
Abstract

RelAPS is an interactive system assisting in proving relation-algebraic theorems.

The aim of the system is to provide an environment where a user can perform a

relation-algebraic proof similar to doing it using pencil and paper. The previous

version of RelAPS accepts only Horn-formulas. To extend the system to first order

logic, we have defined and implemented a new language based on theory of allegories

as well as a new calculus. The language has two different kinds of terms; object terms

and relational terms, where object terms are built from object constant symbols and

object variables, and relational terms from typed relational constant symbols, typed

relational variables, typed operation symbols and the regular operations available in

any allegory. The calculus is a mixture of natural deduction and the sequent calculus.

It is formulated in a sequent style but with exactly one formula on the right-hand

side. We have shown soundness and completeness of this new logic which verifies

that the underlying proof system of RelAPS is working correctly.

i

Contents

1 Introduction 1

2 Background 4
2.1 Categories . 4
2.2 Allegories . 5

3 Formal Language of Relational Categories 7
3.1 Syntax . 7
3.2 Semantics . 11

4 Calculus of Relational Categories 23
4.1 Inference Rules . 23
4.2 Soundness Proof of Calculus . 27
4.3 Completeness Proof of Calculus . 30

5 RelAPS 48
5.1 Overview of RelAPS . 48
5.2 Extending RelAPS . 53

5.2.1 A Manual for the System . 53
5.2.2 Implementation . 60

6 Conclusions 61
6.1 Summary and Related Works . 61
6.2 Future Work . 63

ii

List of Figures

4.1 Axiom rules . 24
4.2 Structural rules . 25
4.3 Logical rules . 26
4.4 Example Derivation . 26
4.5 Derivation Tree for Tn, ψ

′
1, . . . , ψm−1 ` ⊥ 45

5.1 Example of Valid and Invalid Formulas 49
5.2 After Automatic Rules Applied . 49
5.3 Splitting Equality to two Inclusions 50
5.4 Creating two Inclusions . 50
5.5 Selecting a Term . 51
5.6 Derivation Steps . 51
5.7 Completed Proof . 52
5.8 View of the New Version of RelAPS 53
5.9 Derivation Tree for Example . 55
5.10 Creating a New Derivation . 56
5.11 Using Left Hand Rule Buttons . 57
5.12 a View of System After proving the Left Sub Tree 58
5.13 Replacing Relational Variables by New Terms 58
5.14 Using Working Area Window for Applying (=L) Rule 59
5.15 Complete Tree of Proof . 59

iii

Chapter 1

Introduction

Relation algebras and allegories are used in various areas of computer science. Among
several formal approaches, relation algebra has been used as a basis for analyzing,
modeling or resolving several computer science problems such as program specifica-
tion, program fault tolerance, data abstraction and information coding, and spatial
reasoning. Relations are well suited for describing certain types of problems and also
contribute to the corresponding proof theory. Hence, any attempt to streamline the
process of relational reasoning would be of benefit especially to those interested in
program semantics and correctness [14, 15].

RelAPS is an interactive system assisting in proving relation-algebraic theorems.
The aim of the system is to provide an environment where a user can perform a
relation-algebraic proof similar to doing it using pencil and paper.

The previous version of RelAPS is mainly focused on equational reasoning, i.e.,
stepwise manipulating expressions using general equations similar to regular algebra.
Therefore, the system only accepts Horn-formulas as potential theorems [7]. Horn-
formulas are formulas of the form (∀x1) . . . (∀xm)e1 ∧ . . . ∧ en → e where ∀ denotes
universal quantification, x1, ..., xm are variables, ∧ denotes logical conjunction, →
denotes implication, and e1, ..., en, e are atomic propositions, i.e., they do not contain
any further logical symbols. For example, the property of a binary relation ≤ of being
transitive can be formulized in a Horn-formula by (∀x)(∀y)(∀z)x ≤ y∧ y ≤ z → x ≤
z. On the other hand, if x|y denotes the fact that x divides y, then the obvious
formulation of y being prime (∀x)x|y ∧ ¬(x = 1) → x = y is not a Horn-formula
because of the application of the negation operator ¬ on the left hand side of the
implication. In this thesis we performed several individual steps in order to extend
RelAPS to full first order logic.

The first step is to define a proper language [3]. The language needs two different

1

types of terms. Obviously, one needs terms to denote relations themselves. In addi-
tion, relations are typed since they may act between different kinds of elements, in
general. For example, the relation ‘is owned by’ is a binary relation between cars and
humans. Therefore, terms denoting objects, the categorical notion of types, are also
needed. Object terms are built from object constant symbols and object variables.
Relational terms need to be typed because relations are between two different types
of objects. Relational terms are built from typed relational constant symbols, typed
relational variables, typed operation symbols and the regular operations available in
any allegory.

The next step is to provide a suitable interpretation of the entities of the language
[3]. The main part of this step is finding a proper environment and a model and
then defining terms value and formulas validity. This is similar to regular first order
logic but has to be done for formulas and both kind of terms considering the typing
of relational terms.

The main requirement of the system is to define and implement a formal calculus
for reasoning about allegories. Our calculus is a mixture of natural deduction and the
sequent calculus [5, 6]. Natural deduction is a system that mimics human reasoning
very well. However, it is not very well suited for computer applications since deriva-
tions are trees and individual steps may affect the whole tree. On the other hand,
the sequent calculus expressions of the form Γ ` ∆, where Γ and ∆ are (possibly
empty) sequences of logical formulas, are modified in each individual step, i.e., those
steps are local. Therefore, this calculus can easily be used in computer applications.
The overall derivation does not necessarily reflect the ‘natural’ way of reasoning. In
particular, the fact that the right hand side of a sequent might contain multiple or no
formula is sometimes not very intuitive. In order to combine the advantages of both
calculi our calculus is formulated in a sequent style but with exactly one formula on
the right hand side.

For every logical calculus two properties are of particular interest, soundness and
completeness. Soundness is the property that every formula that can be derived
is also true. Completeness is the opposite statement formulating that every true
formula can also be derived in the calculus. As usual, soundness of calculus has
been proven by induction on the structure of the calculus rules. Our completeness
proof is based on Henkins’ famous completeness proof [9, 10]. His proof started by
claiming that the completeness of first order logic is equivalent to showing that every
consistent theory T has a model. In order to construct a model for a consistent
theory, Henkin chose the syntactic material itself. To this end, he enriched the
language with enough new individual constants. However, Henkins’ proof had to be
modified extensively since our language contains two different kinds of terms and,

2

more importantly, it is typed.

3

Chapter 2

Background

In this chapter we want to introduce the basic mathematical notion used in the thesis.
We start by introducing categories which are the underlying structure of allegories.
Afterwards we define allegories which constitute a suitable abstract theory for binary
relations.

2.1 Categories

A category is an algebraic structure consisting of a collection of objects, linked to-
gether by a collection of morphisms that have two basic properties; for each object
exists an identity morphism and the morphisms can be composed associatively [1].

Definition 1 A category C consists of

1. A class of objects ObjC,

2. For every pair of objects A and B a class of morphisms C[A,B],

3. An associative binary operation ; mapping each pair of morphisms f in C[A,B]
and g in C[B,C] to a morphism f ; g in C[A,C],

4. For every object A a morphism IA such that for all f in C[A,B] and g in C[C,A]
we have IA; f = f and g; IA = g.

One of the common categories is Set. The objects of this category are sets and for
every object A and B, Set[A,B] is the set of all functions from A to B. The identity
morphisms are the identity functions and the composition is the usual composition
of functions. Top with topological spaces and continuous functions, Vec with vector

4

spaces and linear mappings, and PO with posets and monotone functions are other
examples of categories.

2.2 Allegories

An allegory is a category that has some of the structure of the category of sets and
binary relations [4]. In this sense, allegories are also a generalization of relation
algebras [16] introduced by A. Tarski since a relation in an allegory can be between
different sorts.

Definition 2 An allegory R is a category satisfying the following:

1. For all objects A and B the class R[A,B] is a lower semilattice. Meet and the
induced ordering are denoted by u,v respectively. The elements in R[A,B] are
called relations.

2. There is a monotone operation ^ called the converse operation such that for
all relations R : A→ B and Q : B → C the following holds:

(R;Q)^ = Q^;R^ and (R^)^ = R.

3. For all relations R : A → B, and Q,S : B → C we have R; (Q u S) v
R;Q uR;S.

4. For all relations R : A → B, Q : B → C and S : A → C the modular law
R;Q u S v R; (Q uR^;S) holds.

A first example of an allegory is Rel. The objects of this allegory are sets, and
the morphisms in Rel[A,B] are binary relations between A and B, i.e., subsets of
the Cartesian product A × B of A and B. Composition of morphisms is composi-
tion of relations, converse of morphisms is converse of relations and intersection of
morphisms is intersection of relations.

For example, suppose A = {0, 1} and B = {a, b, c}. Then Rel[A,B] = P(A ×
B) and Rel[B,A] = P(B × A). If Q,S, P ∈ Rel[A,B], T ∈ Rel[B,A] and Q =
{(0, a), (1, c), (1, b), (0, b)}, S = {(0, a), (1, c), (1, b)}, P = {(0, a), (1, c)} and T =
{(a, 1), (c, 0)} then we have:

S^ = {(a, 0), (c, 1), (b, 1)},

S u P = Q u P = P,

5

S;T = {(0, 1), (1, 0)} and T ;S = {(a, c), (a, b), (c, a)}.

As an other example, every modular lattice with a smallest element is an one-
object allegory. Composition is given by the join and meet by the meet in the lattice.
The identity is the smallest element and converse of an element is the element itself.
The modular law above (4.) is then equivalent to the regular modular property.

In the following chapters, allegories will become the models of our logic. It is
usually assumed that models are not empty.

Definition 3 A non-empty allegory R is an allegory which has at least one object
and R[A,B] is not empty for every pair of objects A and B.

The smallest non-empty allegory is an allegory with only one object A = {1} and
one relation IA = {(1, 1)}.

6

Chapter 3

Formal Language of Relational
Categories

The main purpose of a proof system is verifying the validity of a formula. This
requires a formal definition of a language, a suitable notion of an interpretation,
and a precise definition of the meaning of each sentence of the language [3]. In this
chapter, first we introduce the syntax of a formal language of allegories, and then we
define the semantics of this language [17, 18].

3.1 Syntax

In order to provide a proper language for allegories, we require a set of object variables
Vobj and a set of object constant symbols Cobj. The two sets Vobj and Cobj as well as
similar sets introduced later are supposed to be disjoint, i.e., Vobj ∩ Cobj = ∅.

Definition 4 The set of object terms consists of object variables and object constant
symbols.

We also require the following components:

• Vrel is a countable set of relational variables. Each variable r has a type t1 → t2
where t1 and t2 are object terms. To indicate that the variable r has type
t1 → t2 we write r : t1 → t2,

• Crel is a countable set of relational constant symbols. Each constant symbol
c has a type t1 → t2 where t1 and t2 are object terms. To indicate that the
constant symbol c has type t1 → t2 we write c : t1 → t2,

7

• F is a countable set of typed function symbols. Each function symbol f has a
type {(t1 → s1), ..., (tn → sn)} → (t → s) where t1, s1, ..., tn, sn, t, s are object
terms. To indicate that the variable f has type {(t1 → s1), ..., (tn → sn)} →
(t→ s) we write f : {(t1 → s1), ..., (tn → sn)} → (t→ s).

Definition 5 The set of relational terms of type s1 → s2, where s1 and s2 are object
terms is defined recursively as follows:

1. If r : s1 → s2 is a relational variable, then r is a relational term of type s1 → s2.

2. If c : s1 → s2 is a relational constant symbol, then c is a relational term of type
s1 → s2.

3. If s is an object term, then Is is a relational term of type s→ s.

4. If t is a relational term of type s1 → s2, then t^ is a relational term of type
s2 → s1.

5. If t1 and t2 are relational terms of type s1 → s2, then t1 u t2 is a relational
term of type s1 → s2.

6. If t1 and t2 are relational terms of type s1 → s2 resp. s2 → s3, then t1; t2 is a
relational term of type s1 → s3.

7. If t1,...,tn are relational terms of type s1 → s′1,..., sn → s′n and f is a n-ary
function symbol with type f : {(s1 → s′1), ..., (sn → s′n)} → (s → s′), then
f(t1, ..., tn) is a relational term of type s→ s′.

r^ and Is1 ; (q u u) are examples of relational terms where r, q, u : r : s1 → s2 are
relational variables.

In order to define formulas we need an additional component, a countable set P
of typed predicate symbols. Each predicate symbol p has a type {(t1 → s1), ..., (tn →
sn)} where t1, s1, ..., tn, sn, are object terms. To indicate that the predicate symbol
p has type {(t1 → s1), ..., (tn → sn)} we write p : {(t1 → s1), ..., (tn → sn)}. Finally
we can define the set of formulas.

Definition 6 The set of formulas is defined recursively as follows:

1. ⊥ is a formula.

2. If t1 and t2 are relational terms of type s1 → s2, then t1 = t2 is a formula.

8

3. If t1, . . . , tn are relational terms of type s1 → s′1,..., sn → s′n and p is a n-ary
predicate symbol with type {(s1 → s′1), ..., (sn → s′n)}, then p(t1, . . . , tn) is a
formula.

4. If ϕ1 and ϕ2 are formulas, then ϕ1 ∧ ϕ2 is a formula.

5. If ϕ1 and ϕ2 are formulas, then ϕ1 ∨ ϕ2 is a formula.

6. If ϕ1 and ϕ2 are formulas, then ϕ1 → ϕ2 is a formula.

7. If ϕ is a formula, then ¬ϕ is a formula.

8. If ϕ is a formula and r : s1 → s2 is a relation variable, then (∀r : s1 → s2)ϕ is
a formula.

9. If ϕ is a formula and a is an object variable, then (∀a)ϕ is a formula.

10. If ϕ is a formula and r : s1 → s2 is a relation variable, then (∃r : s1 → s2)ϕ is
a formula.

11. If ϕ is a formula and a is an object variable, then (∃a)ϕ is a formula.

Let v be a predicate symbol with type {(s1 → s2), (s1 → s2)} for any object
terms s1, s2 and r, q : a→ b be two relational variables. So both r v q and r = q are
valid formulas as well as (∀r : a→ b)(r v q → r = q).

We adopt certain precedence rules of the logical symbols. ¬ has higher precedence
than ∧, ∧ higher than ∨, ∨ higher than →, and → higher than =. The precedence
of ∀ and ∃ is the same as ¬.

In the next step, we want to introduce the concept of free variables in a formula.
In order to do so we have to define the set of object and relational variables in a
term first.

Definition 7 The set of object variables OV (s) of an object term s is defined recur-
sively as follows:

1. OV (a) = {a} for every object variable a,

2. OV (c) = ∅ for every object constant symbol c in Cobj.

Definition 8 The set of object variables OV (t) and the set of relational variables
RV (t) of a relational term t is defined recursively as follows:

1. OV (r) = OV (s1) ∪OV (s2) for a relational variable r : s1 → s2,

9

2. OV (c) = OV (s1)∪OV (s2) for a relational constant symbol c : s1 → s2 in Crel,

3. OV (t^) = OV (t),

4. OV (t1; t2) = OV (t1 u t2) = OV (t1) ∪OV (t2),

5. OV (f(t1, ..., tn)) = OV (t1) ∪ ... ∪OV (tn) for every function symbol f : {(s1 →
s′1), ..., (sn → s′n)} → (s→ s′).

6. RV (r) = {r} for every relational variable r,

7. RV (c) = ∅ for every relational constant symbol c in Crel,

8. RV (t^) = RV (t),

9. RV (t1; t2) = RV (t1 u t2) = RV (t1) ∪RV (t2),

10. RV (f(t1, ..., tn)) = RV (t1) ∪ ... ∪RV (tn) for every function symbol f .

Now we can define free object and relational variables in a formula.

Definition 9 The set of free object variables OFV (ϕ) and the set of free relational
variables RFV (ϕ) of a formula ϕ is defined as follows:

1. OFV (⊥) = ∅,

2. OFV (t1 = t2) = OV (t1) ∪OV (t2),

3. OFV (p(t1, ..., tn)) = OV (t1) ∪ ... ∪OV (tn),

4. OFV (ϕ1 ⊗ ϕ2) = OFV (ϕ1) ∪OFV (ϕ2) where ⊗ ∈ {∧,∨,→},

5. OFV (¬ϕ) = OFV (ϕ),

6. OFV ((Qa)ϕ) = OFV (ϕ) \ {a} where Q ∈ {∀,∃},

7. OFV ((Qr : s1 → s2)ϕ) = OFV (ϕ) ∪OV (r) where Q ∈ {∀, ∃},

8. RFV (⊥) = ∅,

9. RFV (t1 = t2) = RV (t1) ∪RV (t2),

10. RFV (p(t1, ..., tn)) = RV (t1) ∪ ... ∪RV (tn),

11. RFV (ϕ1 ⊗ ϕ2) = RFV (ϕ1) ∪RFV (ϕ2) where ⊗ ∈ {∧,∨,→},

10

12. RFV (¬ϕ) = RFV (ϕ),

13. RFV ((Qa)ϕ) = RFV (ϕ) where Q ∈ {∀,∃},

14. RFV ((Qr : s1 → s2)ϕ) = RFV (ϕ) \ {r} where Q ∈ {∀,∃},

For example, for the formula (∀r : a→ a)r = r we have:

RFV ((∀r : a→ a)r = r) = RFV (r = r) \ {r}
= RV (r) ∪RV (r) \ {r}
= {r} \ {r} = ∅

OFV ((∀r : a→ a)r = r) = OFV (r = r) ∪OV (r)

= OV (r) ∪OV (r) ∪OV (r)

= OV (a) = {a}

.

Definition 10 Relational variable r : s1 → s2 resp. object variable a in a formula ψ
is called free iff r ∈ RFV (ψ) resp. a ∈ OFV (ψ). It is called bounded iff it is not
free. A formula ψ that does not contain any free object or relational variable, i.e.,
RFV (ψ) = ∅ and OFV (ψ) = ∅, is called closed.

So according to the previous definition the formula (∀r : a → a)r = r is not
closed because it contains the free object variable a. On the other hand, the formula
(∃a)(∀r : a→ a)r = r is closed.

3.2 Semantics

We want to define what it means for a formula to be valid. Therefore, we first need
a universe where all syntactic entities can be interpreted by suitable values.

Definition 11 A pre-model P consists of the following data:

1. |P| a non-empty allegory,

2. For each constant symbol c ∈ Cobj a constant cP ∈ Obj|P|.

11

In order to define the semantics of terms and formulas we have to replace the free
variables of the formula by actual values. Those values are stored in so called envi-
ronments.

Definition 12 An object environment σo over a pre-model P is a function from the
set of object variables to the objects of |P|.
We are now ready to define the value of an object term in a pre-model.

Definition 13 The value VP of object terms under the environment σo is defined
by:

• VP(a)(σo) = σo(a) for every object variable a,

• VP(c)(σo) = cP for every constant symbol c ∈ Cobj.
In the next definition we define an environment for both relational and object

variables.

Definition 14 An environment σ = (σo, σr) over a pre-model P is a pair of func-
tions so that σo is an object environment over P and σr maps each relational variable
r : s1 → s2 to a relation σr(r) : VP(s1)(σo)→ VP(s2)(σo).

In the following σo and σr will always refer to the object and relational part of an
environment σ, respectively. Similarly, we will write σ(a) instead of σo(a) for object
variables a, and σ(r : s1 → s2) instead of σr(r : s1 → s2) for relational variables
r : s1 → s2. Storing a new value for a variable in an environment is called update.
Such an update of an environment yields again an environment and is defined as
follows:

Definition 15 The update σ[A/a] resp. σ[R/r : s1 → s2] of σ at the object variable
a resp. at the relation variable r : s1 → s2 with the object A resp. with the relation
R : σ(s1)→ σ(s2) is defined by:

σ[A/a](b) =

{
σ(b) iff a 6= b,
A iff a = b,

σ[A/a](r : s1 → s2) =

{
σ(r : s1 → s2) iff s1 6= a and s2 6= a,
R : σ(s1)→ σ(s2) iff s1 = a or s2 = a

For an arbitrary relation R : σ(s1)→ σ(s2),

σ[R/r : s1 → s2](a) = σ(a),

σ[R/r : s1 → s2](q : s1 → s2) =

{
σ(q : s1 → s2) iff r : s′1 → s′2 6= s1 → s2,
R iff r : s′1 → s′2 = q : s1 → s2.

12

To ascribe meaning to all formulas, we need, besides a non empty allegory, an
appropriate interpretation of each of the constant, function and predicate symbols.

Definition 16 A relational model M is a pre-model with the following data:

1. For each c : s1 → s2 in Crel and environment σ a constant cMσ : σ(s1)→ σ(s2)
so that σ(s1) = σ′(s1) and σ(s2) = σ′(s2) implies cMσ = cMσ′ ,

2. For each function symbol f : {(t1 → s1), ..., (tn → sn)} → (t → s) in F
and environment σ, a n-ary function fMσ which is mapping |M|[σ(t1), σ(s1)]×
... × |M|[σ(tn), σ(sn)] to |M|[σ(t), σ(s)] so that σ(t1) = σ′(t1), ..., σ(tn) =
σ′(tn), σ(t) = σ′(t) and σ(s1) = σ′(s1), ..., σ(sn) = σ′(sn), σ(s) = σ′(s) implies
fMσ = fMσ′ ,

3. For each predicate symbol p in P with type (t1 → s1), ..., (tn → sn) and envi-
ronment σ, a subset pMσ ⊆ {|M|[σ(t1), σ(s1)] × ... × |M|[σ(tn), σ(sn)]}so that
σ(t1) = σ′(t1), ..., σ(tn) = σ′(tn), σ(t) = σ′(t) and σ(s1) = σ′(s1), ..., σ(sn) =
σ′(sn), σ(s) = σ′(s) implies pMσ = pMσ′ .

In the previous definition, an object environment would be sufficient because it is
just needed to get the value of an object term. However, we defined it this way. Note
that the value of an object term in a modelM is the same as that in the pre-model
P it contains, i.e., VM(s)(σ) = VP(s)(σo).

Now we are ready to define the value of relational terms and the validity of
formulas. Both definitions are done inductively on the structure of the language.

Definition 17 Let M be a relational model and σ be an environment. The value
VM of terms under the environment σ is defined by:

1. VM(r : s1 → s2)(σ) = σ(r : s1 → s2) for every relational variable r : s1 → s2,

2. VM(c : s1 → s2)(σ) = cMσ for every constant c : s1 → s2 in Crel,

3. VM(f(t1, ..., tn))(σ) = fMσ (VM(t1)(σ), ...,VM(tn)(σ))

4. VM(Ia)(σ) = Iσ(a),

5. VM(t^)(σ) = (VM(t)(σ))^,

6. VM(t1 u t2)(σ) = VM(t1)(σ) u VM(t2)(σ),

7. VM(t1; t2)(σ) = VM(t1)(σ);VM(t2)(σ),

13

The next step is to define the validity of formulas.

Definition 18 Let M be a relational model, and σ be an environment. The validity
of a formula in M under σ is defined inductively as follows:

1. M |=σ t1 = t2 iff VM(t1)(σ) = VM(t2)(σ),

2. M |=σ p(t1, . . . , tn) iff (VM(t1)(σ), . . . ,VM(tn)(σ)) ∈ pMσ ,

3. M |=σ ϕ1 ∧ ϕ2 iff M |=σ ϕ1 and M |=σ ϕ2,

4. M |=σ ϕ1 ∨ ϕ2 iff M |=σ ϕ1 or M |=σ ϕ2,

5. M |=σ ϕ1 → ϕ2 iff M |=σ ¬ϕ1 or M |=σ ϕ2,

6. M |=σ ¬ϕ iff M 6|=σ ϕ

7. M |=σ (∀r : s1 → s2)ϕ iff M |=σ[R/r:s1→s2] ϕ for all relations R : σ(s1) →
σ(s2),

8. M |=σ (∀a)ϕ iff M |=σ[A/a] ϕ for all objects A,

9. M |=σ (∃r : s1 → s2)ϕ iff M |=σ[R/r:s1→s2] ϕ for some relation R : σ(s1) →
σ(s2),

10. M |=σ (∃a)ϕ iff M |=σ[A/a] ϕ for some object A.

Based on the previous definition we now introduce the validity of formulas in
general.

Definition 19 Let M be a relational model, and ϕ be a formula. Then:

1. ϕ is called valid in the relational model M, M |= ϕ, iff M |=σ ϕ for all
environments σ.

2. ϕ is called valid in the allegory R, R |= ϕ, iff M |= ϕ for all models M with
|M| = R.

3. ϕ is called valid, |= ϕ, iff R |= ϕ for all allegories R.

4. ϕ is said to follow from a sequence of formulas Γ, Γ |= ϕ, iff whenever M |= ψ
for all ψ ∈ Γ, then M |= ϕ for all relational models M .

14

If a formula ϕ or a sequence of formulas Γ is valid in a relational model M, we
will call M a model of ϕ or Γ respectively.

In the next lemma, we show that in order to check the validity of a formula we
are just interested in variables which occur free.

Lemma 20 (Coincidence Lemma) Let s be an object term, t a relational term and
ψ a formula in the language of relational categories, M be a relational model and σ1

and σ2 environments over M so that σ1(a) = σ2(a) for all free object variables in
s, t or ψ and σ1(r : s1 → s2) = σ2(r : s1 → s2) for all free relational variables r in t
or ψ, respectively. Then:

1. VM(s)(σ1) = VM(s)(σ2).

2. VM(t)(σ1) = VM(t)(σ2).

3. M |=σ1 ψ iff M |=σ2 ψ.

Proof. All proofs except part 1 are shown by induction.

1. If s = c, i.e., s is an object constant symbol

VM(c)(σ1) = cM = VM(c)(σ2).

If s = a, i.e., s is an object variable, we get

VM(a)(σ1) = σ1(a) = σ2(a) = VM(a)(σ2).

2. If t = c and c : s1 → s2 is a relational constant symbol

VM(c : s1 → s2)(σ1) = cMσo1

= cMσo2
by 16(3) since for all object

terms σ1(s) = σ2(s) by 1

= VM(c : s1 → s2)(σ2).

If t = r and r : s1 → s2 be a relational variable, we get

VM(r : s1 → s2)(σ1) = σr1(r : s1 → s2)

= σr2(r : s1 → s2) = VM(r : s1 → s2)(σ2).

15

If t = t^1 , we get

VM(t^1)(σ1) = (VM(t1)(σ1))
^

= (VM(t1)(σ2))
^ by the I.H.

= VM(t^1)(σ2).

The remaining cases are similar to the last one.

3. If ψ = (t1 = t2), then we get

M |=σ1 t1 = t2 ⇔ VM(t1)(σ1) = VM(t2)(σ1)

⇔ VM(t1)(σ2) = VM(t2)(σ2) by 2

⇔M |=σ2 t1 = t2.

If ψ = p(t1, ..., tn), then we get

M |=σ1 p(t1, ..., tn)⇔ (VM(t1)(σ1), ...,VR(tn)(σ1)) ∈ pM

⇔ (VM(t1)(σ2), ...,VR(tn)(σ2)) ∈ pM by 2

⇔M |=σ2 p(t1, ..., tn),

If ψ = ϕ1 ∧ ϕ2, then we get

M |=σ1 ϕ1 ∧ ϕ2 ⇔M |=σ1 ϕ1 and M |=σ1 ϕ2

⇔M |=σ2 ϕ1 and M |=σ2 ϕ2 by I.H.

⇔M |=σ2 ϕ1 ∧ ϕ2.

The cases in which ψ is one of the formulas ⊥, ¬ϕ1, ϕ1 ∨ ϕ2, or ϕ1 → ϕ2 are
similar to the previous case.

Assume ψ = (Qr : s1 → s2)ϕ with Q ∈ {∀,∃}. The free variables of ϕ are
the free variables of ψ and the variables s1, s2 and r. Consequently, the envi-
ronments σ1[R/r] and σ2[R/r] for an arbitrary relation R : σ1(s1)→ σ1(s2) =
σ2(s1)→ σ2(s2) coincide on all free variables in ϕ. We conclude

M |=σ1 ψ ⇔M |=σ1[R/r] ϕ for all/some R : σ1(s1)→ σ1(s2)

⇔M |=σ2[R/r] ϕ for all/some R : σ2(s1)→ σ2(s2)

⇔M |=σ2 ψ

16

where the second equivalence is an application of the induction hypothesis.

The case ψ = (Qa)ϕ with Q ∈ {∀,∃} is similar to the previous case. �

In the rest of this chapter we introduce the substitution of variables and the
restrictions of substitution. Then we prove the Substitution Lemma.

Definition 21 Let r : s1 → s2 be a relational variable resp. a be an object variable,
and ϕ be a formula. A relational term t : s1 → s2 resp. object term s is called free
for r resp. a in ϕ iff no free occurrence of r resp. a is in a subformula (Qb)ϕ′ or
(Qq : s1 → s2)ϕ

′, Q ∈ {∀,∃}, of ϕ for an object variable b or a relational variable q
occurring in t resp. for an object variable b occurring in s.

Now we are ready to define the notion of substitution.

Definition 22 Let a be an object variable, r : s1 → s2 be a relational variable, s be
an object term, t, t′ : s1 → s2 be relational terms, and ϕ be a formula.

1. By t′[t/r] and t′[s/a] we denote the result of replacing all occurrences of t in t′

by t resp. replacing all occurrences of a in t′ by s.

2. If t is free for r in ϕ, then we denote by ϕ[t/r] the result of replacing any free
occurrence of r in ϕ by t.

3. If s is free for a in ϕ, then we denote by ϕ[s/a] the result of replacing any free
occurrence of a in ϕ by s.

If we write ϕ[t/r] we always assume that t is free for r. It can always be achieved by
renaming bounded variables.

The next lemma relates the notions of substitution and updating an environment.

Lemma 23 (Substitution Lemma) Let a be an object variable, r : s1 → s2 be a
relational variable, s, s′ be object terms, t, t′ : s1 → s2, be relational terms, ϕ be a
formula, and M be a relational model.

1. VM(s′[s/a])(σ) = VM(s′)(σ[VM(s)(σ)/a]).

2. VM(t′[t/r])(σ) = VM(t′)(σ[VM(t)(σ)/r]).

17

3. VM(t′[s/a])(σ) = VM(t′)(σ[VM(s)(σ)/a]).

4. M |=σ ϕ[t/r] iff M |=σ[VM(t)(σ)/r] ϕ.

5. M |=σ ϕ[d/a] iff M |=σ[VM(s)(σ)/a] ϕ.

Proof. All assertions except 1 are shown by induction.

1. If s′ = c and c is an object constant symbol, we get

VM(c[s/a])(σ) = VM(c)(σ)

= cM

= VM(c)(σ[VM(s)(σ)/a])

= VM(s′)(σ[VM(s)(σ)/a]).

If s′ = a′ and a′ is an object variable, we distinguish two cases. If a = a′, we
get

VM(s′[s/a])(σ) = VM(s)(σ)

= VM(a)(σ[VM(s)(σ)/a])

= VM(s′)(σ[VM(s)(σ)/a]).

If a 6= a′, the environments σ and σ[VM(s)(σ)/a] coincide on all variables in
s′. We use Lemma 20(2) and conclude

VM(s′[s/a])(σ) = VM(a′)(σ)

= VM(a′)(σ[VM(s)/a])

= VM(s′)(σ[VM(s)/a]).

2. If t′ = c and c is a relational constant symbol, we get

VM(c[t/r])(σ) = VM(c)(σ)

= cMσ

= cMσ[VM(t)(σ)/r]

= VM(c)(σ[VM(t)(σ)/r])

= VM(t′)(σ[VM(t)(σ)/r]).

18

If t′ = r′ and r′ is a relational variable, we distinguish two cases. If r = r′, we
get

VM(t′[t/r])(σ) = VM(t)(σ)

= VM(r)(σ[VM(t)(σ)/r])

= VM(t′)(σ[VM(t)(σ)/r]).

If r 6= r′, the environments σ and σ[VM(t)(σ)/r] coincide on all variables in t′.
We use Lemma 20(2) and conclude

VM(t′[t/r])(σ) = VM(r′)(σ)

= VM(r′)(σ[VM(t)/r])

= VM(t′)(σ[VM(t)/r]).

If t′ = f(t1, . . . , tn), we immediately get

VM(t′[t/r])(σ)

= fM(VM(t1[t/r])(σ), . . . ,VM(tn[t/r])(σ))

= fM(VM(t1)(σ[VM(t)(σ)/r]), . . . ,VM(t2)(σ[VM(t)(σ)/r])) by I.H.

= VM(t′)(σ[VM(t)(σ)/r])

If t′ = t^1 , we get

VM(t^1 [t/r])(σ) = (VM(t1[t/r])(σ))^

= (VM(t1)(σ[VM(t)(σ)/r]))^ by I.H.

= VM(t^1)(σ[VM(t)(σ)/r])

= VM(t′)(σ[VM(t)(σ)/r])

t′ = t1; t2 and t′ = t1 u t2 are similar to the previous case.

3. If t′ = r : a→ s2, we get

VM((r : a→ s2)[s/a])(σ) = VM(r : s→ s2)(σ)

= VM(r : a→ s2)(σ[VM(s)(σ)/a])

= VM(t′)(σ[VM(s)(σ)/a]).

If t′ = r : s2 → a, then the proof is similar to the previous case.

19

If t′ = r : s1 → s2, the environments σ and σ[VM(s)(σ)/a] coincide on all
variables in t′. We use Lemma 20(2) and conclude

VM(t′[s/a])(σ) = VM(r)(σ)

= VM(r)(σ[VM(s)/a])

= VM(t′)(σ[VM(s)/a]).

The remaining cases are similar to (1),

4. For this part we distinguish several cases:

(a) If ϕ = (t1 = t2), then

M |=σ ϕ[t/r]

⇔M |=σ t1[t/r] = t2[t/r]

⇔ VM(t1[t/r])(σ) = VM(t2[t/r])(σ)

⇔ VM(t1)(σ[VM(t)(σ)/r]) = VM(t2)(σ[VM(t)(σ)/r]) by 2

⇔M |=σ[VM(t)(σ)/r] t1 = t2

⇔M |=σ[VM(t)(σ)/r] ϕ.

(b) If ϕ = p(t1, . . . , tn), then

M |=σ ϕ[t/r]

⇔M |=σ p(t1[t/r], . . . , tn[t/r])

⇔ (VM(t1[t/r])(σ), ...,VM(tn[t/r])(σ)) ∈ pM

⇔ (VM(t1)(σ[VM(t)(σ)/r]), ..,VM(tn)(σ[VM(t)(σ)/r])) ∈ pM by 2

⇔M |=σ[VM(t)(σ)/r] p(t1, . . . , tn)

⇔M |=σ[VM(t)(σ)/r] ϕ.

(c) If ϕ = ¬ϕ′, then

M |=σ ϕ[t/r]

⇔M |=σ ¬ϕ′[t/r]
⇔M |=σ[VM(t)(σ)/r] ¬ϕ′ by I.H.

⇔M |=σ[VM(t)(σ)/r] ϕ.

20

(d) If ϕ = ϕ1 ∧ ϕ2, then

M |=σ ϕ[t/r]

⇔M |=σ ϕ1[t/r] ∧ ϕ2[t/r]

⇔M |=σ ϕ1[t/r] and M |=σ ϕ2[t/r]

⇔M |=σ[VM(t)(σ)/r] ϕ1 and M |=σ[VM(t)(σ)/r] ϕ2 by I.H.

⇔M |=σ[VM(t)(σ)/r] ϕ1 ∧ ϕ2

⇔M |=σ[VM(t)(σ)/r] ϕ.

(e) If ϕ = ϕ1 ∨ ϕ2, then

M |=σ ϕ[t/r]

⇔M |=σ ϕ1[t/r] ∨ ϕ2[t/r]

⇔M |=σ ϕ1[t/r] or M |=σ ϕ2[t/r]

⇔M |=σ[VM(t)(σ)/r] ϕ1 or M |=σ[VM(t)(σ)/r] ϕ2 by I.H.

⇔M |=σ[VM(t)(σ)/r] ϕ1 ∨ ϕ2

⇔M |=σ[VM(t)(σ)/r] ϕ.

(f) If ϕ = ϕ1 → ϕ2, then

M |=σ ϕ[t/r]

⇔M |=σ ϕ1[t/r]→ ϕ2[t/r]

⇔M |=σ ¬ϕ1[t/r] or M |=σ ϕ2[t/r]

⇔M |=σ[VM(t)(σ)/r] ¬ϕ1 or M |=σ[VM(t)(σ)/r] ϕ2 by I.H.

⇔M |=σ[VM(t)(σ)/r] ϕ1 → ϕ2

⇔M |=σ[VM(t)(σ)/r] ϕ.

(g) Assume ϕ = Q(q : s1 → s2)ϕ
′ with Q ∈ {∀,∃}. We distinguish two cases:

Case r = q:

M |=σ ϕ[t/r]⇔M |=σ ϕ since r does not occur free in ϕ

⇔M |=σ[VM(t)(σ)/r] ϕ by Lemma 20(3) since r

does not occur free in ϕ

21

Case r 6= q:

M |=σ ϕ[t/r]⇔M |=σ Q(q : s1 → s2)ϕ
′[t/r]

⇔M |=σ[R/q] ϕ
′[t/r] for all/some R : σ(s1)→ σ(s2)

⇔M |=σ[R/q][VM(t)(σ)/r] ϕ
′ for all/some R : σ(s1)→ σ(s2)

by I.H.

⇔M |=σ[VM(t)(σ)/r][R/q] ϕ
′ for all/some R : σ(s1)→ σ(s2)

since r 6= q and q does not

occur in t because t is free

for r in ϕ

⇔M |=σ[VRM(t)(σ)/r] Q(q : s1 → s2)ϕ
′

⇔M |=σ[VRM(t)(σ)/r] ϕ.

(h) Analogously to (3). �

22

Chapter 4

Calculus of Relational Categories

In this chapter we introduce the first-order logic calculus of relational categories.
The calculus is formulated in a sequent style [5] but with exactly one formula on the
right-hand side. In the first section we discus the inference rules of the calculus and
then we show its soundness and completeness.

In general, a logical calculus uses proof rules to infer a conclusion from a finite
set of premises. Suppose a sequence of formulas Γ1 and a derivation Γ1 ` ψ1 is
given. We start to apply a proof rule of the calculus to the derivation generating
a new derivation Γ2 ` ψ2. In the next step, we apply a rule to the new derivation
generating a new derivation Γ3 ` ψ3. Continuous application of the rules will finally
end in the intended result Γ ` ψ, the conclusion. The derivation itself is actually a
tree with the premises as leaves, applications of rules as nodes, and the conclusion
as the root. The tree will be ended at axioms rules which don’t need premises.

4.1 Inference Rules

Our calculus has three different types of rules; structural rules, which operate on the
sequent of formula in a judgment, logical rules, which are concerned with the logical
operations, and axioms rules, which represent the basic tautology of logic and the
axioms of the theory of allegories.

Definition 24 Let Γ be a sequence of formulas, then the rules in Figures 4.1, 4.2,
and 4.3 constitute the formal calculus of allegories. We write Γ ` ϕ to indicate that
there is a derivation ending in that sequence.

23

ϕ ` ϕ Axiom

` (∀a)(∀b)(∀r : a→ b)Ia; r = r

` (∀a)(∀b)(∀r : a→ b)r; Ib = r

` (∀a1)(∀a2)(∀a3)(∀a4)(∀r : a1 → a2)(∀q : a2 → a3)(∀u : a3 → a4)(r; q);u = r; (q;u)

` (∀a)(∀b)(∀r : a→ b)r u r = r

` (∀a)(∀b)(∀r : a→ b)(∀q : a→ b)(∀u : a→ b)(r u q) u u = r u (q u u)

` (∀a)(∀b)(∀r : a→ b)(r^)^ = r

` (∀a)(∀b)(∀r : a→ b)(∀q : a→ b)(r u q)^ = r^ u q^

` (∀a)(∀b)(∀r : a→ b)(∀q : b→ c)(r; q)^ = q^; r^

` (∀a)(∀b)(∀r : a→ b)(∀q : b→ c)(∀u : b→ c)r; (q u u) = r; (q u u) u r; q u r;u

` (∀a)(∀b)(∀r : a→ b)(∀q : b→ c)(∀u : a→ c)r; q u u = r; (q u r^;u) u r; q u u

Figure 4.1: Axiom rules

24

Weakening rule

Γ ` ψ
Γ, ϕ ` ψ Weak

Contraction rule

Γ, ϕ, ϕ ` ψ
Γ, ϕ ` ψ Cont.

Permutation rule

Γ, ϕ2, ϕ1 ` ψ
Γ, ϕ1, ϕ2 ` ψ Perm.

Cut rule

Γ ` ϕ Γ, ϕ ` ψ
Γ ` ψ Cut

Figure 4.2: Structural rules

left logical rules right logical rules

Γ ` t1 = t2 Γ ` ψ[t1/r]

Γ ` ψ[t2/r]
=L ` t = t

=R

Γ, ϕ1, ϕ2 ` ψ
Γ, ϕ1 ∧ ϕ2 ` ψ ∧L

Γ ` ϕ1 Γ ` ϕ2

Γ ` ϕ1 ∧ ϕ2
∧R

Γ, ϕ1 ` ψ Γ, ϕ2 ` ψ
Γ, ϕ1 ∨ ϕ2 ` ψ ∨L

Γ ` ϕ1

Γ ` ϕ1 ∨ ϕ2
∨R

Γ ` ϕ2

Γ ` ϕ1 ∨ ϕ2
∨R

Γ ` ϕ1 Γ, ϕ2 ` ψ
Γ, ϕ1 → ϕ2 ` ψ →L

Γ, ϕ1 ` ϕ2

Γ ` ϕ1 → ϕ2
→R

Γ ` ϕ
Γ,¬ϕ ` ψ ¬L

Γ, ϕ ` ⊥
Γ ` ¬ϕ ¬R

25

Γ, ϕ[t/r] ` ψ
Γ, (∀r : s1 → s2)ϕ ` ψ

∀L (rel)

Γ ` ϕ
Γ ` (∀r : s1 → s2)ϕ

∀R (rel)

If r does not occur free
in any formula of Γ

Γ, ϕ[s/a] ` ψ
Γ, (∀a)ϕ ` ψ ∀L (obj)

Γ ` ϕ
Γ ` (∀a)ϕ

∀R (obj)

If a does not occur free
in any formula of Γ

Γ, ϕ ` ψ
Γ, (∃r : s1 → s2)ϕ ` ψ

∃L (rel)

If r does not occur free in
any formula of Γ and in ψ

Γ ` ϕ[t/r]

Γ ` (∃r : s1 → s2)ϕ
∃R (rel)

Γ, ϕ ` ψ
Γ, (∃a)ϕ ` ψ ∃L (obj)

If a does not occur free in
any formula of Γ and in ψ

Γ ` ϕ[s/a]

Γ ` (∃a)ϕ
∃R (obj)

Γ,¬ϕ ` ⊥
Γ ` ϕ PBC

Figure 4.3: Logical rules

Figure 4.4 shows an simple example of a derivation tree.

ϕ ` ϕ
ψ ` ψ
ϕ, ψ ` ψ Weak

ϕ, ϕ⇒ ψ ` ψ →L

Figure 4.4: Example Derivation

Note that for the =L rule, we have chosen this version, which does not really look
like a left rule, because it seems more convenient to use. In order to have the equation

26

on the left hand side it could use just the right assumption and the conclusion with
the equation added to gamma.

4.2 Soundness Proof of Calculus

Soundness of a deductive system is the property that whatever can be derived is also
valid, i.e., that Γ ` ϕ implies Γ |= ϕ. This property is the very least one would
require from any logical system. In the next lemma, we show the soundness of our
calculus.

Theorem 25 (Soundness) Let Γ be a sequence of relational formulas and ψ be a
relational formula. If Γ ` ψ is valid, then Γ |= ψ holds.

Proof. The proof is done by induction on the derivation Γ ` ψ.

Base cases: If Γ = ϕ and ψ = ϕ then the proof is just a premise. We need to
show for all relational models M and environment σ if M |=σ ϕ holds, then
M |=σ ψ. Since ψ = ϕ that is trivial.

If Γ is empty and ψ = (∀a)(∀b)(∀r : a → b)Ia; r = r then we need to show
for all relational models M and environment σ, M |=σ ψ holds. Since |M|
is an allegory then M |=σ[A/a,B/b,R/r:a→b] IA;R = R for all objects A,B and
relations R : A → B. Using the definition of |= we get M |=σ (∀a)(∀b)(∀r :
a→ b)Ia; r = r.

The remaining axiom rules can be shown analogously.

Weak : In this case Γ = Γ′, ϕ for some sequence of formulas Γ′ and we have a
derivation Γ′ ` ψ. Now assumeM is a relational model and σ an environment
so that M |=σ ϕ and M |=σ Γ′ holds. Based on the induction hypothesis
M |=σ Γ′ implies M |=σ ψ.

Cont. : In this case Γ = Γ′, ϕ and we have a derivation Γ′, ϕ, ϕ ` ψ. Now assume
M is a relational model and σ an environment so thatM |=σ ϕ andM |=σ Γ′

holds. By the induction hypothesis we concludeM |=σ ψ, and, hence Γ′, ϕ |=σ

ψ.

Perm. : In this case Γ = Γ′, ϕ2, ϕ1 and we have a derivation Γ′, ϕ1, ϕ2 ` ψ. Now
assume M is a relational model and σ an environment so that M |=σ ϕ1,
M |=σ ϕ2 and M |=σ Γ′ holds. By the induction hypothesis we conclude
M |=σ ψ, and, hence Γ′, ϕ2, ϕ1 |=σ ψ.

27

Cut : In this case we have derivations Γ ` ϕ and Γ, ϕ ` ψ. AssumeM is a relational
model and σ an environment so thatM |=σ Γ holds. We get from the induction
hypothesis that M |=σ ϕ and, again by using the induction hypothesis we
conclude M |=σ ψ.

=L : In this case we have derivations Γ ` t1 = t2 and Γ ` ψ[t1/r]. Now assume
M is a relational model and σ an environment so that M |=σ Γ holds. By
the induction hypothesis we get Γ |=σ ψ[t1/r]. Using Lemma 23(4) we have
Γ |=σ[VM(t1)(σ)/r] ψ. Again by the induction hypothesis we get Γ |=σ t1 = t2
which implies that VM(t1)(σ) = VM(t2)(σ). Hence, Γ |=σ[VM(t2)(σ)/r] ψ and by
using Lemma 23(4) we conclude Γ |=σ ψ[t2/r].

∧L : In this case Γ = Γ′, ϕ1∧ϕ2 and we have a derivation Γ′, ϕ1, ϕ2 ` ψ. Now assume
M is a relational model and σ an environment so that M |=σ Γ′ and M |=σ

ϕ1 ∧ ϕ2 holds. From the definition of |= we get M |=σ ϕ1 ∧ ϕ2 iff M |=σ ϕ1

and M |=σ ϕ2. Which implies M |=σ Γ′, M |=σ ϕ1 and M |=σ ϕ2 holds. By
the induction hypothesis we conclude M |=σ ψ, and, hence Γ′, ϕ1 ∧ ϕ2 |=σ ψ.

∨L : In this case Γ = Γ′, ϕ1 ∨ ϕ2 and we have derivations Γ′, ϕ1 ` ψ and Γ′, ϕ2 ` ψ.
Assume M is a relational model and σ an environment so that M |=σ Γ′ and
M |=σ ϕ1 ∨ ϕ2 holds. By the definition of |= we get M |=σ ϕ1 or M |=σ ϕ2.
In the first case we concludeM satisfies Γ′, ϕ1. Using induction hypothesis we
conclude M |=σ ψ. If M |=σ ϕ2 we conclude M |=σ ψ analogously.

→L : In this case Γ = Γ′, ϕ1 → ϕ2 and we have derivations Γ′ ` ϕ1 and Γ′, ϕ2 ` ψ.
Assume M is a relational model and σ an environment so that M |=σ Γ′ and
M |=σ ϕ1 → ϕ2 holds. From the definition of |= we get M |=σ ϕ1 → ϕ2 iff
M |=σ ϕ2 or M 6|=σ ϕ1. We distinguish two cases:

Case M |=σ ϕ2 : We know that M |=σ Γ′, and by induction hypothesis we
conclude M |=σ ψ.

Case M 6|=σ ϕ1: We have M |=σ Γ′, which is implies (based on induction
hypothesis) that M |=σ ϕ1. Hence this case is impossible.

¬L In this case Γ = Γ′,¬ϕ and we have a derivation Γ′ ` ϕ. Now assume M is a
relational model and σ an environment so thatM |=σ Γ′ andM |=σ ¬ϕ holds
and from the induction hypothesis we get M |=σ ϕ. This is a contradiction so
that such a M does not exist. Hence, Γ′,¬ϕ |= ψ is always true.

28

∀L (rel) : In this case Γ = Γ′, (∀r : s1 → s2)ϕ where r is a relational variable and
s1 and s2 are object terms and Γ′, ϕ[t/r] ` ψ. AssumeM is a relational model
and σ an environment so that M |=σ Γ′ and M |=σ (∀r : s1 → s2)ϕ holds.
Using the definition of |= we get M |=σ[VM(t)(σ)/r] ϕ. By Lemma 23(4) the
latter is equivalent to M |=σ ϕ[t/r]. Hence, from the induction hypothesis we
conclude M |=σ ψ.

∀L (obj) : Analogously to ∀L (rel).

∃L (rel) : In this case Γ = Γ′, (∃r : s1 → s2)ϕ and Γ′, ϕ ` ψ. Assume M is a
relational model and σ an environment so thatM |=σ Γ′ andM |=σ (∃r : s1 →
s2)ϕ holds. Using the definition we get M |=σ[T/r:s1→s2] ϕ for some relation
T : σ(s1) → σ(s2). According to Lemma 20(3), since r does not occur free in
any formula of Γ′ we have M |=σ[T/r:s1→s2] Γ′. By the induction hypothesis we
get M |=σ[T/r:s1→s2] ψ. Again by Lemma 20(3) we conclude M |=σ ψ since r
does not occur free in ψ.

∃L (obj) : Analogously to ∃L (rel).

=R : It is trivial.

∧R : In this case ψ = ϕ1 ∧ ϕ2 and we have derivations Γ ` ϕ1 and Γ ` ϕ2. Assume
M is a relational model and σ an environment so that M |=σ Γ holds. By
the induction hypothesis we conclude M |=σ ϕ1 and M |=σ ϕ2 which implies
M |=σ ϕ1 ∧ ϕ2, and, hence M |=σ ψ.

∨R : In this case ψ = ϕ1 ∨ ϕ2 and we have a derivation Γ ` ϕ1. Assume M is
a relational model and σ an environment so that M |=σ Γ holds. From the
induction hypothesis we getM |=σ ϕ1, and, by the definition of |= we conclude
M |=σ ϕ1 ∨ ϕ2.

→R : In this case ψ = ϕ1 → ϕ2 and we have a derivation Γ, ϕ1 ` ϕ2. AssumeM is
a relational model and σ an environment so that M |=σ Γ holds. If M |=σ ϕ1

holds then from the induction hypothesis we get M |=σ ϕ2. By the definition
of |= we conclude M |=σ ϕ1 → ϕ2. If M 6|=σ ϕ1 then by the definition of |=,
M |=σ ϕ1 → ϕ2 is always hold.

¬R : In this case ψ = ¬ϕ and we have a derivation Γ, ϕ ` ⊥. Assume M is a
relational model and σ an environment so that M |=σ Γ holds. If M satisfies
ϕ we concludeM |=σ ⊥ from the induction hypothesis. That is a contradiction,
hence, we conclude M |=σ ¬ϕ.

29

∀R (rel) : In this case ψ = (∀r : s1 → s2)ϕ and we have Γ ` ϕ. Assume M
is a relational model and σ an environment so that M |=σ Γ. Since r does
not occur free in any formula of Γ, by Lemma 20(3) we get M |=σ[T/r:s1→s2]

Γ for all relations T : σ(s1) → σ(s2). By the induction hypothesis we get
M |=σ[T/r:s1→s2] ϕ for all relations T : σ(s1) → σ(s2). Using the definition we
conclude M |=σ (∀r : s1 → s2)ϕ.

∀R (obj) : Analogously to ∀R (rel).

∃R (rel) : In this case ψ = ∃r : s1 → s2 : ϕ and we have Γ ` ϕ[t/r]. Assume M is
a relational model and σ an environment so that M |=σ Γ. By the induction
hypothesis we get M |=σ ϕ[t/r]. By Lemma 23(4) the latter is equivalent to
M |=σ[VM(t)(σ)/r] ϕ. Hence, we get from the definition M |=σ (∃r : s1 → s2)ϕ.

∃R (obj) : Analogously to ∃R (rel).

PBC : In this case we have a derivation Γ,¬ψ ` ⊥. Assume M is a relational
model and σ an environment so thatM |=σ Γ holds. IfM |=σ ¬ψ we conclude
M |=σ ⊥ from the induction hypothesis. That is a contradiction, hence, we
conclude M |=σ ψ.

This completes the proof. �

4.3 Completeness Proof of Calculus

A calculus is complete if for every set of premises Γ, any formula which semantically
follows from Γ is derivable from Γ, i.e., if Γ |= ψ holds then Γ ` ψ is valid [10].
Our next goal is to show completeness of the calculus. First, we want to get rid of
premises in a proof.

Lemma 26 Let ϕ1, . . . , ϕn and ψ be formulas. Then we have:

1. ϕ1, . . . , ϕn |= ψ iff |= ϕ1 → (ϕ2 → (ϕ3 → (. . . (ϕn → ψ) . . .))).

2. ϕ1, . . . , ϕn ` ψ iff ` ϕ1 → (ϕ2 → (ϕ3 → (. . . (ϕn → ψ) . . .))).

Proof. In this proof we will denote the formula ϕ1 → (ϕ2 → (ϕ3 → (. . . (ϕn →
ψ) . . .))) by χ.

30

1. ⇒: Assume M is a relational model so that M |= ϕ1, . . . ,M |= ϕn. we
conclude M |= ψ, and, hence, M |= χ. If there is an i with M 6|= ϕi we
immediately conclude M |= χ.

⇐: Assume M is a relational model so that M |= ϕi for all i ∈ {1, . . . , n}.
Since χ is valid, we haveM |= χ. From the fact that χ is a chain of implications
we conclude M |= ψ, and, hence, ϕ1, . . . , ϕn |= ψ.

2. ⇒: Assume there is a derivation ϕ1, . . . , ϕn ` ψ. By applying the rule →R n
times we get a derivation ` χ.

⇐: Assume there is a derivation ` χ and χ = ϕ1 → χ′. We give following
derivation:

` ϕ1 → χ′

ϕ1 ` ϕ1 → χ′
Weak

ϕ1 ` ϕ1

χ′ ` χ′
ϕ1, χ

′ ` ϕ1
Weak

ϕ1, ϕ1 → χ′ ` χ′ →L

ϕ1 ` χ′
Cut

By applying similar derivations n-times with the formula ϕi in the ith appli-
cation we get a derivation ϕ1, . . . , ϕn ` ψ. �

The next step is to take care of the free variables in a formula.

Lemma 27 Let ϕ be a formula. Then

1. M |= ϕ iff M |= (∀r : s1 → s2)ϕ.

2. |= ϕ iff |= (∀r : s1 → s2)ϕ.

3. ` ϕ iff ` (∀r : s1 → s2)ϕ.

4. M |= ϕ iff M |= (∀a)ϕ.

5. |= ϕ iff |= (∀a)ϕ.

6. ` ϕ iff ` (∀a)ϕ.

Proof.

31

1. ⇒: Let σ be an arbitrary environment. We get M |=σ[R/r:s1→s2] ϕ by the
assumption for all R : σ(s1)→ σ(s1), hence, M |=σ (∀r : s1 → s2)ϕ.

⇐: Let σ be an arbitrary environment. Then σ = σ[σ(x)/x]. By the assump-
tion we haveM |= (∀r : s1 → s2)ϕ[σ], and, hence,M |=σ[σ(r)/r] ϕ. We conclude
M |=σ ϕ.

2. This follows immediately from (1).

3. ⇒: To the derivation ` ϕ we apply the rule ∀L (rel) to get a derivation `
(∀r : s1 → s2)ϕ. The variable condition is satisfied since the derivation has no
premises.

⇐: We give a derivation for this implication:

` (∀r : s1 → s2)ϕ

ϕ ` ϕ
(∀r : s1 → s2)ϕ ` ϕ

∀L (rel)

` ϕ Cut

The cases (4),(5) and (6) are similar to (1),(2) and (3). �

Since every formula just contains finitely many free variables we may close a
formula by adding universal quantifiers, e.g., if ϕ is a formula and has free (relational
or object) variables x1, . . . , xn then (∀x1, . . . , xn)ϕ is a closed formula.

Lemma 28 The following statements are equivalent:

1. The calculus is complete, i.e., ϕ1, . . . , ϕn |= ψ implies ϕ1, . . . , ϕn ` ψ for all
formulas ϕ1, . . . , ϕn and ψ.

2. |= ϕ implies ` ϕ for all closed formulas ϕ.

Proof.

1.⇒ 2.: This implication is trivial.

2.⇒ 1.: Assume ϕ1, . . . , ϕn |= ψ and let ϕ = ϕ1 → (ϕ2 → (ϕ3 → (. . . (ϕn →
ψ) . . .))). By Lemma 26(1) we have |= ϕ. Now, we apply Lemma 27(2) as
often as we have free variables to conclude |= ∀ϕ. (2) implies ` ∀ϕ, and, hence
` ϕ using Lemma 27(3). Finally, Lemma 26(2) shows ϕ1, . . . , ϕn ` ψ. �

In the followings, we are going to prove (2) instead of (1).

32

Definition 29 A set of closed formulas T is called a theory. A theory is called
consistent iff T 6` ⊥. It is called inconsistent iff it is not consistent, i.e., if T ` ⊥.

In the next lemma, we want to relate derivations with the consistency of a theory.

Lemma 30 Let T be a theory, and ϕ be a closed formula. Then T ` ϕ iff T ∪{¬ϕ}
is inconsistent.

Proof. Let Γ be a sequence of all formulas in T , then we give following derivations:
⇒: We have derivation Γ ` ϕ, hence we can conclude:

Γ ` ϕ
Γ,¬ϕ ` ⊥ ¬L

⇐: This time we have a derivation Γ,¬ϕ ` ⊥, So we get:

Γ,¬ϕ ` ⊥
Γ ` ϕ PBC

�

In the next lemma, we provide the version of the completeness theorem we are
going to prove. Notice that (1) actually implies completeness.

Lemma 31 The following statements are equivalent:

1. T |= ϕ implies T ` ϕ for all closed formulas ϕ and consistent theories T .

2. Every consistent theory has a relational model.

Proof.

1.⇒ 2.: T is consistent, i.e., T 6` ⊥, and by (1) we have T 6|= ⊥. This implies that
there is a relational model M so that M |= ψ for all ψ ∈ T and M 6|= ⊥.
Consequently, M is a relational model for T .

2.⇒ 1.: Assume T 6` ϕ. Then we have to show that T 6|= ϕ. By Lemma 30 the
theory T ∪ {¬ϕ} is consistent. From (2) we conclude that T ∪ {¬ϕ} has a
relational model M, i.e., M |= ψ for all ψ ∈ T and M |= ¬ϕ, i.e., T 6|= ϕ. �

In the following we are going to prove the statement in Lemma 31(2). We are
facing the problem that we have to construct a model for a given theory. The key
idea is to basically use the syntactic material itself, i.e., the universe is formed by
the variable-free or closed terms.

33

Lemma 32 Let T be a theory, and define the relation ∼s1,s2 on closed terms t1 and
t2 with the same type s1 → s2 by t1 ∼s1,s2 t2 iff T ` t1 = t2. Then ∼s1,s2 is an
equivalence relation, and we have

1. If t ∼s1,s2 t′ then t^ ∼s2,s1 t′^,

2. If t1 ∼s1,s2 t′1 and t2 ∼s1,s2 t′2 then t1 u t2 ∼s1,s2 t′1 u t′2,

3. If t1 ∼s1,s2 t′1 and t2 ∼s2,s3 t′2 then t1; t2 ∼s1,s3 t′1; t′2,

4. If t1 ∼s1,s′1 t
′
1, . . . , tn ∼sn,s′n t

′
n then f(t1, . . . , tn) ∼s,s′ f(t′1, . . . , t

′
n) for all n-ary

function symbols of type s→ s′, and

5. T ` p(t1, . . . , tn) iff T ` p(t′1, . . . , t′n) for all n-ary predicate symbols p.

Proof. The rule ` t = t shows that ∼s1,s2 is reflexive. Assume t1 ∼s1,s2 t2 and
t2 ∼s1,s2 t3. Then there are derivations T ` t1 = t2 and T ` t2 = t3. We get

T ` t2 = t3 T ` t1 = t2
T ` t1 = t3

=L

and, hence, t1 ∼s1,s2 t3, i.e., ∼ is transitive. Assume t1 ∼s1,s2 t2, i.e., there is a
derivation T ` t1 = t2. We get

T ` t1 = t2 ` t1 = t1
=R

T ` t2 = t1
=L

and, hence, t2 ∼s1,s2 t1, i.e., ∼s1,s2 is symmetric.
Now, assume t1 ∼s1,s′1 t

′
1, . . . , tn ∼sn,s′n t′n, i.e., there are derivations T ` t1 =

t′1, . . . , T ` tn = t′n. We get

t1 = t′1 f(t1, t2, . . . , tn) = f(t1, t2, . . . , tn)
=R

f(t1, t2, . . . , tn) = f(t′1, t2, . . . , tn)
=L

n− 1 additional applications of the rule =L shows T ` f(t1, . . . , tn) = f(t′1, . . . , t
′
n).

Properties (1),(2),(3) and (5) are shown analogously. �

In order to construct a model for a theory we first need to construct the underlying
allegory. Due to the previous lemma, the following structure is well-defined.

Definition 33 Let T be a theory. Then |HT | is defined as follows:

34

1. Obj|HT | is the class of closed object terms, i.e., object constant symbols,

2. For every pair of objects c1 and c2 a class of morphisms |HT |[c1, c2] exists. The
morphisms in |HT |[c1, c2] are [t](c1,c2) of type c1 → c2 where [t](c1,c2) denotes the
equivalence class of the term t with respect to ∼c1,c2,

3. IHT
c = [Ic](c,c),

4. [t]^(c1,c2) = [t^](c2,c1),

5. [t1](c1,c2); [t2](c2,c3) = [t1; t2](c1,c3),

6. [t1](c1,c2) u [t2](c1,c2) = [t1 u t2](c1,c2).

The next step is to show that |HT | is an allegory.

Lemma 34 Let T be a theory. Then |HT | is an allegory.

Proof. We are required to show that the properties in Definition 2 are valid in |HT |.
From the definition we get:

IHT
c ; [t](c,c′) = [Ic](c,c); [t](c,c′) = [Ic; t](c,c′)

By the axiom rules of calculus we have ` (∀a)(∀b)(∀r : a→ b)Ia; r = r , so we get
the following derivations:

T ` (∀a)(∀b)(∀r : a→ b)Ia; r = r

Ic; t = t ` Ic; t = t
Axiom

(∀r : c→ c′)Ic; r = r ` Ic; t = t
∀L (rel)

(∀b)(∀r : c→ b)Ic; r = r ` Ic; t = t
∀L (obj)

(∀a)(∀b)(∀r : a→ b)Ia; r = r ` Ic; t = t
∀L (obj)

T, (∀a)(∀b)(∀r : a→ b)Ia; r = r ` Ic; t = t
Weak

T ` Ic; t = t
Cut

This shows (Ic; t) ∼(c,c′) t, and, hence,[Ic; t](c,c′) = [t](c,c′).
Proof for the remaining cases are similar to the previous proof. �

Now we can define a model for theory T .

Definition 35 Let T be a theory. Then the Henkin-model [10] HT of T is defined
by:

35

1. |HT | is the allegory defined in Definition 33,

2. fHT ([t1](c1,c′1), . . . , [tn](cn,c′n)) = [f(t1, . . . , tn)](c,c′),

3. ([t1](c1,c′1), . . . , [tn](cn,c′n)) ∈ pHT iff T ` p(t1, . . . , tn).

Notice that in the Henkin-model we have VH(t)(σ) = [t] for all closed terms t
independent of σ.

The model above is not necessarily a model of the theory. It might not even be a
model because it is possible that the language does not have any closed terms, i.e.,
the underlying allegory of HT is empty. But if the theory and the language is strong
enough, then the Henkin-model is indeed a model of the theory.

Definition 36 A theory T is called

1. complete iff T ` ϕ or T ` ¬ϕ for all closed formulas ϕ.

2. a Henkin-theory iff

(a) for every closed formula (∃a)ϕ there is an object constant symbol c′ so
that T ` (∃a)ϕ→ ϕ[c′/a],

(b) for every closed formula (∃r : s1 → s2)ϕ there is a relational constant
symbol c so that T ` (∃r : s1 → s2)ϕ→ ϕ[c/r].

As mentioned earlier we have the following lemma.

Lemma 37 If T is a consistent and complete Henkin-theory, then HT is a model of
T .

Proof. First of all, we want to show that the universe |HT | is not empty. Since T
is a Henkin-theory we have T ` (∃a)Ia = Ia → Ico = Ico for an object constant co
so that |HT | has at least one object. If c1 and c2 are objects of |HT |, then we have
T ` (∃r : c1 → c2)r = r → cr = cr because T is a Henkin-theory. This implies that
[cr](c1,c2) is a morphism between c1 and c2.

36

In order to show the property that ϕ ∈ T implies HT |= ϕ we are going to prove
a stronger property. We are going to show

(*) HT |=σ[[t1]/r1]...[[tn]/rn] ϕ ⇐⇒ T ` ϕ[t1/r1] . . . [tn/rn]

for all formulas ϕ with free (object or relational) variables r1, . . . , rn, closed (object
or relational) terms t1, . . . , tn and environments σ. In the proof we are going to use
the abbreviations

−→
t for (t1, . . . , tn),
−→
t/r for [t1/r1] . . . [tn/rn]

and, similarly,
−→
[t],
−−→
[t]/r and

−−−→
σ̄(t)/r. With those conventions (*) reads

HT |=σ
−−−→
[[t]/r]

ϕ ⇐⇒ T ` ϕ
−−→
[t/r].

This is shown by induction.

ϕ = p(t′1, . . . , t
′
m): First of all, we have

VHT
(t′i)(σ

−−−→
[[t]/r]) = VHT

(t′i)(σ[
−−−−−−−−→
VHT

(t)(σ)/r])

= VHT
(t′i
−−→
[t/r])(σ) Lemma 23(2)

= [t′i
−−→
[t/r]]

for i ∈ {1, . . . ,m}. We conclude

HT |=σ
−−−→
[[t]/r]

p(t′1, . . . , t
′
m)

⇔ (VHT
(t′1)(σ

−−−→
[[t]/r]), . . . ,VHT

(t′m)(σ
−−−→
[[t]/r])) ∈ pHT

⇔ ([t′1
−−→
[t/r]], . . . , [t′m

−−→
[t/r]]) ∈ pHT above

⇔ T ` p(t′1
−−→
[t/r], . . . , t′m

−−→
[t/r])

⇔ T ` p(t′1, . . . , t′m)
−−→
[t/r].

ϕ = (t1 = t2) Similar to previous case.

ϕ = ⊥: In this case we have HT 6|= ⊥ and T 6` ⊥ since T is consistent.

37

ϕ = ¬ϕ′: We immediately conclude

HT |=σ
−−−→
[[t]/r]

¬ϕ′ ⇔ HT 6|=σ
−−−→
[[t]/r]

ϕ′

⇔ T 6` ϕ′
−−→
[t/r] induction hypothesis

⇔ T ` (¬ϕ′)
−−→
[t/r]. T complete

ϕ = ϕ1 ∧ ϕ2: In this case we have

HT |=σ
−−−→
[[t]/r]

ϕ1 ∧ ϕ2

⇔ HT |=σ
−−−→
[[t]/r]

ϕ1 and HT |=σ
−−−→
[[t]/r]

ϕ2

⇔ T ` ϕ1

−−→
[t/r] and T ` ϕ2

−−→
[t/r] induction hypothesis

⇒:

T ` ϕ1

−−→
[t/r] T ` ϕ2

−−→
[t/r]

T ` (ϕ1 ∧ ϕ2)
−−→
[t/r]

∧R

⇐:

T ` (ϕ1 ∧ ϕ2)
−−→
[t/r]

ϕ1

−−→
[t/r] ` ϕ1

−−→
[t/r]

ϕ1

−−→
[t/r], ϕ2

−−→
[t/r] ` ϕ1

−−→
[t/r]

Weak

T, ϕ1

−−→
[t/r], ϕ2

−−→
[t/r] ` ϕ1

−−→
[t/r]

Weak

T, (ϕ1 ∧ ϕ2)
−−→
[t/r] ` ϕ1

−−→
[t/r]

∧L

T ` ϕ1

−−→
[t/r]

Cut

T ` ϕ2

−−→
[t/r] is shown analogously.

ϕ = ϕ1 ∨ ϕ2: In this case we have

HT |=σ
−−−→
[[t]/r]

ϕ1 ∨ ϕ2

⇔ HT |=σ
−−−→
[[t]/r]

ϕ1 or HT |=σ
−−−→
[[t]/r]

ϕ2

⇔ T ` ϕ1

−−→
[t/r] or T ` ϕ2

−−→
[t/r] induction hypothesis

If T ` ϕ1

−−→
[t/r] then by using ∨R1 we conclude T ` (ϕ1∨ϕ2)

−−→
[t/r]. If T ` ϕ2

−−→
[t/r]

then by using ∨R2 we conclude same assertion. For the converse implication

we notice that T is complete, which implies T ` ϕ1

−−→
[t/r] or T ` ¬ϕ1

−−→
[t/r]. If

T ` ϕ1

−−→
[t/r] then T ` ϕ1

−−→
[t/r] or T ` ϕ2

−−→
[t/r] holds. If T ` ¬ϕ1 then we can

show T ` ϕ2

−−→
[t/r] by the following derivation:

38

T ` (ϕ1 ∨ ϕ2)
−−→
[t/r]

T ` ¬ϕ1

−−→
[t/r]

T, ϕ1

−−→
[t/r] ` ϕ2

−−→
[t/r]

¬L
T ` ϕ2

−−→
[t/r]

T, ϕ2

−−→
[t/r] ` ϕ2

−−→
[t/r]

Weak

T, (ϕ1 ∨ ϕ2)
−−→
[t/r] ` ϕ2

−−→
[t/r]

∨L

T ` ϕ2

−−→
[t/r]

Cut

ϕ = ϕ1 → ϕ2: In this case we have

HT |=σ
−−−→
[[t]/r]

ϕ1 → ϕ2

⇔ HT |=σ
−−−→
[[t]/r]

¬ϕ1 or HT |=σ
−−−→
[[t]/r]

ϕ2

⇔ T ` ¬ϕ1

−−→
[t/r] or T ` ϕ2

−−→
[t/r] induction hypothesis

⇒: We distinguish two cases:

Case T ` ¬ϕ1

−−→
[t/r]:

T ` ¬ϕ1

−−→
[t/r]

T, ϕ1

−−→
[t/r] ` ϕ2

−−→
[t/r]

¬L

T ` (ϕ1 → ϕ2)
−−→
[t/r]

→R

Case T ` ϕ1

−−→
[t/r]:

T ` ϕ2

−−→
[t/r]

T, ϕ1

−−→
[t/r] ` ϕ2

−−→
[t/r]

Weak

T ` (ϕ1 → ϕ2)
−−→
[t/r]

→R

⇐: T is complete, so T ` ¬ϕ1

−−→
[t/r] or T ` ¬ϕ1

−−→
[t/r]. If T ` ¬ϕ1

−−→
[t/r] then

T ` ¬ϕ1

−−→
[t/r] or T ` ϕ2

−−→
[t/r]holds. If T ` ϕ1 then we can show T ` ϕ2

−−→
[t/r] by

the following derivation:

T ` (ϕ1 → ϕ2)
−−→
[t/r]

T ` ϕ1

−−→
[t/r]

T ` ϕ2

−−→
[t/r]

T, ϕ2

−−→
[t/r] ` ϕ2

−−→
[t/r]

Weak

T, (ϕ1 → ϕ2)
−−→
[t/r] ` ϕ2

−−→
[t/r]

→L

T ` ϕ2

−−→
[t/r]

Cut

39

ϕ = (∃q : s1 → s2)ϕ
′: First of all, we have

HT |=σ
−−−→
[[t]/r]

(∃q : s1 → s2)ϕ
′

⇔ HT |=σ
−−−→
[[t]/r][[t′]/q]

ϕ′ for some [t′] ∈ |HT |

⇔ T ` ϕ′
−−→
[t/r][t′/q]]. for some closed term t′

by the induction hypothesis

It remains to show that the last property is equivalent to T ` ((∃q : s1 →
s2)ϕ

′)
−−→
[t/r]. The implication ⇒ follows by using the rule ∃R (rel). Conversely,

assume T ` ((∃q : s1 → s2)ϕ
′)
−−→
[t/r]. Since T is a Henkin-theory there is a

relational constant symbol c with T ` ((∃q : s1 → s2)ϕ
′)
−−→
[t/r] → ϕ′

−−→
[t/r][c/q].

Suppose A = ((∃q : s1 → s2)ϕ
′)
−−→
[t/r] and B = ϕ′

−−→
[t/r][c/q]. We conclude:

T ` A→ B

T ` A
T,A→ B ` A Weak

A ` A
B ` B
A,B ` B Weak

A,A→ B ` B →L

T,A,A→ B ` B Weak

T,A→ B ` B Cut

T ` B Cut

ϕ = (∃a)ϕ′: Similar to the previous case.

ϕ = (∀q : s1 → s2)ϕ
′: Similar to the previous case we get

HT |=σ
−−−→
[[t]/r]

(∀q : s1 → s2)ϕ
′

⇔ HT |=σ
−−−→
[[t]/r][[t′]/q]

ϕ′ for all [t′] ∈ |HT |

⇔ T ` ϕ′
−−→
[t/r][t′/q]. for all closed term t′

by the induction hypothesis

and it remains to be shown that the last property is equivalent to T ` ((∀q :

s1 → s2)ϕ
′)
−−→
[t/r]. ⇒: Assume T ` ϕ′

−−→
[t/r][t′/q] for all closed terms t′. Since

T is a Henkin-theory we have T ` ((∃q : s1 → s2)¬ϕ′)
−−→
[t/r] → (¬ϕ′)

−−→
[t/r][c/q]

for a relational constant symbol c. Let A = ((∃q : s1 → s2)¬ϕ′)
−−→
[t/r] and

40

B = (¬ϕ′)
−−→
[t/r][c/q]. We get:

T ` A→ B
T,A ` A→ B

Weak

A ` A
B ` B
A,B ` B Weak

A,A→ B ` B →L

T,A,A→ B ` B Weak

T,A ` B Cut

Let ψ denote ϕ′
−−→
[t/r],and q be a relation of type s1 → s2. So from the above

derivation we know T, (∃q)¬ψ ` ¬ψ[c/q]. We get:

T, (∃q)¬ψ ` ¬ψ[c/q]

T ` ψ[c/q]

T, (∃q)¬ψ ` ψ[c/q]
Weak

T, (∃q)¬ψ,¬ψ[c/q] ` ⊥ ¬L

T, (∃q)¬ψ ` ⊥ Cut

T ` ¬((∃q)¬ψ)
¬R

¬ψ ` ¬ψ
¬ψ ` (∃q)¬ψ ∃R (rel)

T,¬ψ ` (∃q)¬ψ Weak

T,¬ψ,¬((∃q)¬ψ) ` ⊥ ¬L

T,¬ψ ` ⊥ Cut

T ` ψ PBC

T ` (∀q)ψ ∀R (rel)

⇐:

T ` ((∀q : s1 → s2)ϕ
′)
−−→
[t/r]

ϕ′
−−→
[t/r][c/q] ` ϕ′

−−→
[t/r][c/q]

((∀q : s1 → s2)ϕ
′)
−−→
[t/r] ` ϕ′

−−→
[t/r][c/q]

∀L (rel)

T, ((∀q : s1 → s2)ϕ
′)
−−→
[t/r] ` ϕ′

−−→
[t/r][c/q]

Weak

T ` ϕ′
−−→
[t/r][c/q]

Cut

ϕ = (∀a)ϕ′: Similar to the previous case. �

It remains to show that every consistent theory can be extended to a consistent
and complete Henkin-theory. First, we want to show that just adding new constant
symbols does not have any effect on the consistency of a theory.

In order to distinguish different languages we denote by L(T) the language of T ,
i.e., L(T) = (Cobj, Crel, F, P) with Cobj the set of object constants, Crel the set of
relational constants, F the set of function symbols and P the set of predicate symbols.

41

We say that ϕ is a formula in the language L(T) iff ϕ just contains symbols from
Cobj, Crel, F and P .

Lemma 38 Let T be a theory, ϕ be a formula in the language L(T), and C ′rel and
C ′obj be a set of relational and object constant symbols with C ′obj, Cobj, C

′
rel, Crel and

F be pairwise disjoint. Then we have:

1. for all c1, . . . , cn ∈ C ′rel and relational variables r1, . . . , rn

T ` ϕ ⇐⇒ T ` ϕ[c1/r1] . . . [cn/rn].

2. for all c′1, . . . , c
′
n ∈ C ′obj and object variables a1, . . . , an

T ` ϕ ⇐⇒ T ` ϕ[c′1/a1] . . . [c
′
n/an].

Proof.

1. ⇒: Assume we have T ` ϕ. By using Lemma 27(3) n-times we get a derivation
T ` (∀r1, . . . rn)ϕ. We conclude:

T ` (∀r1, . . . , rn)ϕ

ϕ[c1/r1] . . . [cn/rn] ` ϕ[c1/r1] . . . [cn/rn]

T, ϕ[c1/r1] . . . [cn/rn] ` ϕ[c1/r1] . . . [cn/rn]
Weak

T, (∀r1)ϕ[c2/r2] . . . [cn/rn] ` ϕ[c1/r1] . . . [cn/rn]
∀L (rel)

.... repeat ∀L (rel) n-2 times
T, (∀r1, . . . , rn−1)ϕ[cn/rn] ` ϕ[c1/r1] . . . [cn/rn]

T, (∀r1, . . . , rn)ϕ ` ϕ[c1/r1] . . . [cn/rn]
∀L (rel)

T ` ϕ[c1/r1] . . . [cn/rn]
Cut

⇐: We are going to use a similar notion as in the proof of Lemma 37, and
we prove the following more general property for all formulas ψ1, . . . , ψm and
ϕ: Let c1, . . . , cn be the new relational constant symbols that occur in a

derivation T ∪ {ψ1

−−→
[c/r], . . . , ψm

−−→
[c/r]} ` ϕ

−−→
[c/r]. Then there is a derivation

T ∪{ψ1, . . . , ψm} ` ϕ. We are going to prove this property by induction on the
structure of the give derivation.

If the derivation is just an assumption, the formula ϕ
−−→
[c/r] is either in T or

equal to ψi
−−→
[c/r] for an i ∈ {1, . . . ,m}. In the first case the formula does not

contain any relational constant c since F ∩ Crel = ∅ so that ϕ
−−→
[c/r] is actually

42

equal to ϕ. In the latter case we conclude that ϕ = ψi since both formulas do
not contain any of the new constant symbols.

Cut: In this case we have derivations

T, ψ1

−−→
[c/r], . . . , ψm

−−→
[c/r] ` ϕ′,

T, ψ1

−−→
[c/r], . . . , ψm

−−→
[c/r], ϕ1, ϕ

′ ` ϕ
−−→
[c/r]

for some formulas ϕ′. In the extended language, ϕ′ may contain elements

from Crel. Therefore, ϕ = ϕ′′
−−→
[c/r]. By the assumption on the new constant

occurring in the derivation and the induction hypothesis we get derivations

T, ψ1, . . . , ψm ` ϕ′′,
T, ψ1, . . . , ψm, ϕ

′′ ` ϕ

By applying Cut rule we get T, ψ1, . . . , ψm ` ϕ
∧L: In this case we have the following derivation:

T, ψ1

−−→
[c/r], . . . , ψm

−−→
[c/r], ϕ1

−−→
[c/r], ϕ2

−−→
[c/r] ` ϕ

−−→
[c/r]

T, ψ1

−−→
[c/r], . . . , ψm

−−→
[c/r], ϕ1

−−→
[c/r] ∧ ϕ2

−−→
[c/r] ` ϕ

−−→
[c/r]

∧L

By induction hypothesis we get that T, ψ1, . . . , ψm, ϕ1, ϕ2 ` ϕ and by
applying ∧L to the last derivation we get T, ψ1, . . . , ψm, ϕ1 ∧ ϕ2 ` ϕ

The remaining cases are similar to the previous case.

2. can be shown analogously.

In particular, the previous lemma implies that T is consistent iff T is consistent
with respect to a language enriched by new constant symbols.

Definition 39 Let T be a theory in the language L(T). We define the following
languages and theories recursively:

1. L0 := L(T) and T0 := T .

2. Let C(rel)n+1 := {c(∃r:s1→s2)ϕ | (∃r : s1 → s2)ϕ a closed formula in Ln} and
C(obj)n+1 := {c′(∃a)ϕ | (∃a)ϕ a closed formula in the language Ln} be two sets of

new constant symbols, i.e., C(rel)n+1 ∩ Fn = C(obj)n+1 ∩ Fn = ∅. Then Ln+1 :=

43

Ln∪C(rel)n+1 ∪C(obj)n+1 and Tn+1 := Tn∪{(∃r : s1 → s2)ϕ→ ϕ[c(∃r:s1→s2)ϕ/r] |
c(∃r:s1→s2)ϕ ∈ C(rel)n+1} ∪ {(∃a)ϕ→ ϕ[c′(∃a)ϕ/a] | c′(∃a)ϕ ∈ C(obj)n+1}.

3. LH :=
⋃
i≥0

Li, and TH :=
⋃
i≥0

Ti.

Lemma 40 If T is a consistent theory, then TH is a consistent Henkin-theory.

Proof. First, we show by induction that every Tn is consistent. For n = 0 this
is trivial. Assume there is a derivation Tn+1 ` ⊥. Then there are m formulas
ψi = (∃ri : a → b)ϕi → ϕi[ci/ri] or ψi = (∃ai)ϕi → ϕi[c

′
i/ai] with i ∈ {1, . . . ,m}

so that the derivation above is actually a derivation Tn ∪ {ψ1, . . . , ψm} ` ⊥. Both
cases are exactly the same except when ψi = (∃ai)ϕi → ϕi[c

′
i/ai] we use ∃R (obj)

and ∃L (obj) instead of ∃R (rel) and ∃L (rel), so for simplicity we assume ψi is only
of form (∃ri : s1 → s2)ϕi → ϕi[ci/ri]. We also assume that the relational variables
r1, . . . , rm are different, otherwise we rename certain variables. By Lemma 26(2) we
get a derivation Tn ` ψ1 → (ψ2 → . . . (ψm → ⊥) . . .). Notice that ψi is of the form
ψ′i[ci/ri] with ψ′i = (∃ri)ϕi → ϕi a formula in the language Ln so that the previous
statement can be written as Tn ` ψ′1 → (ψ′2 → . . . (ψ′m → ⊥) . . .)[c1/r1] · · · [cn/rn].
Lemma 38 implies that there is a derivation Tn ` ψ′1 → (ψ′2 → . . . (ψ′m → ⊥) . . .)
in the language Ln, and, hence, Tn, ψ

′
1, . . . , ψ

′
m ` ⊥ using Lemma 26(2) again. The

following steps are repeated m times:
By Lemma 26(2) we get a derivation Tn, ψ

′
1, . . . , ψ

′
m−1 ` ψ′m → ⊥, and by Lemma

27(3) Tn, ψ
′
1, . . . , ψ

′
m−1 ` (∀rm : s1 → s2)(ψ

′
m → ⊥). By the following derivation we

get ` (∃rm)ϕm ∨ ¬(∃rm)ϕm.

(∃rm)ϕm ` (∃rm)ϕm
(∃rm)ϕm ` (∃rm)ϕm ∨ ¬(∃rm)ϕm

∨R

¬((∃rm)ϕm ∨ ¬(∃rm)ϕm), (∃rm)ϕm ` ⊥
¬L

¬((∃rm)ϕm ∨ ¬(∃rm)ϕm) ` ¬(∃rm)ϕm
PBC

¬((∃rm)ϕm ∨ ¬(∃rm)ϕm) ` (∃rm)ϕm ∨ ¬(∃rm)ϕm
∨R

¬((∃rm)ϕm ∨ ¬(∃rm)ϕm),¬((∃rm)ϕm ∨ ¬(∃rm)ϕm) ` ⊥ ¬L

¬((∃rm)ϕm ∨ ¬(∃rm)ϕm) ` ⊥ Cont.

` (∃rm)ϕm ∨ ¬(∃rm)ϕm
PBC

Consider the derivation of (∃rm : s1 → s2)ψ
′
m, and the combination of that derivation

and Tn, ψ
′
1, . . . , ψ

′
m−1 ` (∀rm : s1 → s2)(ψ

′
m → ⊥) given in Figure 4.5. This shows

that there is a derivation Tn, ψ
′
1, . . . , ψm−1 ` ⊥.

44

Figure 4.5: Derivation Tree for Tn, ψ
′
1, . . . , ψm−1 ` ⊥

L
et

Γ
=
T

n
,ψ
′ 1
,.
..
,ψ
′ m
−

1
an

d
r m

a
re

la
ti

on
al

va
ri

ab
le

of
ty

pe
s 1
→
s 2

.

`
(∃
r m

)ϕ
m
∨
¬(
∃r

m
)ϕ

m

ϕ
m
`
ϕ

m

ϕ
m
,(
∃r

m
)ϕ

m
`
ϕ

m
W

ea
k

ϕ
m
`

(∃
r m

)ϕ
m
→
ϕ

m
→

R

ϕ
m
`

(∃
r m

)(
(∃
r m

)ϕ
m
→
ϕ

m
)
∃R

(r
el

)

(∃
r m

)ϕ
m
`

(∃
r m

)(
(∃
r m

)ϕ
m
→
ϕ

m
)
∃L

(r
el

)

(∃
r m

)ϕ
m
`

(∃
r m

)ϕ
m

¬(
∃r

m
)ϕ

m
,(
∃r

m
)ϕ

m
`
ϕ

m
¬L

¬(
∃r

m
)ϕ

m
`

(∃
r m

)ϕ
m
→
ϕ

m
→

R

¬(
∃r

m
)ϕ

m
`

(∃
r m

)(
(∃
r m

)ϕ
m
→
ϕ

m
)
∃R

(r
el

)

(∃
r m

)ϕ
m
∨
¬(
∃r

m
)ϕ

m
`

(∃
r m

)(
(∃
r m

)ϕ
m
→
ϕ

m
)

∨L

`
(∃
r m

)(
(∃
r m

)ϕ
m
→
ϕ

m
)

C
ut

`
(∃
r m

)ψ
′ m

Γ
`

(∃
r m

)ψ
′ m

W
ea

k

Γ
`

(∀
r m

)(
ψ
′ m
→
⊥

)

ψ
′ m
→
⊥
`
ψ
′ m
→
⊥

(∀
r m

)(
ψ
′ m
→
⊥

)
`
ψ
′ m
→
⊥
∀L

(r
el

)

Γ
,(
∀r

m
)(
ψ
′ m
→
⊥

)
`
ψ
′ m
→
⊥

W
ea

k

Γ
`
ψ
′ m
→
⊥

C
ut

Γ
,ψ
′ m
`
ψ
′ m
→
⊥

W
ea

k

ψ
′ m
`
ψ
′ m

⊥
`
⊥

ψ
′ m
,⊥
`
⊥

W
ea

k

ψ
′ m
,ψ
′ m
→
⊥
`
⊥

→
L

Γ
,ψ
′ m
,ψ
′ m
→
⊥
`
⊥

W
ea

k

Γ
,ψ
′ m
`
⊥

C
ut

Γ
,(
∃r

m
)ψ
′ m
`
⊥
∃L

(r
el

)∗

Γ
`
⊥

C
ut

N
ot

e
th

at
th

e
ru

le
co

nd
it

io
n

fo
r

*
is

sa
ti

sfi
ed

si
nc

e
th

e
on

ly
fr

ee
va

ri
ab

le
in
ψ

i
is
r i

an
d

va
ri

ab
le

s
r 1
,.
..
,r

m
ar

e
di

ffe
re

nt
.

45

After m repetitions we end up with a derivation Tn ` ⊥, a contradiction to the
induction hypothesis that Tn is consistent.

Now, assume TH is not consistent. Since every derivation just uses finitely many
premises and every formula uses just finitely many symbols this derivation is a deriva-
tion Tn ` ⊥ for some n, a contradiction.

It remains to show that TH is a Henkin-theory. Assume that (∃r : s1 → s2)ϕ is
a closed formula in LH . Since the formula just contains finitely many symbols there
is an n so that (∃r : s1 → s2)ϕ is a closed formula in the language Ln. The theory
Tn+1 contains the formula (∃r : s1 → s2)ϕ→ ϕ[c/r] for a relational constant symbol
c so that TH ` (∃r : s1 → s2)ϕ→ ϕ[c/r] follows immediately. �

For the next step we assume that the closed formulas of the language are enu-
merated, and we denote by ϕn the n-th closed formula. This does not cause any
problems since the sets of variables, constant symbols, and function symbols, and,
hence, the set of formulas are countable.

Definition 41 Let T be a theory, and define the following theories recursively:

1. T0 := T .

2. Tn+1 :=

{
Tn ∪ {ϕn} if Tn ∪ {ϕn} is consistent,
Tn ∪ {¬ϕn} if Tn ∪ {ϕn} is inconsistent.

3. T c :=
⋃
i≥0

Ti.

Lemma 42 If T is a consistent Henkin-theory, then T c is a consistent and complete
Henkin-theory.

Proof. First, we want to show that each Tn is consistent. The case n = 0 is trivial.
Assume that Tn+1 is inconsistent. Then by the construction of Tn+1 the theory Tn is
inconsistent, a contradiction to the induction hypothesis.

Now, assume T c is inconsistent. Then there is a derivation T c ` ⊥. Since every
derivation use just finitely many premises this derivation is actually a derivation
Tn ` ⊥ for some n, a contradiction.

T c is Henkin-theory because T = T0 is, and the language was not modified.

Finally, for every closed formula ϕn we have ϕ ∈ Tn or ¬ϕn ∈ Tn so that T c is
complete. �

Now we are finally ready to prove the main theorem of this section.

46

Theorem 43 Every consistent theory has a model.

Proof. Let T be a consistent theory. Then the theory T cH , precisely (TH)c, is a
consistent and complete Henkin-theory. By Lemma 37 this theory has a model HT .
Let H′T denote the model derived from HT by restricting HT to the language of T ,
i.e., removing the interpretation of those symbols that are not in the language L(T).

Let ϕ ∈ T . Then ϕ ∈ T cH , and, hence, we have HT |= ϕ. Since ϕ is a formula in
the language L(T) we conclude H′T |= ϕ. �

47

Chapter 5

RelAPS

This chapter will discuss the extension of RelAPS to first order logic. We will start
by giving a brief overview of the system before the extension. We will then discuss
how the extended logic and its rules were implemented, and how to use the new
version of the application.

5.1 Overview of RelAPS

As mentioned before, the purpose of the RelAPS system is to provide an environment
where a user can perform a relation-algebraic proof similar to doing it using pencil
and paper. It is the responsibility of the user to complete the proof while the system
ensures that each individual proof step is executed properly.

The previous version of RelAPS system has several aspects that are worth men-
tioning. A user may define custom operations. The nullary operations are actually
the relational constant symbols we discussed in Chapters 2 and 3. The user defined
operations may be combined with arbitrary axioms to produce new theories which
represent the theories we introduced in Definition 29. The new theories can be saved
and selected next time when the application starts. The base theory of the system
is the theory of allegories which consists of the identity, converse, intersection and
composition operations. For more detail about the previous version refer to [7, 8].

48

However the system only accepts Horn-formulas. These are formulas of the form
(∀x1) . . . (∀xm)e1∧ . . .∧en → e where x1, ..., xm are relational or object variables and
the e1, ..., en, e are atomic formulas. Figure 5.1 is an example of valid and invalid
formulas.

Figure 5.1: Example of Valid and Invalid Formulas

When such a Horn-formula is entered, certain rules will be applied automatically,
namely ∀R (rel) and ∧L, until all formulas are split into atomic formulas. An atomic
formula is a formula that contains no logical connectives. Figure 5.2 shows the
previous example after the system removes its identifiers.

Figure 5.2: After Automatic Rules Applied

49

Suppose we want to prove the example above using the system. First we need
to split the equality formula into two inclusions Q; (R ∧ S) < Q;R ∧ Q;S and
Q;R ∧Q;S < Q; (R ∧ S). This could be done by selecting the entire formula in the
‘Assertion’ window and pressing the fourth button as shown in Figure 5.3. Figure
5.4 shows the system after splitting.

Figure 5.3: Splitting Equality to two Inclusions

Figure 5.4: Creating two Inclusions

The first inclusion is trivial since it is a property of allegories so we just need to
prove the second formula. By selecting the entire left hand side of the second inclusion
and pressing the ‘Derive’ button, the selection will be moved to the ‘Working Area’.
The ‘Working Area’ window is where the main part of the derivation is performed.

50

When a term is selected, a menu immediately pops up which displays the axioms,
assumptions, and theorems that may be applied to the current selection. Figure 5.5
is a screen shot of this process.

Figure 5.5: Selecting a Term

Figure 5.6 and Figure 5.7 show the derivation steps and the state of the system
after applying the derivation.

For more detail about how to use the previous version of RelAPS refer to [8].

Figure 5.6: Derivation Steps

51

Figure 5.7: Completed Proof

52

5.2 Extending RelAPS

The new version of RelAPS accepts first order formulas. During the proof the user
can apply any of the rules mentioned in Section 3.1. As shown in Figure 5.8 new
buttons have been added to the application interface for this purpose.

Figure 5.8: View of the New Version of RelAPS

5.2.1 A Manual for the System

The language of the new system is the same as the previous one except that the
new version accepts formulas containing ⊥. For simplicity we used symbol ‘%’ to

53

represent ⊥.

As in the previous version, the system has ‘Assertions’ and ‘Assumptions’ win-
dows. The ‘Assertions’ window displays the assertion of the current proof which is
the right hand side of ` in a derivation. The text area of the ‘Assertions’ window
simply displays the current state of the assertion being worked with. The user may
only work with one assertion at a time. This is specified by clicking the appropriate
assertion in the tree view of the ‘Proof Explorer’ window.

The ‘Assumptions’ window displays the assumptions that are associated with the
current proof. This corresponds with the sequence Γ on the left-hand side of `.
The buttons on the tool bar work in the same manner as before, with the excep-
tion of ‘Weakening’ and ‘Duplicate’ buttons. The ‘Weakening’ button implements
the Weakening rule by removing a selected assumption from the current proof. The
‘Duplicate’ button implements the Contraction rule by duplicating a selected as-
sumption. The text area of the ‘Assumptions’ window allows for the selection of
those parts of any assumption that user wish to modify. Multiple assumptions are
always in view in this window, and any of them may be selected at any time.

The buttons on the right side of ‘Working Area’ are used to apply derivation
rules, mentioned in Section 4.1, on the current proof. All derivation buttons are
disabled by default except PBC and Cut. The right hand rule buttons are enabled
based on subtree that has been selected in ‘Proof Explorer’. An appropriate left hand
rule button will be enabled when user selects an assumption in the ‘Assumptions’
window. Note that the Permutation rule is already implemented within the system
since the formulas in the ‘Assumption’ window can be selected freely, i.e., they are
not ordered. The Axiom rule is automatically checked by the system. In that step the
system actually checks whether the assertion is among the formulas in the assumption
window, i.e., the Weakening rule is implicitly used in this process.

In the following we give an example showing how the different components of the
system work. Suppose we want to prove the following formula.

{(∀a)(∀X : a→ a)(X;X = X ∧X^ = X)⇒
(∃b)(∃R : b→ a)(R;R^ = Ib ∧R^;R = X)} ⇒
{(∀a)(∀X : a→ a)(∀Y : a→ a)(X;X = X ∧X^ = X ∧X;Y = Y)⇒
(∃b)(∃Z : a→ b)(∃V : b→ a)Z;V = Y }.

54

ϕ
3
`
ϕ

1
ϕ

2
,ϕ

3
`
ϕ

4

ϕ
1
⇒
ϕ

2
,ϕ

3
`
ϕ

4
→

L

ϕ
1
⇒
ϕ

2
`
ϕ

3
⇒
ϕ

4
→

R

(∀
X

:a
→
a
)ϕ

1
⇒
ϕ

2
`
ϕ

3
⇒
ϕ

4
∀L

(r
el

)

(∀
a
)(
∀X

:a
→
a
)ϕ

1
⇒
ϕ

2
`
ϕ

3
⇒
ϕ

4
∀L

(o
b

j)

(∀
a
)(
∀X

:a
→
a
)ϕ

1
⇒
ϕ

2
`

(∀
Y

:a
→
a
)ϕ

3
⇒
ϕ

4
∀R

(r
el

)

(∀
a
)(
∀X

:a
→
a
)ϕ

1
⇒
ϕ

2
`

(∀
X

:a
→
a
)(
∀Y

:a
→
a
)ϕ

3
⇒
ϕ

4
∀R

(r
el

)

(∀
a
)(
∀X

:a
→
a
)ϕ

1
⇒
ϕ

2
`

(∀
a
)(
∀X

:a
→
a
)(
∀Y

:a
→
a
)ϕ

3
⇒
ϕ

4
∀R

(o
b

j)

((
∀a

)(
∀X

:a
→
a
)ϕ

1
⇒
ϕ

2
)
⇒

((
∀a

)(
∀X

:a
→
a
)(
∀Y

:a
→
a
)ϕ

3
⇒
ϕ

4
)
→

R

B
y

re
pl

ac
in

g
ϕ

1
,
ϕ

2
,
ϕ

3
an

d,
ϕ

4
by

ac
tu

al
fo

rm
ul

as
w

e
ge

t:

X
;X

=
X
∧
X

^
=
X
`
X

;X
=
X
∧
X

^
=
X

X
;X

=
X
∧
X

^
=
X
,X

;Y
=
Y
`
X

;X
=
X
∧
X

^
=
X

W
ea

k

X
;X

=
X
∧
X

^
=
X
∧
X

;Y
=
Y
`
X

;X
=
X
∧
X

^
=
X
∧L

A
nd

:

R
^

;R
=
X
`
R

^
;R

=
X

R
;R

^
=
I b
,R

^
;R

=
X
,X

;Y
=
Y
`
R

^
;R

=
X

W
ea

k
X

;Y
=
Y
`
X

;Y
=
Y

R
;R

^
=
I b
,R

^
;R

=
X
,X

;Y
=
Y
`
X

;Y
=
Y

W
ea

k

R
;R

^
=
I b
,R

^
;R

=
X
,X

;Y
=
Y
`
R

^
;R

;Y
=
Y

=
L

R
;R

^
=
I b
,R

^
;R

=
X
,X

;Y
=
Y
`

(∃
V

:b
→
a
)R

^
;V

=
Y
∃R

(r
el

)

R
;R

^
=
I b
,R

^
;R

=
X
,X

;Y
=
Y
`

(∃
Z

:a
→
b)

(∃
V

:b
→
a
)Z

;V
=
Y
∃R

(r
el

)

R
;R

^
=
I b
,R

^
;R

=
X
,X

;Y
=
Y
`

(∃
b)

(∃
Z

:a
→
b)

(∃
V

:b
→
a
)Z

;V
=
Y
∃R

(o
b

j)

R
;R

^
=
I b
,R

^
;R

=
X
,(
X

;X
=
X
∧
X

^
=
X

),
X

;Y
=
Y
`

(∃
b)

(∃
Z

:a
→
b)

(∃
V

:b
→
a
)Z

;V
=
Y

W
ea

k

R
;R

^
=
I b
,R

^
;R

=
X
,(
X

;X
=
X
∧
X

^
=
X
∧
X

;Y
=
Y

)
`

(∃
b)

(∃
Z

:a
→
b)

(∃
V

:b
→
a
)Z

;V
=
Y
∧L

(R
;R

^
=
I b
∧
R

^
;R

=
X

),
(X

;X
=
X
∧
X

^
=
X
∧
X

;Y
=
Y

)
`

(∃
b)

(∃
Z

:a
→
b)

(∃
V

:b
→
a
)Z

;V
=
Y
∧L

(∃
R

:b
→
a
)(
R

;R
^

=
I b
∧
R

^
;R

=
X

),
(X

;X
=
X
∧
X

^
=
X
∧
X

;Y
=
Y

)
`

(∃
b)

(∃
Z

:a
→
b)

(∃
V

:b
→
a
)Z

;V
=
Y
∃L

(r
el

)

(∃
b)

(∃
R

:b
→
a
)(
R

;R
^

=
I b
∧
R

^
;R

=
X

),
(X

;X
=
X
∧
X

^
=
X
∧
X

;Y
=
Y

)
`

(∃
b)

(∃
Z

:a
→
b)

(∃
V

:b
→
a
)Z

;V
=
Y
∃L

(o
b

j)

Figure 5.9: Derivation Tree for Example

55

In that formula, the assumption requires that the allegory has splittings. This
means that for every partial equivalence relation, there is the set of its equivalence
classes. A partial equivalence relation X is similar to an equivalence relation except
that it is not required to be reflexive. The required object b is the set of the existing
equivalence classes and R relates any such class with its elements in the set a. The
conclusion of the formula says that if you have such a partial equivalence relation
and a relation Y that respects the equivalence classes (X;Y = Y), then there is a
relation V relating the equivalence classes in the same way as Y .

Let ϕ1 = X;X = X∧X^ = X, ϕ2 = (∃b)(∃R : b→ a)(R;R^ = Ib∧R^;R = X),
ϕ3 = X;X = X ∧ X^ = X ∧ X;Y = Y and, ϕ4 = (∃b)(∃Z : a → b)(∃V :
b → a)Z;V = Y . Figure 5.9 shows corresponding derivation steps verifying that
implication. The first derivation is the starting point of the verification and the
second and third derivations are left and right sub trees of the first derivation.

Figure 5.10: Creating a New Derivation

56

To start proof by RelAPS, we first need to enter the formula to the system.
We can add it to the assertion window by using the ‘Start Proof’ button in the
‘Proof Explore’ window. Figure 5.10 shows the system after creating the initial
proof obligation.

As shown in Figure 5.10 the only enabled ‘Rule’ buttons are ‘ImplicationRight’,
‘CUT’, and ‘PBC’ which are the only legal rules for the current situation. By pressing
‘ImplicationRight’ button →R rule will be applied to the current state of the proof.
The right hand buttons are automatically enabled and disabled according to the right
hand formula of the current derivation. The application of other right hand buttons
are almost similar except ‘ExistsRelationRight’ and ‘ExistsObjectRight’ which we
will talk about later.

To enable left hand buttons, we have to select one of the formulas in the ‘As-
sumption’ window. Figure 5.11 shows how to select one of ‘Assumption’ window
formulas enabling the proper rule button.

Figure 5.11: Using Left Hand Rule Buttons

Some rules, like (→ L), create two subtrees. In order to complete the proof we
need to provide derivations for both the left and the right subtree. As shown in
Figure 5.12, after applying the (→L) rule two subtrees have been created in ‘Proof
Explore’. Figure 5.12 also shows that the left subtree has been verified only in one
step. This is because Axiom and Weakening rules are applied automatically by the
system.

57

Figure 5.12: a View of System After proving the Left Sub Tree

When applying either one of the ∃R (obj), ∃R (rel), ∀L (obj) and ∀L (rel) rules,
the user may need to replace a variable by a term. To do so, a new window will
appear where the user can enter the new term. Note that if a relational term is
being entered, the type of each relational variable has to be mentioned after it.
Otherwise the system will not accept the new term. Figure 5.13 shows examples of
acceptable relational terms.

Figure 5.13: Replacing Relational Variables by New Terms

As can be seen, there is no button for (=L) and (=R) rules. These rules can be
applied by using the ‘Working Area’ window. Figure 5.14 shows the last step of our
proof which is the application of (=L) rule.

58

Figure 5.14: Using Working Area Window for Applying (=L) Rule

Figure 5.15 shows the ‘Proof Explore’ window after completion of our proof. The
‘Tree View’ shows the right hand of derivations. Left formulas of each derivation
can be seen in the ‘Assumption’ window by selecting that derivation in the ‘Proof
Explore’ tree.

Figure 5.15: Complete Tree of Proof

59

5.2.2 Implementation

The RelAPS system has been developed by the Java programming language within
the NetBeans Interactive Development Environment. More specifically, version 1.5
of the Java Development Kit and version 4.1 of the NetBeans IDE has been used. In
order to extend RelAPS to first order logic, we have created some new classes and
also modified some existing classes of the code. In the following we review the main
changes in the code.

The main changes have happened in the ProofFactory, GUI and Formula pack-
ages. The classes in the ProofFactory package handle the application of the rules
while the GUI package handles necessary changes in the interface of the application.
For each derivation rule, one new class has been created in the ProofFactory package
as well as one button in the main frame of the application. For example, when user
applies the ∧R rule, first the ‘ApplyRule’ class, which is a static class in the Proof-
Factory package, splits the ‘and’ formula on the right hand side of the derivation into
two formulas and creates two new proofs using that formulas. After that, it adds
the assumptions of original formula to them and sends them back to GUI. Then the
classes in the GUI package update tree view of the ‘Proof Explorer’ window and the
‘Assumptions’ and ‘Assertion’ window.

In the Formula package, a class have been already defined for each type of for-
mulas, but some of their main methods like ‘isTrivial’, ‘subFormulas’, ‘update’ and
‘equals’ have not been fully implemented. Also to implement formulas that were
not in the previous system language, like the ones containing ⊥, some new classes
have been added to the hierarchy of classes with root ‘Formula’ class. In addition,
some methods have been modified for all classes to satisfy new requirements such as
finding or replacing a variable.

Other packages like FormulaParser, Terms, Rules and Operations have had some
minor modifications in order to be made compatible with other parts of the sys-
tem. For example classes ‘ObjectVar’ and ‘RelationalVar’ have been added to Terms
package, representing object and relational variables.

60

Chapter 6

Conclusions

In this chapter we want to briefly review the content of the thesis and compare it
with other theorem proving systems. Then we will motivate and suggest some ideas
for future work.

6.1 Summary and Related Works

We presented RelAPS, an interactive theorem proving system for relation algebra
which accepts first order formulas. It provides an environment where a user can
perform a relation-algebraic proof similar to doing it by hand. The main difference
between RelAPS and most proving systems is that the language of the system is
typed. The base theory of the system is the theory of allegories which provides
identity relations on each object and a converse, an intersection and a composition
operation for suitable typed relations. In addition, the system is capable of accepting
new theories by combining user defined operations with arbitrary axioms. The system
also includes a user friendly interface.

RelAPS is a stand alone system supporting manual proofs of theorems. Any proof
step performed is correct by design. However, currently the system is not capable of
any automatic derivation.

We started by introducing a formal language for allegories. We provided the
syntax and semantics of the language. The language has two different kinds of
terms; object terms and relational terms, where object terms are built from object
constant symbols and object variables, and relational terms from typed relational
constant symbols, typed relational variables, typed operation symbols and the regular
operations available in any allegory. Then we introduced a first order logic calculus
for relational categories. The calculus is formulated in a sequent style but with

61

exactly one formula on the right hand side. We also showed that the calculus is sound
and complete. The soundness proof has been done by induction on the structure of
the calculus rules. The completeness proof is based on Henkins’ completeness proof.
However, that proof had to be modified extensively since the language contains two
different kinds of terms and, more importantly, it is typed. Finally we gave a brief
overview about the system, how to use it and its implementation.

Many systems supporting theorem proving have been developed during the past
years. As a typical example for a fully automated system, we have chosen Prover9
[13]. Prover9 is an automated theorem prover for first order and equational logic.
Therefore, the language of the system is not typed. The typing contained in the the-
ory of allegories could be modeled by partial operations within an untyped language.
However, this would produce additional proof obligations verifying that all entities
are well defined. Due to its typed language and the corresponding type checker of
RelAPS this is already handled even before the user starts a proof. Prover9 also
works fully automatically. This feature is limited by the complexity of the property
to be verified, of course. The calculus used and the proofs generated are tailored for
automatic proving. As a consequence they are usually very hard to read for a human
being. RelAPS, on the other hand, uses a very intuitive version of natural deduction
that mimics human reasoning very closely.

In another project, a semi-automated proof system has been developed for basic
category-theoretic reasoning [11]. It is based on a first order sequent calculus that
captures the basic properties of categories, functors and natural transformations as
well as a small set of proof tactics that automate proof search in this calculus. Since
it is a automated system, it has similar problems as Prover9. Typing is not part of
its languages, hence, like Prover9, this would produce additional proof obligations.
The system is also based on fixed theory and no additional operations or theories can
be added to it. Therefore, it is not possible to work within the theory of allegories
since the system only supports basic category theory.

RALF [2] was designed as a special purpose proof assistant for heterogeneous
relation algebras with the goal of supporting proofs in a calculational style. There-
fore, its basic motivation and design was similar to RelAPS. RALF has a graphical
user interface which represents theorems as trees, i.e., every term is displayed as a
tree where the leaves are constants and variables and the nodes are the relational
operations. This makes some terms hard to read. Also, during the interactions, only
the current sub goal is visible. The system is based on a fixed axiomatization; the
axioms of a heterogeneous relation algebra. It is not possible to work with weaker
and/or stronger theories within the system. Furthermore, it is no longer supported
and there is no working version any longer available.

62

RALL [12] is another theorem proving system for heterogeneous relation alge-
bra which has the ability of automatic proving for small theorems. It uses the
Isabelle/HOL type system to support reasoning within abstract heterogeneous rela-
tion algebras with minimal effort. However, RALL limits itself to reasoning within
representable relation algebras. The system works by translating relation-algebraic
formulas into higher-order logic. As a consequence the system is incomplete. More-
over, this method cannot be applied to weaker structures like allegories. A further
consequence of this method is that the proofs generated are proofs of the translated
formulas within a fully automated system. One can easily imagine that they are
extremely hard to read.

6.2 Future Work

There is plenty of further work that can be performed to develop the capabilities of
this system and to improve its performance. The main focus in the future should be
on automating some proof steps, particularly very basic steps. Certain sub theories
of allegories, such as the equational theory, are known to be decidable. Once it
has been implemented, the system could suggest to the user that the current proof
obligation is in a certain sub theory that can be decided. If the user chooses to let
the system finish the proof, the corresponding algorithm is used to find that proof.

More flexible user-defined operations are also another necessity. Currently there
are no function definitions for object terms and the user only can define relational
functions. In addition, function symbols could take a mixture of relational and
object terms as parameters which would be useful for relational constructions such
as splittings. User defined predicate symbols have not been implemented either,
i.e., the only defined predicate symbols are ‘<’, ‘>’, and ‘=’. The user cannot
specify anymore predicate symbols at the moment. As in Definition 6.3, user defined
predicate symbols are part of our language, and hence implementing this feature is
another essential future work.

Producing LATEX output of the proofs is another possible project. A researcher
could use the system to prove theorems while automatically being checked for cor-
rectness and use the LATEX output for publications.

63

Bibliography

[1] Asperti A., Longo G.: Categories, Types, and Structures. Foundation of Com-
puting Series MIT Press (1991).

[2] Berghammer R., Hattensperger C., Schmidt G.: RALF:A Relation Algebraic For-
mula manipulation system and proof checker. In: Nivat M., Rattray C., Rus T.,
Scollo G. (Eds.), Proc. 3rd Conference on Algebraic Methodology and Software
Technology, Workshops in Computing, Springer Verlag, 407-408 (1994).

[3] Enderton H.B.: Mathematical Introduction to Logic (2nd edition). Hartcourt
Academic Press (2001).

[4] Freyd P., Scedrov A.: Categories, Allegories. North-Holland (1990).

[5] Gentzen G.: Untersuchungen über das logische Schließen I. Mathematische
Zeitschrift 39 (2), 176-210 (1934).

[6] Gentzen G.: Untersuchungen über das logische Schließen II. Mathematische
Zeitschrift 39 (3), 405-431 (1935).

[7] Glanfield J.: Towards Automated Derivation in the Theory of Allegories. MSc.
Thesis, Brock University (2008).

[8] Glanfield J.: Relaps: A Proof Assistant for Relational Categories.
http://www.joelglanfield.com/relaps.

[9] Gödel K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls.
Monatshefte für Mathematik 37, 349-360 (1930).

[10] Henkin L.: The Completeness of the First-Order Functional Calculus. Journal
of Symbolic Logic 14, 159-166 (1949).

[11] Kozen D., Kreitz C., Richter E.: Automating Proofs in Category Theory. IJCAR
2006, Springer Verlag, 392-407 (2006).

64

[12] Oheimb D.V., Gritzner T.F.: RALL: Machine Supported Proofs for Relation
Algebra. In: W. McCune, ed., Conference on Automated Deduction, CADE 14,
LNCS 1249, Springer, 380-394 (1997).

[13] McCune W.: Prover9: Automated Theorem Prover for First Order and Equa-
tional Logic. http://www.cs.unm.edu/∼mccune/prover9.

[14] Schmidt G., Hattensperger C., Winter M.: Heterogeneous Relation Algebras.
In: Brink C., Kahl W., Schmidt G. (eds.), Relational Methods in Computer
Science, Advances in Computing Science, Springer Vienna (1997).

[15] Schmidt G., Ströhlein T.: Relationen und Graphen. Springer (1989); English
version: Relations and Graphs. Discrete Mathematics for Computer Scientists,
EATCS Monographs on Theoret. Comput. Sci., Springer (1993).

[16] Tarski A.: On the Calculus of Relations, J. Symbolic Logic 6, 73-89 (1941).

[17] Winter M.: A new Algebraic Approach to L-Fuzzy Relations Convenient to
Study Crispness. INS Information Science 139, 233-252 (2001).

[18] Winter M.: Goguen Categories - A Categorical Approach to L-Fuzzy Relations.
Trends in Logic 25, Springer (2007).

65

