
Rough set data analysis

1.0

Ivo Düntsch�

School of Information and Software Engineering

University of Ulster

Newtownabbey, BT 37 0QB, N.Ireland

I.Duentsch@ulst.ac.uk

Günther Gediga�

FB Psychologie / Methodenlehre

Universität Osnabrück

49069 Osnabrück, Germany

Guenther@Gediga.de

June 28, 1999

1 Introduction

Rough set data analysis (RSDA), developed by Z. Pawlak and his co–workers in the early 1980s

[47] has become a recognised and widely researched method with over 1100 publication to date [54,

Appendix 1]. The conceptual foundation of the RSDA model is the consideration that all perception

is subject to granularity, and that the ability to classify is at the root of human intelligence:

“Our claim is that knowledge is deep–seated in the classificatory abilities of human be-

ings and other species. For example, knowledge about the environment is primarily man-

ifested as an ability to classify a variety of situations from the point of view of survival

in the real world: : : Classification on more abstract levels, seems to be a key issue in

reasoning, learning and decision making, not to mention that in science classification it is

of primary importance too.” [48]

The main thrust in current applications of rough set theory are

� Attribute reduction,

� Rule generation,

� Prediction.
�The ordering of authors is alphabetical, and equal authorship is implied.

1



Table 1: The position of RSDA in Soft Computing [35]

Microscopic, primarily numeric Macroscopic, descriptive and numeric

Deductive Chaos theory Fuzzy methods

Inductive Neural networks, genetic algorithms RSDA

Many examples of applications of RSDA to process control, economics, medical diagnosis, biochem-

istry, environmental science, biology, chemistry psychology, conflict analysis and other fields can be

found in [30, 54, 69]. For further information of developments up to 1999, we recommend the list

given in [25].

RSDA is generally regarded as part of the “Soft Computing” paradigm, and in a recent book [35],

it is treated as one of the five key “non traditional AI areas” (Table 1). However, while other soft

methods require additional model assumptions such as the representability of the collected sample,

prior probabilities, fuzzy functions, or degrees of belief, RSDA is unique in the sense that it is“non

– invasive” i.e. that it uses only the information given by the operationalised data, and does not rely

on other model assumptions. In other words, instead of using external numbers or other additional

parameters, rough set analysis utilises solely the structure of the given data:

“The numerical value of imprecision is not pre-assumed, as it is in probability theory of

fuzzy sets - but is calculated on the basis of approximations which are the fundamental

concepts used to express imprecision of knowledge: : : As a result we do not require that

an agent assigns precise numerical values to express imprecision of his knowledge, but

instead imprecision is expressed by quantitative concepts (approximations). [48]

In this sense, RSDA, as a measurement process, can be regarded as “nominal scaling” [74]. In order to

position RSDA in the data modelling process, we follow [19] in assuming that a data model consists

of

1. The “acting subject”.

2. A domainD of interest chosen by the agent.

3. An empirical systemE , which consists of a body of data and relations among the data, and a

mappinge : D ! E , calledoperationalisation.

4. A numerical modelM, and a mappingm : E !M, calledrepresentation.

As we can see in Fig. 1, the acting subject with her/his objectives is the central part of the modelling

process, and the first, and, possibly, major factor of subjectivity: Agents choose an operationalisation

according to their objectives and their subjective view of the world. This is a fact which is encountered

by any method of data analysis: Operationalisation is necessary to be able to talk about a domain, but it
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Figure 1: The data modelling process
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raises two questions; first, whether the elements and relations of the result of the operationalisation, i.e.

the empirical modelE , are representative for the domainD (consistency problem), another whether

the choice of features covers the relevant aspects ofD (completeness problem).

The next step, the numerical models, are a reduction of the empirical model, and thus of the domain of

interest; going from the empirical to the numerical model, often results in further decontextualisation.

We invite the reader to consult [83, Section 2] for further comments on the relationship of RSDA to

numerical models.

RSDA takes place on the level of the empirical model, and the main motto of RSDA is

LET THE DATA SPEAK FOR THEMSELVES:(1.1)

An operationalisation of the type

OBJECT 7! ATTRIBUTE(S)

relationship in form of a data table is supposed to be given (with all its underlying assumptions), and

subsequent analysis uses only the information contained in this table. This is in contrast to most sta-

tistical (or other) analysis methods. Even the bootstrap technique, which is discussed in the rough

set context in [75] needs additional model assumptions, because one has to suppose that the percent-

ages of the observed equivalence classes are representative estimators of the latent probabilities of the

equivalence classes in the population.

We shall see below that dependencies and decision rules are always extracted (or learned) from ex-

isting systems, and they are not part of the design process as is the case, for example, with relational

databases.

Since the field of RSDA has grown rapidly within the past five years, and there are many ramifications

and generalisations, it is impossible to describe in detail every thread in the area, and we will have to

be content to outline the major issues and developments.

The paper is structured as follows: We will start by describing the basic RSDA model, its mathematical

foundations, and its knowledge representation in some detail. We will then describe how RSDA

tackles major issues of data analysis:
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� Attribute reduction and rule generation,

� Significance testing and rule validation,

� Model selection,

� Data discretisation, including grouping of qualitative values.

This is followed by a brief description of further development in RSDA. We conclude with a summary

and an outlook to further development.

2 The basic model of RSDA

The mathematical machinery of RSDA is derived from the assumption that granularity can be ex-

pressed by partitions and their associated equivalence relations on the set of objects, also calledindis-

cernability relationsin this context.

Suppose thatU is a nonempty set. Apartitionor classificationof U is a familyP of nonempty subsets

of U such that

Each element ofU is contained in exactly one element ofP :(2.1)

Recall that anequivalence relation� on a setU is a reflexive, symmetric, and transitive binary relation

onU , i.e. for allx; y; z 2 U , we have

x�x; Reflexivity

x�y impliesy�x; Symmetry

x�y andy�z imply x�z: Transitivity

Each partitionP induces an equivalence relation� onU by setting

x�y () x andy are in the same class ofP :(2.2)

Conversely, each equivalence relation� onU induces a partitionP of U whose classes have the form

�x = fy 2 U : x�yg:

By some abuse of language, we also speak of the classes of an equivalence relation when we mean

the classes of its associated partition, and call�x the class ofx modulo�. The interpretation in rough

set theory is that our knowledge of the objects inU extends only up to membership in the classes of

�, and our knowledge about a subsetX of U is limited to the classes of� and their unions. This leads

to the following definition: ForX � U , we say that

X
def
=
[
f�x : �x � Xg(2.3)
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Figure 2: Rough approximation

is thelower approximationor positive region of X, and

X
def
=
[
f�x : x 2 Xg(2.4)

is theupper approximationor possible regionof X .

If X � U is given by a predicateP andx 2 U , then

1. x 2 X means thatx certainlyhas propertyP ,

2. x 2 X means thatx possiblyhas propertyP ,

3. x 2 U nX means thatx definitelydoes not havepropertyP .

Thearea of uncertaintyextends over

X nX;

and thearea of certaintyis

X [ �X:

A rough subsetof U is a pairhX;Xi, whereX � U . A subsetX of U is calleddefinableif X = X .

In this case,X is empty or a union of equivalence classes of�, and the area of uncertainty is;. An

equivalent – and, possibly, more transparent – way of describing the information given byhU; �i is

to consider pairshX;�Xi; this gives the area of positive certainty in the first component, and that

of negative certainty in the second one, and it is closer to the machine learning situation of positive

and negative examples. It also avoids certain statistical difficulties which arise when using the upper

approximation.

It has been shown that the collection of all rough subsets ofU can be made into a regular double

Stone algebra [6, 10, 24, 56], and that these algebras can serve as semantic models for three valued
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Table 2: Fisher’s Iris data [18]

Sepal Sepal Petal Petal
Object

length width length width
Class

s1 50 33 14 2 1

s2 46 34 14 3 1

s3 65 28 46 15 2

s4 62 22 45 15 2

s6 67 30 50 17 3

s7 64 28 56 22 3

<143 other specimen>

Łukasiewicz logic [9]. The connections between algebra and logic of rough set systems are explored

in some detail in [45]. A different logical approach to the rough set model is given by [41] and [31]:

There, the lower approximation is considered a necessity operator2 , and the upper approximation a

possibility operator3.

It may be also worthy of mention that RSDA can be interpreted in Shafer’s evidence theory [60] in

such a way that beliefs are obtained internally from the lower approximation of a set, and plausibility

from its upper approximation [61, 63].

3 Knowledge representation

Knowledge representation in RSDA is done via information systems, which are a form of data table.

More precisely, aninformation systemI = hU;
; Vq; fqiq2
 consists of

1. A finite setU of objects,

2. A finite set
 of attributes,

3. For eachq 2 


� A setVq of attribute values,

� An information functionfq : U ! Vq.

Table 2 which shows part of the famous Iris data [18] is an example of such a system:U consists of

150 specimen of Iris flowers; there are five attributes, namely,sepal length, sepal width, petal length,

petal width, and an attributeclass. The setsVq of attribute values for the first four attributes consist of

lengths, measured in millimetres, and the attributeclasstakes its values from the setf1; 2; 3g, which
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code the speciesSetosa, Versicolor, Virginica. We think of the descriptorfq(x) as the value which

objectx takes at attributeq; thus, for example,

fsepal length(s1) = 50; fpetal length(s2) = 14; fclass(s3) = 2:

What we have above is, in fact, adecision system: Besides four independent features, there is a

dependent decision attributeclass.

We observe that in information systems, each valuefq(x) is unique, and there can be no missing

values. A generalisation of the information system above are themulti–valued information systems,

introduced in [44]. There, the information functions take on set values, i.e. for eachq 2 
 andx 2 U ,

fq(x) � Vq:

These can cater for non–deterministic information and null values. We refer the reader to [43] for a

more detailed description of multi–valued information systems and their algebraic and logical prop-

erties.

4 Attribute reduction and rule generation

The discovery of data dependencies and the reduction of the number of attributes is one of the major

topics in data mining. As we shall see below, RSDA offers purely structural methods to achieve both.

In the sequel, we letI = hU;
; Vq; fqiq2
 be a generic information system. As a running example, we

shall use the decision system of credit card applications shown in Table 3. We let
 = fc1; c2; c3; c4g,

and consider the decision attribute separately.

Table 3: Credit card applications

Condition attributes
c1 c2 c3 c4 d

Applicant
Account Balance Employed Monthly outgoing Decision

a1 bank medium yes low accept

a2 bank low yes high reject

a3 none low yes medium reject

a4 other high yes high accept

a5 other medium yes high reject

a6 other high yes low accept

a7 bank high no medium accept

a8 none low no low reject

Attribute reduction in RSDA is achieved by comparing equivalence relations generated by sets of

attributes. With eachQ � 
 we associate an equivalence relation�Q onU by

x�Qy if and only if fq(x) = fq(y) for all q 2 Q.
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Intuitively, x�Qy if the objectsx andy are indiscernible with respect to the values of their attributes

fromQ. It is not hard to see that forP;Q � 


P � Q implies�Q � �P :

Thus, the finest equivalence relation obtained this way is�
, and�; is the universal relationU � U .

The partition of�
 in our system of Table 3 (without the decision attributed) is the identity relation;

all eight applicants are pairwise distinguishable by the given attributes.

We use these equivalence relations to express dependency among attribute sets in the following way:

Suppose thatP;Q � 
; P is calleddependent on Q– written asQ ) P – if �Q � �P . In this

case, every class of�P is a union of classes of�Q, so that membership in a class of�Q determines

membership in a class of�P . In other words, the partition ofU induced byP can be expressed by the

partition induced byQ, so that the world according toP is coarser than the world according toQ. If

P = fpg, we usually just writeQ) p.

A setP � Q � 
 is called areduct ofQ, if

1. �P = �Q,

2. For eachR ( P we have�R 6= �Q.

In other words,P � Q is a reduct ofQ, if P is minimal among all subsets ofQ which generate

the same classification asQ; the attributes within a reduct are independent, and none of them can be

omitted for the description ofQ. Reducts produce deterministic rules. It is not hard to see, that each

Q � 
 has a reduct, though this is usually not unique. The intersection of all reducts ofQ is called

thecore ofQ, written ascore(Q), and the elements of the core ofQ are calledindispensablefor Q.

If q 2 Q, andq is not an element of any reduct ofQ, then we callq redundant forQ. If Q = 
 we

just speak ofreducts ofI, core ofI etc. The set of all reducts ofI is denoted byRed(I). Reducts

correspond to keys of a relational database; consequently, as was pointed out in [57] the problem of

finding a reduct of minimal cardinality is, in general, NP-hard, and finding all reducts has exponential

complexity [66].

A transparent method to find the core and the reducts of an information systemI via discernibility

matrices was given in [66]: Define adiscernibility functionÆ : U � U ! 2
 by

Æ(a; b)
def
= fq 2 
 : fq(a) 6= fq(b)g:(4.1)

The functionÆ leads to a pseudo-metric, since

a = b impliesjÆ(a; b)j= 0:(4.2)

jÆ(a; b)j= jÆ(b; a)j:(4.3)

jÆ(a; c)j � jÆ(a; b)j+ jÆ(b; c)j:(4.4)

If �
 is the identity, then the converse of (4.2) holds as well, and the assignmentha; bi 7! jÆ(a; b)j is

a metric.

Now,
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Proposition 4.1. [66]

1. The core ofI is the set

fq 2 
 : Æ(a; b) = fqg for somea; b 2 Ug:

2. P � 
 is a reduct ofI if P is minimal with respect to the property

P \ Æ(a; b) 6= ;

for all a; b 2 
; Æ(a; b) 6= ;.

The discernibility matrix of the system of Table 3 without the decision attribute is given in Table 4.

Table 4: Discernibility matrix

1 2 3 4 5 6 7 8

1 �� c2; c4 c1; c2; c4 c1; c2; c4 c1; c4 c1; c2 c2; c3; c4 c1; c2; c3

2 �� �� c1; c4 c1; c2 c1; c2 c1; c2; c4 c2; c3; c4 c1; c3; c4

3 �� �� �� c1; c2; c4 c1; c2; c4 c1; c2; c4 c1; c2; c3 c3; c4

4 �� �� �� �� c2 c4 c3; c4 c1; c2; c3; c4

5 �� �� �� �� �� c2; c4 c1; c2; c3; c4 c1; c2; c3; c4

6 �� �� �� �� �� �� c1; c3; c4 c1; c2; c3

7 �� �� �� �� �� �� �� c1; c2; c4

The entriesh4; 5i; h4; 6i show that the core of the systemI is fc2; c4g, andh5; 6i shows that this the

also the only reduct ofI.

The relations among the classes of the equivalence relations associated with attribute sets can be used

to generate decision rules; for notational simplicity, we suppose that we have a setQ = fq1; : : : ; qng

of independent attributes, and a single dependent attributed; this is no restriction of generality, since

we are using only the partition information of�d, and thus,d can be a “composite attribute”, obtained

from someP � 
.

We assume that the partition induced by�Q isfX1; : : : ; Xsg, and the one induced by�d isfY1; : : : ; Ytg.

With eachXi we associate the setMi = fYj : Xi \ Yj 6= ;g. Since the setsY1; : : : ; Yt partitionU ,

we see that

If x 2 Xi; thenx 2 Yj1 or : : : or x 2 Yji(j) ;(4.5)

whereMi = fYj1 ; : : :Yji(j)g. Now recall that each classXi of �Q corresponds to a feature vector

(aj)1�i�n, wherex 2 Xi if and only if fq1(x) = a1 and: : : andfqn(x) = an; similarly, x 2 Yj if
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and only iffd(x) = bj for somebj 2 Vd. If we translate condition (4.5), this leads to a rule of the

form

If fq1(x) = a1 and: : : andfqn(x) = an; thenfd(x) = bj1 or : : : or fd(x) = bji(j) :(4.6)

It follows that RSDA rules are able to express deterministic as well as indeterministic information: If

some classXi of �Q intersects exactly oneYj , thenXi � Yj , and the value ofd of anyx 2 Xj is

uniquely determined; otherwise,fd(x) may be in any class contained inMi, and we have a proper

disjunction on the right hand side of (4.6). A classXj is calleddeterministic, if it is contained in some

Yj , otherwise, we call itindeterministic. If all classesXj are deterministic, then, clearly,�Q � �d,

andd is dependent onQ. We will writeQ! d for the collection of rules (4.5), and, with some abuse

of language callQ! d a rule of the information systemI.

Let us consider again our example of Table 3. IfQ = fc2g andd is the decision attribute, we have

X1 = fa1; a5g; X2 = fa2; a3; a8g; X3 = fa4; a6; a7g

Y1 = fa1; a4; a6; a7g; Y2 = fa2; a3; a5; a8g:

X2 andX3 are deterministic classes, whileX1 is not, and we obtain the following decision rules with

respect tod:

If bank balance is medium, then accept or reject:(4.7)

If bank balance is low, then reject.(4.8)

If bank balance is high, then accept.(4.9)

By taking into account attributec4 we can splitX1 in �c2 ;c4 , and refine rule (4.7) by

If bank balance is medium and monthly expense is low then accept, otherwise, reject.(4.10)

By usingc1 andc2, we obtain another rule system:

If bank balance is medium and account is bank then accept, otherwise, reject.(4.11)

We refer the reader to [21, 22, 62, 71, 85] for various methods to generate RSDA rules.

5 Approximation measures

Even though RSDA is a symbolic method of analysis, it uses counting information provided by the

classes of the equivalence relations under consideration. The inherent statistics of an approximation

spacehU; �i are the twoapproximation functions

�(X)
def
=

jXj+ j�Xj

jU j
;(5.1)

��(X)
def
=

jXj

jXj
(for X 6= ;);(5.2)
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see [48], p. 16ff. If� is understood, we shall usually omit the subscripts.

�(X) is the percentage of objects ofU which can be correctly classified with the knowledge given by

� as being inX or not, while��(X) expresses the degree of completeness of our knowledge ofX . It

was shown in [15] that the approximation is a manifestation of the underlying statistical principle of

RSDA, namely, theprinciple of indifference: Within each equivalence class, the elements are assumed

to be randomly distributed.

We can generalise the approximation functions to partitions with more than two classes in the follow-

ing way: As a measure of thequality of an approximationof a partitionP by a setQ of attributes we

define(Q! P) by

(Q! P) =

P
X2P jX�Q

j

jU j
;(5.3)

In caseP is induced by�P for someP � 
, we will write (Q ! P ) instead of(Q ! P). If

X 2 P , thenX�Q
is the set of all elements ofX that are correctly classified with respect to the

attributes inQ, and(Q! P) is the ratio of the number of all certainly�P – classified elements ofU

with the information provided by the attributes inQ to the total number of elements ofU . Note that

Q) P implies(Q! P ) = 1.

Suppose that forQ;P � 
, Q is a reduct ofP , so thatQ ) P , andQ n fqg 6) P for anyq 2 Q.

In rough set theory, the impact of attributeq on the fact thatQ) P is usually measured by the drop

of the approximation function from 1 to (Q n fqg ! P ): The larger the difference, the more

important one regards the contribution ofq to the rule [48, p.58].

While the approximation quality measures the global classification success in terms of the equiv-

alence classes, one can use the same principle for elements and definerough membership functions

[49]: For eachX � U , let�X : U ! [0; 1] be a function defined by

�X(x) =
j�x \X j

j�xj
:(5.4)

It is easy to see that for allX; Y � U ,

�X(x) =

8<
:
1; iff x 2 X;

0; iff x 62 X;
(5.5)

�UnX(x) = 1� �X(x);(5.6)

�X[Y (x) � max(�X(x); �Y (x));(5.7)

�X\Y (x) � min(�X(x); �Y (x)):(5.8)

The cases, where equality holds in (5.7) and (5.8) - and when, consequently,�X is a fuzzy membership

function, as well as an efficient algorithm to compute rough membership functions are given in [49].

Unlike fuzzy membership, the�X values are obtained from the internal structure of the data, and no

outside information is needed.
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Rough sets and fuzzy sets are geared towards different situations: While at the heart of RSDA is the

concept of granularity, mathematically expressed by classes with crisp boundaries, within which no

information is available, fuzzy sets describe vagueness of a concept where boundaries among classes

are ill–defined. Frameworks to combine the two points of view have been proposed, among others, in

[7, 70, 82]. Hybrid systems, where RSDA is used as a pre-processing device for fuzzy methods have

been given, for example, in [50, 72]

6 Rule significance and validation

In the early development of RSDA, the static point of view was predominant: Reducts which were

obtained from one sample of data were studied, along with the contribution of single attributes, mea-

sured by the drop of the approximation quality, e.g. [68, 73]. Over time, it became clear, however,

that for prediction, i.e. the classification of new elements, these tools were not well suited and other

measures had to be found.

“The rough set methods developed so far are not always sufficient for extracting laws

from decision tables. The set of all decision rules generated from all conditional attributes

can be too large and/or can contain many chaotic rules not appropriate for unseen object

classification” [1].

Indeed, a re-analysis of the results of [68] and [73] showed that not all the claimed rules were useful,

and that some potentially valuable rules were overlooked [12].

Any rule based system faces the problems ofrule significanceandrule validity. Whereas significance

tests measure the probability that a rule is due to chance, i.e. random behaviour, validation of a rule

system investigates, how well the particular hypothesis, expressed by the rule, is replicable. Clearly,

both problems need to be addressed before RSDA can claim to be a fully fledged instrument for data

analysis and prediction. Of particular interest are those significance testing and validation procedures

which stay within the non–invasive RSDA paradigm of (1.1), and do not rely on extra model assump-

tions.

One might suppose that the approximation quality is a suitable tool, since it measures classification

success; however, it has been shown in [12], that a high approximation quality is not a guarantee

that the result of a rough set analysis is either significant or valid. If, for example, rough set analysis

discovers a rule of the formQ) d, and if the rule is based on only a few observations, classification

may be due to chance. A similar observation can be made with regard to the influence of one attribute

in a set of independent attributes.

A solution of the significance problem was given in [12] on the basis of randomisation procedures.

These are particularly appropriate to RSDA as a non–invasive method, since they do not require any

representability assumption and use only the information of the given sample [17, 33]. A special case

of the procedures developed in [12] is the investigation of the contribution of single attributes on a
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ruleQ ! d; an attributeq 2 Q is calledconditionally casual, if, loosely speaking, there are only a

few observations in whichq is needed to predictd. Removing conditionally casual attributes reduces

the overfitting of data which is common in the traditional RSDA approach based on.

Significance of a rule is a minimal but necessary requirement for evaluating the predictive power of a

ruleQ ! d. To test the prediction quality of a rule, additional validation is needed. Rule validation

in RSDA is usually performed by customary cross–validation methods. It can be seen, however, that

the jackknife validation (“leave-one-out”) may result in an overly optimistic estimation of prediction

success [3]. Another problem with this method, particular to RSDA, is the case when the element

which is left out can only be predicted by its own rule. In this case, invasive techniques such as

the adoption of metric information (Hamming distance, Euclidean distance etc.) need to be applied,

which assume more than the data itself tell us, and are outside the RSDA paradigm (1.1).

A non-invasive validation technique is based on a significance test [12]. The reasoning behind the

method is the assumption that prediction success should not depend on the way the data set is split up

into a training and a testing set: A new attribute SPLIT is added and randomly distributed over half

of the data set. If SPLIT is� significant in more than� � 100% of the simulated data sets, then the

split is not random, and the prediction success is dependent on the choice of training and testing set.

It follows that the rule cannot be validated.

7 Model selection

Attribute reduction is an inherent feature of RSDA, and usually has no unique solution. If several

attribute sets exist from which prediction is possible, then the problem arises which of these are most

suitable by some predefined criterion. We will present two very different recent methods of model

selection. The first one is selection bydynamic reducts[1]:

“The underlying idea of dynamic reducts stems from the observation that reducts gener-

ated from information systems are unstable in the sense that they are sensitive to changes

in the information system introduced by removing a randomly chosen set of objects. The

notion of dynamic reduct encompasses the stable reducts, i.e. reducts that are the most

frequent reducts in random samples created by subtables of the given decision table” [65].

For I = hU;
; Vq; fq; diq2
 andU 0 � U 0, we callI0 = hU 0;
; Vq; fq; diq2
 a subsystem ofI. If F

is a family of subsystems ofI, then

DRed(I;F) = Red(I)\
\
fJ : J 2 Fg(7.1)

is called thefamily ofF-dynamic reducts ofI. It is easily seen that in most cases, this is too restrictive

for practical use, and thus, a threshold is introduced: Let0 � � � 1. The family of (�;F)-dynamic

reducts ofI is defined by

D�Red(I;F) = fQ 2 Red(I) : 1� � � sF(Q)g(7.2)
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where

sF(Q) =
jfJ 2 F : Q 2 Red(J )gj

jFj
(7.3)

is theF- stability coefficient ofQ. Model selection proceeds in four steps:

1. Choose numbersn, kj ; j � n; 1 � kj �
jU j
2

, and a threshold�.

2. For each1 � j � n generate a subsystemIj of I by randomly deleting akj objects ofU , and

setF = fIj : 1 � j � ng.

3. Find the reducts forIand eachIj .

4. Choose all reductsQ with 1� � � sF(Q) for further processing.

From these “true dynamic reducts”, decision rules for classification are computed, and the final deci-

sion is taken by “majority voting”.

The method of dynamic reducts employs a kind of internal cross-validation in order to improve the

external prediction quality. We observe that the researcher has to make some subjective choices in step

1. of the procedure, which are not contained in the data. The huge complexity of step 3. forces appli-

cations of heuristic techniques, such as combinatorial or genetic algorithms. Extensive experiments

reported in [2] show that the dynamic reduct approach fares considerably better than the traditional

RSDA method and compares well with customary procedures. For extensions of the method and

similar approaches we refer the reader to [2, 40, 65].

A different approach, reported in [14], does not rely on reducts at all – thus leaving the traditional

RSDA way of reducing feature complexity – and uses information theoretic techniques and the mini-

mum description length principle [58, 59]. The model selection criterion is an entropy valueH(Q!

d) which aggregates

� The complexity of coding the hypothesisQ, measured by the entropyH(Q) of the partition of

its associated equivalence relation�Q and

� The conditional coding complexityH(djQ) of d, given by the values of attributes inQ,

so that

H(Q! d) = H(Q) +H(djQ):(7.4)

The valueH(Q! d) is obtained in the following way: Suppose that�Q generates the partition ofU

with classesMi; i � k, each having cardinality mi. In compliance with the principle of indifference –

the statistical basis of RSDA – we suppose that the elements ofU are randomly distributed within the

classes, so that the probability of an elementx being in classMi is justmi

jU j . This leads to a probability

distributionf�̂i : i � kg defined by

�̂i =
mi

jU j
:
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Suppose that the unionV of deterministic classes ofQ ! d is not empty, and that the deterministic

classes areM1; : : : ;Mc. The underlying idea is the consideration that each observationy 2 U n V

is the result of a random process whose characteristics are unknown; therefore, each suchy should

be viewed as a realization of an unknown probability distribution with uncertainty1

n
log2(jU j). This

observed probability distribution is given byf ̂i : i � c+ jU n V jg with

 ̂i
def
=

8<
:
�̂i; if i � c;

1

jU j
; otherwise:

(7.5)

We now define theentropy of rough prediction(with respect toQ! d) as

H(Q! d)
X
i

 ̂i � log2(
1

 ̂i
)

and have

H(Q! d) =
X
i�c

�̂i � log2(
1

�̂i
) + jU n V j �

1

jU j
� log2(jU j)

=
X
i�c

�̂i � log2(
1

�̂i
)

| {z }
Knowledge

+ (1� ) � log2(jU j)| {z }
Guessing

:

where = (Q! d). This gives us

H(djQ) = H(Q! d)�H(Q)

= (1� ) � log2(jU j)�
X
i>c

�̂i � log2(
1

�̂i
):

The importance ofH(Q ! d) is due to the fact that it aggregates the uncertaintyH(djQ) and the

effort H(Q) of coding the hypothesis, i.e. the predicting elements. Thus, one can compare different

attribute setsQi in terms of a common unit of measurement, which cannot be done by a condi-

tional measure of prediction success such as approximation or dynamic reducts. Furthermore, there

are no additional parameters required, so that the method is well in accord with the RSDA basic

principle (1.1). The model selection (and attribute reduction) process SORES (SearchingOptimal

RoughEntropySets) compares well with standard numerical methods, without using invasive model

assumptions. Detailed results can be found in [14] and on the websitehttp://www.psycho.

uni-osnabrueck.de/sores/ .

It is worthy of mention that these methods are universal, and they take place before ad hoc tuning for

specific situation can be applied.

8 Data discretisation

Attributes with continuous values pose a severe problem for RSDA, indeed, for any rule based data

analysis method: If there are many values, the equivalence classes belonging to the attribute set in
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question may have many small classes, and a rule will be based on a few instances only. Therefore,

its significance will be low, and its ability to classify new objects is rather limited. There are many

methods to discretise a continuous domain, most of which require additional parameters and model

assumptions, and thus, are outside the rough set paradigm. We invite the reader to consult [37, 38, 64]

for such methods in the context of RSDA.

The general claim that RSDA is not applicable to most real life problems, because it cannot han-

dle continuous variables is not supported by recent research results [3], and [36, 37, 39] show that

RSDA can be supplemented by numerical discretisation procedures. The success of applications of

fuzzy controlling, which also requires discretisation of continuous data, shows that the distinction

of “continuous data” vs. “discrete data” does not necessarily imply that there is a need for different

“continuous methods” , respectively, “discrete methods”, to handle these different types of data.

A filtering procedure which uses only internal information has been put forward in [13]. The main

idea is to collect attribute values within one attribute domain, which do not split a class of the decision

attribute; the procedure makes makes no use of the ordering of attribute values. For example, if there

is a rule

If q = 1.2 orq = 4.6 orq = 4.7, thend = green,

then one can collect 1.2, 4.6, and 4.7 into a single attribute value ofq. Formally, the descriptor function

fq : U ! Vq is replaced by a functionf 0q : U ! 2Vq .

The important feature of this procedure is that the internal dependency structure of the system is kept

intact, and that no additional parameters are needed. Nevertheless, this simple “nominal” filtering

method is surprisingly powerful, as its application to the Iris data set (Table 2) shows: Table 5 gives

the filtering for the data. There, for example, the sepal length values 43 – 48 and 53 are collected

into one common value 46; in this attribute, filtering reduces the number of classes from 35 to 22.

Observe the large reduction in the number of classes of the petal attributes. Extensions of this method

to multi-attribute filtering can be found in [79, 80].

9 Extensions and variations of RSDA

In this section we will briefly describe other directions into which RSDA has branched, some of which

are only beginning to be investigated.

Thevariable precision rough set model(VPRS), introduced in [83], is a generalisation of the original

RSDA in the direction of relaxing the strict boundaries of equivalence classes; it assumes that rules

are only valid within a certain part of the population, and it is able to cope with measurement errors:

“Hypotheses derived from sample data should not: : : be based only on error – free clas-

sification rules observed in the sample data. Also, partially incorrect classification should

be taken into account. Any partially incorrect classification rule provides valuable trend
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Table 5: Filtering of Iris data [3]
No of classes

Attribute Filter
Before After

Sepal length: 43–48, 53! 46

66,70! 70 35 22

71–79! 77

Sepal width: 35, 37, 39–44! 35 23 16

20, 24! 24

Petal length: 10–19! 14

30–44,46,47! 46 43 8

50, 52, 54–69! 50

Petal width: 1–6! 2

10–13! 11 22 8

17, 20–25! 17

information if the majority of available data to which such a rule applies can be correctly

classified” [83].

The first step in the VPRS analysis is a numerical form of set inclusion in analogy to the rough

membership function of (5.4). IfX; Y � U , then therelative classification error ofX with respect to

Y is the value

c(X; Y ) =

8<
:
1� jX\Y j

jX j ; if X 6= ;;

0; otherwise.
(9.1)

We now choose a tolerance threshold0 � � � 0:5 and set

X
�

� Y () c(X; Y ) � �:(9.2)

Given an approximation spacehU; �iwe define lower and upper� – approximation in analogy to (2.3)

and (2.4) by

X�

def
=
[
f�x : �x

�

� Xg(9.3)

X
� def
=
[
f�x : c(�x;X) � �g:(9.4)

In this spirit, one can define a� – dependent approximation quality(Q
�
! P ), and� – approximate

rules. Details can be found in [83], and some application examples in [84].

The advantage of the VPRS is that it uses only two parameters, the external precision parameter�

and the internal approximation quality, to describe the quality of a rule system; its disadvantages

are that precision and are partially exchangeable, and that there is as yet no theoretical background

to judge which combination is best suited to the data.
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A much more general form of “rough inclusion” was proposed in [51] which is modelled after Le´s

niewski’s mereology [28, and also the reprint [29]]. Mereology is an alternative to set theory which

avoids the pitfalls of Russel’s paradox. Unlike set theory, which distinguishes between2 and�, its

only connective is a “part of” relationP , which is assumed to be asymmetric, and transitive; thus,P

is a strict partial order. It has been recognised that mereology is often more suitable as a language for

reasoning about complex objects than first order logics based on Cantorian set theory; applications of

mereological systems arise, for example, in spatial reasoning [4, 78] and natural language processing

[32].

A model of rough mereologyis a structureM = hX; �; n; Fui, such thatX is a collection of objects,

� : X � X ! [0; 1] a function, andn 2 X ; we denote byX+ the setX n fng. Furthermore,

Fu : 2X
+
! X is a function, calledfusion, such that

x = Fu(U)() (8z 2 X+y)[�(z; x) = 1)

(9w 2 U; t 2 X+)(�(w; z) = 1 ^ �(w; t) = 1 ^ �(t; x) = 1)]:
(9.5)

There are the following axioms:

(8w 2 X)[�(n; w) = 1 ^ (�(w; n) = 1) �(n; w) = 0)]:(9.6)

For allx; y; z 2 X ,

�(x; x) = 1;(9.7)

�(x; y) = 1) �(z; y) � �(z; x):(9.8)

The distinguishednwill be referred to as thenull element1. The function� is called arough inclusion,

and it is interpreted as “x is part ofy to degree�(x; y)”. An example is the function�U : 2U � 2U !

[0; 1] defined by

�(X; Y ) =

8<
:

jX\Y j
jXj ; if X 6= ;;

;; otherwise.
(9.9)

It is shown in [51] that rough mereology extends classical mereology, and that, furthermore,

“ : : : we can interpret rough inclusions as global fuzzy membership functions on the

universe of discourse which satisfy certain general requirements responsible for their

regular mathematical properties.”.

Rough inclusions are the basis for reasoning about the synthesis of complex systems from their simpler

parts and have widespread applications, for example, computer-aided design, re-engineering, and

distributed problem solving. We invite the reader to consult [65] for an overview of recent results in

this area.
1It may be interesting to remark, that Le´sniewski was vehemently opposed to the introduction of a null element, [see e.g.

29, p.18ff].
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Table 6: State complexity
# of attributes

# of attr. 10 20 30
values

log10 (states)

2 3.01 6.02 9.03

3 4.77 9.54 14.31

4 6.02 12.04 18.06

5 6.99 13.98 20.97

It has been argued that the condition of transitivity for an indiscernibility relation is too strong, viz.

the “Sorites Paradox” [34]. Thus, similarity relations, which are reflexive and symmetric, but not

necessarily transitive, have been studied inside RSDA in some detail (for example, in rough mereol-

ogy), and many of the notions of indiscernibility based RSDA have been translated and adjusted to

the new situation [23, 27, 55, 67]. The logical structure of the resulting systems has been investigated

in [26, 76, 77].

Ordinal prediction takes into account numerical information of the domain of the decision attribute;

its rules predict intervals rather than unique values and are of the form

If fq(x) = a : : : , thena � fd(x) � b,

wherea; b 2 Vd are real numbers. A rough set approach to ordinal prediction has been given in [11],

and a similar problem, applied to the rough approximation of a preference relation, has been studied

in [20].

We also should like to mention that the rough approximation of relations is of considerable impor-

tance, for example, in social choice, preference relations, or spatial reasoning [5, 6, 8, 16, 81].

10 Concluding remarks

RSDA is the analysis of data based purely on the description of granularity expressed by equivalence

relations on the object setU , where the only explicit model assumption is the operationalisation of

data in form of an information system designed by a researcher. In that, RSDA differs from most other

data analysis methods, and this is where its strengths, but also its weaknesses lie. The strength of re-

quiring no outside parameters is that the method is applicable (and, indeed, applied) to all situations

in which data is given in the RSDA operationalisation of information systems. In most cases, real life

problems have few data points with respect to state complexity, and show many attribute dependen-

cies (Table 6). Therefore, traditional statistical models are not always optimal tools for knowledge

discovery because of their model assumption of representativeness of the sample, and their sensitiv-

ity to irrelevant features. In these cases, RSDA can serve as a useful pre-processing tool, removing
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superfluous attributes and, with the ROUGHIAN extensions, suggesting validated rules and models on

an objective and global basis, i.e without any tuning for a particular application.

If useful and validated background knowledge is available, then the use of hybrid methods, with

RSDA as a basis, has proved to be rather successful. In particular, the combination of rough and fuzzy

methods turns out to be a powerful tool for soft data analysis, and we invite the reader to consult the

collection [46] for a more detailed description and many exemplary case-studies.
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