∗ for each step of the normalization process in order to derive the
equation corresponding to the epimorphism from the source of the reduction
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to the target. We then work our way back from the normal form to the
original graph using the same procedure in Part 2 of this proof with a slight
modification (assume there are n-intermediate reductions):

nf(gt1) ≈ nf(gt1)‖gtn1
(see proof of Part 2)

≈ nf(gt1)‖(gtn1
‖gtn−1

1
) (gtn1

≈ (gtn1
‖gtn−1

1
))

≈ nf(gt1)‖gtn1
‖gtn−1

1
‖...‖(gt21

‖gt11
)

≈ (nf(gt1)‖gtn1
)‖gtn−1

1
‖...‖gt21

‖gt11
(associativity of ‖)

≈ nf(gt1)‖gtn−1
1

‖...‖gt21
‖gt11

(see proof of Part 2)

≈ (nf(gt1)‖gtn−1
1

)‖...‖gt21
‖gt11

(associativity of ‖)

≈ nf(gt1)‖...‖gt21
‖gt11

(Part 2 of Lemma 5)

≈ ...

≈ nf(gt1)‖gt1 (see proof of Part 2)

The only difference here from the proof of Part 2 is that we have more
intermediate steps corresponding to the proofs of equations of the type g ≈
g‖h for neighboring graphs g and h of the overall normalization of gt1 .

We can see from the proof of this claim that, assuming the proofs of
Lemmas 2 - 5 are correct, we can always provide a derivation for the terms
corresponding to nf(gt1) ≈ nf(gt1)‖gt1 . A problem arises when we consider
the proof of Lemma 5. The mechanics of generating the graph h∗ should
allow us to generalize those situations where we have n-reductions, which
would be a major step towards producing a complete derivation mechanism.
However, we have constructed some scenarios where the graph h∗ is not even
in PLIX , which implies that there are situations where the graph h∗ does not
even have a corresponding term in ALL. Consider the scenario demonstrated
in Figure 3.5. The only way one could generate the graph h∗ such that there
is an embedding from h to h∗ is to add a single vertex that results in a
graph that has the shape of a diamond. As explained in [10], this graph is
outside of the theory and does not correspond to any term in ALL. Since it is
possible to generate a graph h∗ that is outside of the theory, the h∗-generation
mechanism breaks down at this point.

It is important to note here that just because the proof mechanism for
Lemma 5 is incorrect, this does not mean the Lemma itself is not provable. In
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Figure 3.5: A theoretical example of generating the graph h∗ where h∗ is not
in PLIX .
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fact, we believe it is provable. The bottom line here is that we simply cannot
use the proof mechanism to help us produce a derivation procedure. We now
present a more formal proof of the incorrectness of the proof of Lemma 5.

Lemma 10. There is no graph h∗ for the 1-arrow ϕ : h→ g shown in Figure
3.5 which allows us to show g ≈ g‖h.

Proof. We use a contradiction to prove this argument.
Assume that there is a graph h∗ which can be generated from the 1-arrow

described in Figure 3.5. Next, consider the 1-arrow ϕ : h → g where h is
the graph of the term (rsy◦ ∩ x)y ∈ ALL and g is the graph of the term
rs ∩ xy ∈ ALL. Since ϕ is a 1-arrow, according to the proof of Lemma 5 we
can generate a new graph h∗ where there are embeddings from both h and g
to h∗. However, the graph h∗ in this case is a diamond and is therefore outside
of PLIX . Hence, there is no graph h∗ ∈ PLIX that can be generated.

It should be noted here that the example demonstrated in Figure 3.5 is
purely theoretical, i.e., it would never arise in an equational proof since the
target graph of the 1-arrow is neither a subgraph of the source, nor can it be
reduced further. However, there are examples which do arise in equational
proofs. For instance, consider the 1-arrows of the reduction of the left term
of the equation xyz∩xyz = xyz. It can easily be seen that there is no proper
graph h∗ which can be generated from the first 1-arrow of the composition,
since the procedure for generating the graph h∗ results in a diamond. We
refer the reader to Figure 3.6 for a visualization of this scenario.

We refer the reader to [10] for details as to why any diamond-shaped
graph is outside of PLIX . At this point we cannot continue to demonstrate
that our suggested algorithm works due to this major shortcoming. However,
we will also mention another problem at this point.

In the proof of Lemma 4, we should be able to extract a derivation mech-
anism for situations where 0-arrows occur. For example, if we were to suc-
cesfully use the h∗ methodology when reasoning about 1-arrows, we would
still need to reason about the embeddings that occur from the source graph
(of the 1-arrow) to h∗ (see Part 2 of the attempted proof of Claim 9). The
problem with the proof of this lemma is that the only base case of the in-
duction has to do with the graph h = 2a. The first inductive step then talks
about parallel graphs, but not all of these can be described using the base
case. Consider the situation described in Figure 3.7. Here we have an em-
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Figure 3.6: A concrete example of generating the graph h∗ where h∗ is not
in PLIX .
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Figure 3.7: An example where the embedding ψ : h → h∗ is not described
by Lemma 4.

bedding from the graph g to the graph h∗, but there is no reasonable method
to describe this embedding given the proof of Lemma 4.
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Chapter 4

The Solution

In this chapter we address the issues discussed in the previous chapter,
namely, how to overcome the problem of not being able to use the h∗-
generation technique to reason about arbitrary n-reductions. We then discuss
a standardization technique which addresses specific implementation-related
issues.

4.1 Addressing h∗-generation

This section will focus on overcoming the limitation of the h∗-generation
approach. We will start by showing that attempting to fix the notion of h∗-
generation does not help us with our problem of providing automated deriva-
tion. We then suggest an alternate approach, disregarding h∗-generation
altogether.

4.1.1 h∗
n
-generators

We start by defining the notion of an h∗n-generators to provide motivation
for our current discussion.

Definition 9 (h∗n-generator). Consider the graphs g, h ∈ PLIX and the 1-
arrow ϕ : h → g. An h∗n-generator is a function which generates a graph
h∗ by adding n vertices (with the required edges) to g such that there is an
embedding from h to h∗.

The definition of an h∗n-generator is motivated from the fact that although
we may not necessarily be able to construct the graph h∗ by adding a single
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Figure 4.1: An example where two vertices are required to construct h∗).

vertex (recall the example in Figure 3.5), we may be able to construct it
by adding n vertices. For the example in Figure 3.5, the graph h∗ could
be constructed by adding two vertices instead of just one. This way we
would end up with a graph in PLIX (see Figure 4.1 for an example of an
h∗2-generation). The bottom line here is that we are attempting to construct
h∗ in a manner such that it will always be in PLIX . However, the obvious
problem is that adding more than one vertex to construct h∗ properly causes
us to need to reason about n-arrows in general, which takes us outside of
PLI1X .

4.1.2 Compositions of 1-arrows

A seemingly easier approach to addressing the aforementioned problems
would be to consider compositions of 1-arrows in general. By looking at
an overall n-reduction, i.e., ignoring the intermediate reduction steps (recall
Definition 8) we can attempt to classify it according to one of the cases de-
scribed in Lemma 3 (see Appendix A for a description of the cases). For the
trivial case, where n = 1, we use Lemma 3 to characterize the situation as
previously discussed.
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In the cases where we consider n-reductions where n > 1, we must con-
sider complete paths of a graph as representing single variables in a term. In
[10], there is a hint that considering arbitrary 1-arrows alone can be problem-
atic. On page 83, there is the single line ‘graphs corresponding to equations
with non-trivial 1-arrows are shown in Figure 31’. Figure 31 does indeed
describe scenarios where some 1-arrows do not result in a subgraph. We
assume that the h∗-generation mechanism was considered to overcome this
problem, but as we’ve already demonstrated, it is not sufficient. However, if
we consider the variables (or single edges) in Figure 31 as complete paths,
then we find that we are closer to a solution. Figure 4.2 demonstrates an
example of a composition of 1-arrows which can be reasoned about using one
of the cases in Lemma 3 if we replace similar paths with single edges. Recall
in Figure 3.7 an example where a 1-arrow is difficult to characterize. If we
ignore the first 1-arrow but consider the composition of two 1-arrows (i.e. an
n-reduction where n = 2) and then replace the identical paths with single
edges, we can see that this creates a reduction that does indeed correspond
to a case described in Lemma 3. We simply replace the paths corresponding
to the term xy with a single edge corresponding to the term x, which then
allows us to apply the rule dom(x) = x.

While replacing paths with single variables, problems arise when one path
is a subpath of another. Since the subgraphs represented by these paths
are not isomorphic, we cannot simply replace them with a single edge even
though their respective terms in ALL are provably equal. We will consider a
scenario almost identical to that which is demonstrated in Figure 4.2.

If we consider the scenario demonstrated in Figure 4.3, it is clear that
we cannot simply replace the paths xy and x(y ∩ z) with a single edge.
However, the important thing to note here is that there is still an embedding
from the larger path xy to the smaller path x(y ∩ z) (where larger implies
that the respective term in ALL is larger); this implies that we can show an
appropriate derivation of x(y ∩ z) = x(y ∩ z)∩xy (see Lemma 4). We would
find the embedding we are looking for by considering the pairs of vertices
identified throughout the normalization process.

The proof of the reduction in Figure 4.3 would now look as follows:
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Figure 4.2: An example where a composition of two 1-arrows, ϕn, is described
by the rule dom(x) = x when we replace the paths xy with the single edge
x.
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Figure 4.3: An example where the overall n-reduction ϕn cannot be described
by the rule dom(x) = x when replacing entire paths with single edges.
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dom(xy)x(y ∩ z) =(L4) dom(xy)(xy ∩ x(y ∩ z))

=(T12) dom(xy)xy ∩ x(y ∩ z)

=(L3,arrow) xy ∩ x(y ∩ z)

=(L4) x(y ∩ z)

It is our claim that this more general procedure would then allow us to
generate a derivation in any situation, but this claim remains to be proven.

Claim 11. Combining the arithmetic demonstrated in Lemma 3 with our
approach of considering arbitrary n-reductions, where n > 1, and where we
must replace paths where one is a subpath of another (described in this sec-
tion) gives a complete derivation mechanism.

The motivation behind this claim is twofold, as follows.
The first part of the motivation is a result of considering a composition of

1-arrows that is just a single 1-arrow, ϕ : h→ g, where there is an surjection
from h to g and an embedding from g to h. This scenario is covered by
Lemma 3, since during the proof of this lemma there is the statement ‘there
must be a vertex v ∈ V (h) such that ϕ(h) = ϕ(h− v) ∼= (h− v)’. Since the
image of h, ϕ(h), must be isomorphic to the graph h less the vertex v, there
must be an embedding from ϕ(h) to h. The cases mentioned in Lemma
3 (which are enumerated in Appendix A for the reader’s convenience) are
sufficient to allow a derivation of any such trivial composition.

The second part is where we have a composition of at least two 1-arrows,
where there is an embedding from the target graph of the composition to the
source. Since the target graph is a subgraph of the source of the composition,
it is easy to see that an entire path must have been removed and that this
path must have a counterpart in the original graph. If the removed path and
its counterpart are isomorphic (as subgraphs), we replace each of them in
the graph before the composition with a single identical edge. It is easy to
see that performing a reduction on this new graph will be a 1-arrow where
the target graph is a subgraph of the source graph, and thus will correspond
to one of the cases in Lemma 3. The only remaining point is where the two
paths are not isomorphic but where there is a monomorphism from one to the
other. The explanation of Figure 4.3 in this section describes this scenario.
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Figure 4.4: The reduction on the left side is an example of a 1-arrow where
the corresponding rule (found by taking the algebraic subgraph) cannot be
applied directly to any subterm of the equation.

4.2 Standardization Technique

Another problem that arises when attempting to extract a derivation mech-
anism occurs when attempting to apply rules directly to specific terms. For
instance, a certain reduction may be described by one of the cases in Lemma
3, but it may not be possible to directly apply the rule corresponding to
that case. An example of this is demonstrated in Figure 4.4 where the alge-
braic subgraph found in the reduction corresponds to the case where the rule
dom(x)x = x should be used. However, when we translate the graphs into
their respective terms, we end up with the equation dom(x)y ∩ x = y ∩ x,
and hence there is no obvious application of the rule since we cannot find the
subterm dom(x)x in the equation.

Some previous work gives us a hint as to how we can overcome this
problem. In Section 2.3 of [10], a standardization process is given in order
to ‘give a first approximation to normal forms for terms in the theory of
allegories’. This process gives us the mechanics by which we can associate
different terms that are represented by the same graph. For example, the first
graph in Figure 4.4 could actually be translated as dom(x)y∩x, dom(x)(x∩y),
dom(x)(y ∩ x) and even dom(x)x∩ y etc. The standardization process gives
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us a standard form for these terms (modulo commutativity). This is done by
applying a sequence of equations to an original term which in turn gives us
the standard form. We refer the reader to [10] for the details of this process.

The bottom line here is that we have a technique by which we can asso-
ciate terms whose graphs are in the same equivalence class. For the example
described in Figure 4.4, although we cannot work directly with the term of
the form dom(x)y ∩ x, we could apply the rule if the term were in the form
dom(x)x∩y. Since both of these terms are in the same equivalence class (i.e.
they are both represented by the same graph), we can use the standardiza-
tion process to create a proof of their equality. Then, we can apply the rule
dom(x)x = x as desired. Specifically, we would derive the standard form for
each of the two terms, and then combine the two derivations to provide an
overall derivation of dom(x)y ∩ x = dom(x)x ∩ y, as follows:

dom(x)y ∩ x = (1 ∩ xx◦)y ∩ x

= (1 ∩ xx◦)(x ∩ y)

= (1 ∩ xx◦)(y ∩ x)

= (1 ∩ xx◦)x ∩ y

= dom(x)x ∩ y

The second and fourth steps of the above derivation are generated using
a symmetric version of the equation x∩y(1∩z) = (x∩y)(1∩z), which is one
of the steps of the standardization process. The other steps correspond to
the application of the rules x∩ y = y ∩ x and dom(x) = 1∩xx◦. The middle
of the derivation demonstrates that the standard form of the beginning and
ending term is (1 ∩ xx◦)(y ∩ x).

The following theorem generalizes this process:

Theorem 12. Let t1, t2 ∈ ALL. If the terms t1 and t2 are in the same
equivalence class (according to their graphical structure), then ALL ` t1 = t2.
Specifically, we could derive t1 = t2 from the equations in Es.

Proof. The process (outlined in [10]) to standardize terms gives us a proof of
this fact, since there will be a derivation of each term t1, t2 to their equivalent
standard forms.
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Chapter 5

Implementation

This chapter will discuss the implementation of our work in a software proof
assistant called RelAPS [9]. We will start by giving a brief overview of the
RelAPS system by discussing its purpose and some of its functionality. We
then discuss how we implemented our research in the RelAPS system, that is,
how we have extended RelAPS to produce some derivations automatically.

As RelAPS has been developed using the Java programming language,
some of the classes used to implement the results of this work are described
in Appendix B.

5.1 RelAPS - An Overview

RelAPS was designed with the intent of developing a system that would allow
a user to complete relation-algebraic proofs as if they were being done by
hand. Originally, the system would not provide any assistance with respect
to completing proofs. As a user would attempt a proof, the system would
simply provide a list of possible rules that could be applied to a certain
situation. The user then has the freedom to choose the rule that he/she
wished to apply to a selected term or formula. Hence, the system provides
verification only in the sense that a user cannot inappropriate apply a rule,
i.e., an invalid proof-step is not a possibility. However, there is no guarantee
that an arbitrary proof-step will lead the user closer to the goal.

The bottom line is that RelAPS provides an environment which allows a
user to feel as if he/she is doing a proof on a piece of paper, but with some
help provided in the form of lists of rules which can be applied at each step.
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Figure 5.1: The proof explorer view of the RelAPS system.

The system also lets the user know when a proof is complete - although this
should be obvious to the user.

5.1.1 The Interface

The system’s graphical user interface is made up of four main views: the
proof explorer view, the assertions view, the assumptions view, and the main
work area.

The proof explorer provides a tree-view of all the current proofs that are
currently active. The user may select any of them from the tree and work
on the proof by using the other views, discussed below. The user may also
add other formulas to the system that he/she wishes to work on, each of
which will be displayed in this view. Figure 5.1 is a screenshot of the proof
explorer.

The assertions view allows the user to select which part of an assertion
is to be modified in the working area. Within the assertions view the user
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Figure 5.2: The assertions view of the RelAPS system.

may also ‘split’ either an equation into two inclusions, or an equivalence into
two implications. Once the user has selected which term of a formula he/she
would like to modify, the is then made available in the working area where
the user may apply appropriate rule(s). A screenshot of the assertions view
with a sample formula is displayed in Figure 5.2.

The assumptions view is similar to the assertions view. It simply displays
the assumptions of a formula, i.e., those formulas Ai in a horn formula of the
style

A1 ∧ A2 ∧A3 ∧ ... ∧An ⇒ B

where each Ai and B are atomic formulas. The user may also select any
formula in the assumption view and modify it in the working area.

The working area is the important component of the interface when con-
sidering how one actually constructs a proof. After the user has decided
which term is to be manipulated, the system allows the user to apply rules
to the term in the working area. This is done by using the mouse to select a
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Figure 5.3: The working area of the RelAPS system.
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term (or subterm) to which the user wishes to apply a rule. Once the term is
selected, a menu appears displaying those rules which are applicable within
the current context. Figure 5.3 is a screenshot of a scenario where the user
has selected a term and the menu has appeared displaying all applicable rules
within a given theory. If the user selects a rule, the system then generates
the next line of the derivation. Once the user is satisfied that the derivation
of the current term is complete, he/she may press the button which applies
the derivation to the formula displayed in the assertions view. The working
area also allows the user to undo or redo any step of the proof.

RelAPS also offers additional functionality which includes, but is not lim-
ited to, defining new theories, defining new operations, proving monotonicity
of operations, etc. We refer the reader to http://www.joelglanfield.com/

relaps/ to learn more about the RelAPS system.

5.2 Extending RelAPS

When we talk about extensions to RelAPS in this section, we simply refer
to additions to the system which fall outside of its original purpose.

For instance, the first extension to RelAPS was the implementation of
the decision algorithm with respect to the equational theory of allegories.
We have already discussed this algorithm in detail in Section 2.3. When
using RelAPS, if the user specifies that he is working within the theory of
allegories and enters an equation, then a button becomes active which allows
the user to ask the system whether there is a proof of the equation. Once the
button is pressed, the system responds with either a ‘yes’ or ‘no’, depending
on whether the equation is derivable. Notice that this process only lets the
user know whether there is a derivation of the equation, but does not provide
the derivation itself.

Although RelAPS was not designed with the intent of providing auto-
mated derivation, we felt that it would be a suitable system for testing the
results of this work. In a similar vein to the extension discussed in the pre-
ceeding paragraph, we felt that we could extend the system to allow a user
to simply press a button that will then tell the system to generate a proof
of any provable equation in ALL. The same restrictions apply (as discussed
in the preceeding paragraph), namely, the user must be working within the
theory of allegories and must have entered an equation.

Figure 5.4 displays the situation where a user has entered a provable
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Figure 5.4: The proof explorer showing the formula the user will ask the
system to prove.

equation into the system. Notice that a button is enabled which allows the
user to tell the system to find a derivation (the button is labelled ‘Derive’).
Once the user presses the button, the system attempts to find a derivation
of the formula.

Figure 5.5 shows how the system was successful in finding a derivation
which proves the left side of the formula is equal to the right side. Since the
algorithm is derived from the decision procedure, the system has essentially
followed the process of finding the normal form of the left side of the equation.
Since the right side of the equation is already in its normal form, no deriva-
tion is attempted. One may also realize that lines 2 to 6 of the derivation
shown in Figure 5.5 demonstrate the implementation of the standardization
procedure discussed in Section 4.2. Thus, although there are several lines to
the derivation, there is really only one reduction step since only one vertex
would have been removed during the process. The left side of Figure 4.4
demonstrates this situation specifically.

Figure 5.6 demonstrates how the assertions area of the system shows the
user that the derivation was applied to the left side of the equation.

Figure 5.7 shows how the proof explorer was updated to show that the
derivation of the formula is complete. The user may now view the proof of
the equation whenever it is loaded into the system. At this point the user
may wish to move on to proving other formulas.
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Figure 5.5: The working area displaying the derivation of a formula.

Figure 5.6: The assertions area displaying a formula which appears to have
been derived.
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Figure 5.7: The proof explorer displaying that a formula has been derived.

This extension to the RelAPS system also provides the unintended benefit
of producing a piece of software which may help students learn how to do
relation-algebraic proofs. A user may enter an arbitrary formula and attempt
to do a derivation, or he/she may wish to determine whether the formula is
derivable by applying the decision procedure. The user may then tell the
system to produce a derivation. Combining these three actions allows a user
to see how formulas may be derived, which having the option to attempt the
derivation his/herself.
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Chapter 6

Conclusions

We now revisit the question of whether we can give a complete derivation
procedure for any provable theorem in ALL, using the main work in [10] on
decidability as a basis. After showing how we have answered this question
we will suggest some motivation and ideas for future work.

6.1 Summary of Findings

The seemingly unfortunate answer to our original question is a resound-
ing ‘no’. We cannot show completeness for a derivation algorithm that is
extracted from the previous work on decidability. We have already demon-
strated that attempting to extract such a mechanism from the previous work
cannot be done simply because there are some significant errors in the proofs
of some of the major lemmas outlined in [10]. The main error occurs in
the h∗-generation procedure that is used to prove Lemma 5 regarding what
can be concluded about 1-arrows. It is very likely that the statement of the
lemma is indeed correct, but the proof mechanism is incorrect as we have
shown by contradiction in Lemma 10.

An unfortunate conclusion that must be drawn from the fact that Lemma
5 has not technically been proven is that the main theorem in [10] has ac-
tually not been proven correctly either, since it relies on the proof of this
lemma. However, this has not stopped us from at least providing a deriva-
tion mechanism that will still derive many provable theorems in ALL; just
not all theorems. Proving many theorems in ALL can be done by simply
considering Lemma 3 where we restrict ourselves to 1-arrows where there is
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a subgraph from the target graph to the source graph. We then simply clas-
sify the 1-arrow according to the cases described in the same lemma and then
apply the appropriate equation. We have demonstrated that we must add a
couple of cases that do not appear in [10] (which we discuss in Appendix A).

Also, we have shown that it is still very likely that one could prove a
complete derivation procedure that is still largely based on the work in [10].
We have shown that we must consider so-called non-trivial 1-arrows where
the target graph of the arrow is not a subgraph of the source. As discussed
in Section 4.1.2, we must look at n-reductions in general, where we consider
replacing complete paths with single edges. We have also noted that it is
possible for situations to arise where we must replace two paths with the
same edge where one path is a subpath of another. This can be overcome
using Lemma 4 regarding 0-arrows, since there would be an embedding from
the subpath to the main path.

Another significant finding is that we have shown how specific equations
can always be directly applied to subterms in the proper situations. It does
not matter whether we can find an appropriate subterm, since previous stan-
dardization techniques have indirectly given us a mechanism whereby we can
associate terms that are equal. This is done by standardizing two equal terms
(which have different syntactic representations) given the procedure in [10]
and then combining the derivations, as explained in Section 4.2. This finding
is significant when we consider implementation issues, since it is likely that
when implementing a derivation mechanism in a software proof assistant that
one would need to consider how to apply rules directly to terms.

6.2 Future Work

Some obvious future work remains to be explored. The main issue at this
point is completeness. If we are to generate a complete derivation mechanism
based on the work in [10], then the proof of Lemma 5 in that work must first
be repaired. This is outside of the scope of this work. However, one may
consider taking a different approach and try to prove completeness for the
method suggested in Section 4.1.2 of this work, for which details are given
in Claim 11.

Some other interesting future work would include, but not be limited
to, implementing our proposed derivation mechanism in existing theorem
provers. We have provided an implementation for the system called ‘RelAPS’

47



(see Chapter 5).
Once completeness has been shown, it may be interesting to consider

whether the derivation mechanism could be extended to handle Horn-style
formulae (i.e. A0 ∧ A1 ∧ ... ∧An ⇒ B).
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Appendix A

Updating the State of the Art

We have found that, in order to implement Lemma 3 in software, it was nec-
essary to add a couple of additional cases to those enumerated in [10]. We
also add a correction to Case 4 part (c). We will start by suggesting a correc-
tion to Case 4, then we will enumerate the two extra cases we have alluded
to. In Section A.3 we provide diagrams for the other possible reductions.

A.1 A Correction

For Part (c) of Case 4 (corresponding to Figure 26 in [10]), a close inspection
will show that this scenario does not really describe the minimum algebraic
subgraph corresponding to a 1-arrow. The equation corresponding to this
case is:

xy ∩ (x ∩ v)(y ∩ w) ∩ z = (x ∩ v)(y ∩ w) ∩ z(88)

Since the edge corresponding to the term z appears on both sides of the
1-arrow and is not an influencing factor on the vertices which are identified,
it is safe to remove this edge from the minimum algebraic subgraph and thus
end up with the equation:

xy ∩ (x ∩ v)(y ∩ w) = (x ∩ v)(y ∩ w)(88)
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Figure A.1: p = 1 and q = 0 and sm = fm = v1.

A.2 Some Additions

Part (a) of Case 2 in [10] describes the scenario relating to the equation

dom((x ∩ y)x◦) = dom(x ∩ y).(82)

The minimum algebraic subgraph related to this term contains three ver-
tices, where v′ is both the start and the finish vertex (see page 74 of [10] for a
description of how to construct the minimum algebraic subgraph). However,
there is no case to describe a similar situation where the vertex v1 is actually
both the start and the finishing vertex. This occurs whenever there is an
intersection (or composition) of independent dom terms.

For example, if we consider the terms dom(x) ∩ dom(x) and
(dom(x))(dom(x)) (both of which are obviously equal), we would have the
scenario demonstrated in Figure A.1.

This is a situation where we would employ the equation a ∩ a = a even
though this case is not a 0-arrow.

The other addition we offer is related to the scenario described in Part (d)
of Case 4. Our motivation for this addition came when attempting to classify
the second 1-arrow of the scenario demonstrated in Figure 17 of [10]. The
equation that relates to the 1-arrow shown is not sufficient to reason about
scenarios where the subgraph D12 does not occur. This type of reduction
introduces a dom construction on the right hand side. Figure A.2 in this
work describes this situation.

We introduce the equation
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Figure A.2: p = 1 and q = 0 and v′ = sm, v1 = fm.

xx◦ ∩ y = dom(x)y

to reason about this reduction. The proof is done in two steps; the first
is the right inclusion:

dom(x)y = (1 ∩ xx◦)y [(54) in [10]]

⊆ xx◦y ∩ y [(38s) in [10] with v = u]

The converse inclusion is derived using the modular axiom (39) in [10].
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Figure A.4: p = 1 and q = 0 and sm = fm = v′.

A.3 Diagrams of Reductions

In this section we provide diagrams of the other possible reductions in ALL.
These diagrams are already given in [10], but we add them here for conve-
nience. We refer the reader to [10] for further details (Chapter 5 specifically).

Figure A.3 demonstrates the need for the equation

(1 ∩ x)(domx) = 1 ∩ x.

Figure A.4 demonstrates the need for the equation

dom((x ∩ y)x◦) = dom(x ∩ y).

Figure A.5 demonstrates the need for the equation

dom(x)x = x.
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Figure A.6: p = 1 and q ≥ 1 and sm = fm = v′.
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Figure A.7: p = 1 and q ≥ 1 and sm = v′, fm = v1.
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Figure A.8: p = 2 and q = 0 and sm = fm = v′.

Figure A.6 demonstrates the need for the equation

(1 ∩ x)(1 ∩ (y ∩ z)y◦x) = (1 ∩ x)dom(z ∩ y).

Figure A.7 demonstrates the need for the equation

(1 ∩ x)((xy) ∩ y) = (1 ∩ x)y.

Figure A.8 demonstrates the need for the equation

1 ∩ (x ∩ u)(x◦y ∩ v)(y◦ ∩ w) = 1 ∩ (x ∩ u)v(y◦ ∩ w).
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Figure A.10: p = 2 and q = 0 and sm = v1 and fm = v2.

Figure A.9 demonstrates the need for the equation

1 ∩ [(x◦ ∩ v)(y ∩ w)(y◦x ∩ u)] = 1 ∩ [(x◦ ∩ v)(y ∩ w)u] .

Figure A.10 demonstrates the need for the equation

xy ∩ (x ∩ v)(y ∩ w) ∩ z = (x ∩ v)(y ∩ w) ∩ z.

Figure A.11 demonstrates the need for the equation

(x ∩ zy◦)(y ∩ u) ∩ z = x(y ∩ u) ∩ z.
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Figure A.11: p = 2 and q = 0 and sm = v1 and fm = v′.
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Figure A.12: p ≥ 2 and q ≥ 1 and sm = fm = v′.
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Figure A.13: p ≥ 2 and q ≥ 1 and sm = fm = v1.
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Figure A.14: p ≥ 2 and q ≥ 1 and sm = v′, fm = v1.

Figure A.12 demonstrates the need for the equation

(1 ∩ x)(1 ∩
⋂

i

(yi ∩ zi)y
◦
i c

◦) = (1 ∩ x)
⋂

i

dom(zi ∩ yi).

Figure A.13 demonstrates the need for the equation

1 ∩ y◦1(x ∩
⋂

i≥2

yi(y
◦
i ∩ z

◦
i )) = dom((y1 ∩ z1)

◦(1 ∩ x)
⋂

i≥2

dom(yi ∩ zi)).

Figure A.14 demonstrates the need for the equation

(1 ∩ x)((x ∩
⋂

i≥2

(yi ∩ zi)y
◦
i )y1 ∩ y1) = (1 ∩ x)(

⋂

i≥2

dom(yi ∩ zi))y1.
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Appendix B

Class Diagrams

This appendix describes the relationship between the main classes in the
RelAPS system which contribute to the implementation of the derivation
algorithm described in this work.

Figure B.1 provides an overview of the interfaces which allow a derivation
to be generated. The Formula and Term interfaces are the base types of
those concrete objects which are relational formulas and terms respectively.
The GraphTerm interface correspond relational terms to the types of graph
operations described in Section 2.3. An object of type GraphTerm can be
converted into a concrete graph, whereas a graph can always provide the
concrete Term it represents (hence the toTerm() method in the Graph class).

The algorithm interface allows our derivation mechanism to be imple-
mented, and is used by the graphical interface to display a derivation of
some provable theorem.

Figure B.2 describes the concrete classes which provide the algorithms
described in this work. The first algorithm implemented in the RelAPS sys-
tem was the decision algorithm for allegories given in [10]; hence the imple-
mentation of the DecisionAlg class. The DerivationAlg class is the concrete
implementation of the results of this work. The generateProof() method
generates a Proof object used by the interface to display a derivation. The
StandardForm class is an implementation of the standardization technique
described in Section 4.2.

Figure B.3 gives an overview of the concrete implementation of those
graphs corresponding to the operations described in Section 2.3. The Graph-
ToTermConverter class is a utility class where the convert() function converts
a Graph (generated by the createGraph() function in the GraphTerm inter-
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Figure B.1: Overview of the class structure used to implement the results of
this work.

face) into a concrete Term. Thus, at any step during the normalization
process we can determine the term corresponding to a subgraph.
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Figure B.2: Overview of the classes responsible for executing the derivation
mechanism.
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Figure B.3: Overview of GraphTerm classes.

63


