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In symbolic data analysis, high granularity of information may lead to
rules based on a few cases only for which there is no evidence that they
are not due to random choice, and thus have a doubtful validity.
We suggest a simple way to improve the statistical strength of rules ob-
tained by rough set data analysis by identifyingattribute values and inves-
tigating the resulting information system. This enables the researcher to
reduce the granularity within attributes without assuming external struc-
tural information such as probability distributions or fuzzy membership
functions.
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1 Introduction

Major aims of data analysis are to discover which features or attributes are relevant
for data description and/or prediction, and to filter out the irrelevant ones. A sym-
bolic approach to achieve these aims is Rough Set Data Analysis (RSDA) which
has been developed by Z. Pawlak and his co–workers since the early 1980s, and has
recently received wider attention as a means of data mining, cf [10]. The original
view behind the rough set model was the observation that
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The information about a decision is usually vague because of uncer-
tainty and imprecision coming from many sources . . . Vagueness may
be caused by granularity of representation of the information. Granular-
ity may introduce an ambiguity to explanation or prescription based on
vague information [14].

The rough set model is intended to be a structural, non–numerical method of infor-
mation analysis; quantitative aspects are of only secondary interest.

Knowledge representation in the rough set model is done via information systems
which are a tabular form of an OBJECT → ATTRIBUTE VALUE relationship. An
example which we will use to demonstrate our approach is given in Table 12 .

We interpret this information system as follows:

– x1, . . . , x8 are persons.
– The attributem is a combined measure of medical indicators for the risk of a

heart attack, whilep is a combined measure of psychological indicators, see e.g.
[2,15].

– The values of the risk measures are

(1) NO RISK,
(2) SMALL RISK ,
(3) MEDIUM RISK,
(4) HIGH RISK,
(5) VERY HIGH RISK.

– The decision variable H is interpreted as the observation of a heart attack within
a predefined time span, and we code

1 – HEART ATTACK, 0 – NO HEART ATTACK

What is given in Table 1 is often called “raw data”. These are unfiltered measure-
ments of attributes within the domain under investigation. However, it can be ar-
gued that there is no such thing as observed “raw data”: Which attributes are cho-
sen, and which measurements are used, are pragmatic decisions by researchers,
how they want to represent the dependencies of real life criteria in the best possible
way.

In other words, following [8], we adopt the attitude that

– THE RESEARCHER’ S CHOICE OF ATTRIBUTES AND MEASUREMENTS ARE PART OF

THE MODEL BUILDING PROCESS AND OF THE DATA ANALYSIS.

2 Tables are placed at the end of this paper
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RSDA is therefore a conditional data analysis strategy, dependent on the choice of
attributes and measurement models. The relevance of the chosen attributes and their
measurement can be tested by statistical techniques. In [5] we have developed two
simple procedures, both based on randomization techniques, which evaluate the
validity of prediction based on the approximation quality of attributes of rough set
dependency analysis. These procedures seem to be particularly suitable to the soft
computing approach of RSDA as a data mining tool which is data driven, and does
not require outside information. In particular, it is not assumed that the information
system under discussion is a representative sample. The reader is invited to consult
[7] or [11] for the background and justification of randomization techniques in these
situations.

It follows that – like other types of data analysis – RSDA needs a preprocessing step
which results in data which is suitable for further analysis. This preprocessing step
should be part of the measurement procedure; although highly desirable in certain
situations – for example when a system has an empty core or when the obtained
rules are based on a few observations –, it seems that it has not yet been addressed
as an integral part of rough set analysis.

In this paper we shall show that some of the pragmatic aspects of measurement
– say, how to choose an attribute coding to produce valid prediction rules – can
be investigated in the context of RSDA. Our main tool will bebinary information
systems; these are data tables in which every column has only two values.

The organization of the paper is as follows: The next section will give the formal
definitions of information systems and the apparatus needed for rough set depen-
dency analysis; we exhibit some structural properties of binary information sys-
tems, and describe a procedure how to associate a binary information system with
a general information system. We then apply these instruments to reduce granula-
tion of attribute measurements in order to obtain a higher strength of prediction in
terms of the statistical significance test of [5].

The procedures discussed below – e.g. the statistical evaluation of rules and the
simple data filtering described in this paper – are implemented in our rough set
engine GROBIAN [6] which we have used for the numerical calculations.

2 Knowledge representation

An information systemis a tupleI = 〈U, Ω, Vq , fq〉q∈Ω, where

– U is a finite set of objects,
– Ω is a finite set of attributes (features)
– For eachq ∈ Ω,

3



· Vq is a set of attribute values forq,
· Eachfq : U → Vq is aninformation function.

To avoid trivialities, we assume that eachVq has at least two elements.

With each subsetQ of Ω we associate an equivalence relationθQ onU by setting

x ≡θQ
y ⇐⇒ fq(x) = fq(y) for all q ∈ Q.(1)

We shall usually writeθq instead ofθ{q}, and, more generally, will identify single-
tons with the element they contain, if no confusion can arise. The partition associ-
ated withθQ is denoted byP(Q).

GivenQ, P ⊆ Ω, each classX of θQ intersects one or more classesYi, i ≤ kX , of
θP . This leads toQ, P – rulesof the form

Deterministic: x ∈ X → x ∈ Y0.
Indeterministic: x ∈ X → x ∈ Y0 ∨Y1 . . .∨YkX

, wherekX > 0, andX ∩Yi 6= ∅
for i ≤ kX .

X ∈ P(Q) is calledP–deterministic(or just deterministicif P is understood) if
it is contained in a class ofP . We useQ → P for the conjunction over allQ, P
– rules, and callQ → P deterministicif all Q, P – rules are deterministic. In this
case, we writeQ ⇒ P , and we have a set of rules with which we can locally replace
P by Q.

The approximation qualityγ(Q → P ) of a ruleQ → P is defined as

γ(Q → P ) :=

∑ |{X ∈ P(Q) : X is P–deterministic}|
|U | .(2)

This is the cardinality of the positive region ofP with respect toQ, cf [13]. Note
thatQ ⇒ P if and only if γ(Q → P ) = 1.

GivenP ⊆ Ω, of particular interest in rough set dependency theory are those at-
tribute setsQ which are minimal with respect to the property thatQ ⇒ P . A set
Q with this property is called arule reduct3 of P . If P = Ω, we callQ simply a
reduct. Thecoreof I – denoted bycore(I) – is he intersection of all reducts ofΩ.
It is not hard to see, that eachP ⊆ Ω has a rule reduct, though this need not be
unique. In rough set theory, the core elements are deemed essential for the knowl-
edge representation, and an empty core indicates a high substitution rate among the
attributes. This may be due to incomplete preprocessing of the “raw data” which
results in an information system in which the granularity is still too high. We shall
discuss this problem in Section 4.

3 This differs from the usual definition of reduct, see [13]
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It may be worth to point out that forming of rule reducts is a procedure local to the
attribute sets involved. In particular, reducts ofΩ or its core only describe how the
finest partition ofU – induced by the whole system – can be obtained by (possibly)
fewer features than all ofΩ. In algebraic terms, a rule reductQ of P corresponds
to one concrete inclusion in{θR : R ⊆ Ω}, and affects onlyθP . The statement
“attributes in a reduct can replace the whole attribute set” is not globally true, since
only one equation in the whole semilattice of induced equivalence relations inU is
addressed.

3 Binary information systems

If the value rangeVq of an attribute has exactly two elements,q is called abinary
attribute; if each attribute is binary,I is called abinary information system.

There is a long standing tradition (for example [1,9]) to distinguish betweensym-
metricandasymmetricbinary attributes. In an asymmetric attribute, the valuesVq of
an attributeq are based on an indicator function whose value we set asVq = {0, 1}:
If fq(x) = 1 we have an indicator for the existence of a feature – e.g. the appearance
of a symptom or the presence of a certain colour – whereasfq(x) = 0 indicates that
we know nothing aboutx with respect to the attributeq.

Suppose that the researcher has identified the setΩD of asymmetric binary at-
tributes (which may be empty), and thatVq = {0, 1} for everyq ∈ ΩD. With I we
associate a binary information systemIB = 〈U, ΩB , {0, 1}, fB

q 〉q∈ΩB as follows:

First, letΩM := Ω \ ΩD, and then set

ΩB := {〈q, v〉 : q ∈ ΩM , v ∈ ran(fq)} ∪ ΩD,

whereran(fq) denotes the set of values offq.

Note thatΩ ∩ ΩB = ΩD. The information functionsfB
t are defined as follows: If

t ∈ ΩD, thenfB
t := ft. Otherwise, there areq ∈ ΩM , v ∈ Vq such thatt = 〈q, v〉,

and we set

fB
t (x) :=




1, if fq(x) = v,

0, otherwise.

In this case, we say that the binary attributet belongs to the classf−1
q (v) of θq.

A similar construction which, however, does not distinguish between symmetric
and asymmetric binary attributes was given in [12].

Table 2 shows the binarization of the example given in Table 1. For better readabil-
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ity we have writtenmi resp.pi instead of〈m, i〉, resp.〈p, i〉. Furthermore, because
prediction in rough set analysis does not take into account (a)symmetry in the de-
cision attribute(s), we describeH simply by its symmetric version.

In going fromI to IB, the core is reduced unlessI = IB, as we shall show below.
First, we quote a result from [3]:

Lemma 1 LetJ be an information system with attribute setΩ. Then,

p ∈ core(J ) if and only ifθΩ ( θΩ\{p}

Proposition 2 core(IB) = core(I) ∩ ΩD.

PROOF. “⊆”: Let t ∈ core(IB), and assume thatt = 〈q, v〉 ∈ ΩM . By Lemma
1 there arex, y ∈ U such thatfB

s (x) = fB
s (y) for all s ∈ ΩB \ {t}, andfB

t (x) 6=
fB

t (y). Assume w.l.o.g. thatfq(x) = v, fq(y) = w, andv 6= w. Then,s := 〈q, w〉 ∈
ΩB \ {t}, and hence,

fB
s (x) = fB

s (y) = 1, i.e. fq(x) = fq(y) = w,

a contradiction; thus,core(IB) ⊆ ΩD.

If q ∈ core(IB) andq 6∈ core(I), thenθΩ = θΩ\{q}, and it follows from the fact that
q is binary thatθΩB\{q} = θΩB . This contradictsq ∈ core(IB).

“⊇”: Let q ∈ core(I) ∩ ΩD. If q 6∈ core(IB), then, as above,

θΩ = θΩB = θΩB\{q} = θΩB\{q},

contradictingq ∈ core(I). 2

4 Granularity analysis using binary information systems

Binarization suggests a way to reduce the number of values of an attribute with-
out loss of dependency information in a specific situation, and at the same time
increase the statistical significance of the generated rules. We exemplify our proce-
dure in this section, and then present the theoretical background and the statistical
justification in the following sections.

Consider again the information systemI1 given in Table 1. One easily sees that
θ{m,p} is the identity relationidU onU , and therefore we have the rule

{m, p} ⇒ H.
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One the other hand, the statistical rough set analysis of [5] shows that the chance
to obtain this dependency by a random process is close to 100%. This is surprising,
because the dependency

High medical and high psychological risk leads to heart attack

is obviously present. But note that the latter statement uses far less information
thanI1 gathers: There are only the two risk values{high, not high}. If we recode
the risk values accordingly, we obtain the information systemI2 of Table 3.

We still have the dependency{m, p} ⇒ H; the statistical analysis, however, shows
that the chance to get the same result by random is about 2.8%. Hence, this depen-
dency can be considered significant. The higher statistical strength of the prediction
given inI2 is due to fact that the risk groups 1, 2, and 3 are identified, as well as
the 4 and 5 risk groups. The differences within these risk groups are neglected, and
only the difference between the risk groups remains as a characteristic of the set
of prediction attributesQ = {m, p}. This leads to a duplication of rule instances
which influence the statistical strength in a positive way. Before we present the
general background, we outline the procedure how to get fromI1 to I2:

(1) Build the binary extensionIB
1 as shown in Table 2.

(2) Find the binary attributesmi, pj for which

(∀x ∈ U)[fmi(x) = 1 → fH(x) = 1],(3)
(∀x ∈ U)[fpj(x) = 1 → fH(x) = 1],(4)

and build their union withinm, resp.p in the following way: If, for example,
mi0 , . . . , mik satisfy (3), then we define a new binary attributemi0...ik by

fmi0...ik
(x) = 1

def⇐⇒ fmj (x) = 1 for somej ∈ {i0, . . . , ik},
⇐⇒ max

j∈{i0,... ,ik}
fmj(x) = 1,

and simultaneously replacemi0, . . . , mik by the new attributemi0...ik .
Because{m4, m5} as well as{p4, p5} exhibit this property, we replace

the two attributesm4, m5 (p4, p5) by a new aggregate attributem45 (p45) to
obtain the binary information system(IB

1 )∗ given in Table 4.

(3) Similarly, we find the attributesmi, pj for which

(∀x ∈ U)[fmi(x) = 1 → fH(x) = 0],

(∀x ∈ U)[fpj(x) = 1 → fH(x) = 0],

and build their union withinm, resp.p. We see that only{p2, p3} has this
property, so that we obtain

If H has more classes, we have to perform such a step of collecting posi-
tive classes of the independent attributes for each class ofH.
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(4) Perform a rough set dependency analysis with the attributes of this system
with respect to the decision attributeH. This results in the system of Table
6.

(5) Choose all rule reducts with the smallest cardinality. In the example there
is only one collection of attributes that meets this condition, namely, the set
{m45, p45}.

Because all other binary attributes are superfluous to express the dependency of H
from m and p, we finally obtainI2 of Table 3.

5 The general case

Let I = 〈U, Ω, Vq , fq〉q∈Ω be an information system, where we assume for sim-
plicity that ran fq = Vq for all q ∈ Ω. Suppose thatΩ = {q0, . . . , qn} with
Vqi = {u0

i , . . . , u
t(i)
i }, and letqk

i be the binary attribute belonging touk
i , i.e.

fqk
i
(x) =




1, if fqi(x) = uk
i ,

0, otherwise.

It is not hard to see that

θqi =
⋂

k≤t(i)

θqk
i
.

Let d be a decision attribute generating the partitionP = {P0, . . . , Pm} of U .
Note that we are not restricting ourselves to a binary decision attribute, but allow
an arbitrary partition (which, for example, can be equal toθΩ).

For all i ≤ n, j ≤ m we set

M(i, j) := {k ≤ t(i) : f−1
qi

(uk
i ) ⊆ Pj}.

If M(i, j) 6= ∅, we define a new binary attributeW (qi, Pj) by

fW (qi,Pj )(x) = 1
def⇐⇒ fqi(x) = uk

i for somek ∈ M(i, j)

⇐⇒ ∑
k∈M (i,j)

fqk
i
(x) = 1.

For all i ≤ n, j ≤ m we now simultaneously replace the binary attributes belong-
ing toui

k, k ∈ M(i, j) of qi – i.e. those that correspond to the classes ofθqi which
are wholly contained inPj – by the single attributeW (qi, Pj); this corresponds to
steps 2, 3 above.
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Let IB
1 be the resulting binary information system. Alocal binary rule reduct of

P now is a rule reduct ofP in the systemIB
1 (Step 4 above). We say “local” rule

reduct, since we collect binary attributes within the attributes of the original system.
If we collect across attributes as well, we may speak of aglobal binary rule reduct.

Since in going fromIB to IB
1 we do not change the number of occurrences of1’s

in the rows ofIB, we can replace the attribute values{u0
i , . . . , u

t(i)
i } belonging to

qi by the set

{uk
i : k 6∈ ⋃

j≤m

M(i, j)} ∪ {W (qi, Pj) : M(i, j) 6= ∅},

and obtain a new attributeq∗i by using the obvious attribute function. The classes
of the partition associated withq∗i in the new system are unions of classes ofθqi

in such a way, that elements are identified whoseθqi – classes are contained in the
same element ofP .

ForQ ⊆ Ω, we letQ∗ = {q∗ : q ∈ Q}. For later use, we show

Lemma 3 If Q ⊆ Ω, andQ∗, d, P are as above, then

γ(Q → d) = γ(Q∗ → d).

PROOF. Recall that

γ(R → d) =

∑ |{X ∈ P(R) : X is d–deterministic}|
|U | .

If Y is a class ofP , then

Z :=
⋃{X ∈ P(Q) : X ⊆ Y }

contains exactly those elements ofU which contribute to theQ – deterministic part
of Y . SinceZ is a class ofQ∗, and everyd–deterministic class ofθQ∗ has this form,
the conclusion follows. 2

6 Statistical justification

This section will show that usage of local binary rule reducts is useful to enhance
the statistical strength of the prediction; we shall give an example in Section 7. In
what follows,Σ is the set of all permutations ofU , and, as usual,H0 denotes the
null hypothesis.

9



Let σ be a permutation ofU , andP ⊆ Ω. We define new information functions
fσ(P )

r by

fσ(P )
r (x) :=





fr(σ(x)), if r ∈ P,

fr(x), otherwise.

The resulting information systemIσ permutes the values within theP–rows ac-
cording toσ, while leaving theQ–columns constant. We letγ(Q → σ(P )) be the
approximation quality of the prediction ofσ(P ) by Q in Iσ.

Given a ruleQ → P , we use the permutation distribution{γ(Q → σ(P )) : σ ∈ Σ}
to evaluate the strength of the predictionQ → P . The valuep(γ(Q → P )|H0)
measures the extremeness of the observed approximation quality and it is defined
by

p(γ(Q → P )|H0) :=
|{γ(Q → σ(P )) ≥ γ(Q → P ) : σ ∈ Σ}|

|U |!(5)

This is the number of all permutationsσ of U for which the approximation quality
γ(Q → σ(P )) is at least as large as the original one, normalized by the number of
all permutations. Ifp(γ(Q → P )|H0) is low, traditionally below 5%, then the rule
Q → P is deemed significant.

The following shows that the filtration procedure does not decrease the statistical
significance of a rule:

Proposition 4 LetQ → P , andQ∗ be as defined just before Lemma 3. Then

p(γ(Q → P )|H0) ≥ p(γ(Q∗ → P )|H0).

PROOF. First, we observe that because attribute values are identified in the the
filtration process, each class ofθQ∗ is a union of classes ofθQ. Thus, given any
R ⊆ Ω, the ruleQ → R will have at least as many deterministic cases asQ∗ → R.
It follows that γ(Q → R) ≥ γ(Q∗ → R). Thus, for everyσ ∈ Σ, if γ(Q∗ →
σ(P )) ≥ γ(Q∗ → P ), then we have

γ(Q → σ(P )) ≥ γ(Q∗ → σ(P )) ≥ γ(Q∗ → P ) = γ(Q → P ),

the latter by Lemma 3. Hence, the numerator of the right hand side of (5) forQ →
P is at least as large as that forQ∗ → P , whence the conclusion follows.2
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7 An application with an empty core

Teghem and Charlet [18] search for premonitory factors of earthquakes by empha-
sizing gas geochemistry, measured over 155 days. The independent attributes are
radon concentration and other measures of climatic factors, the decision attribute is
the seismic activity, measured on the Richter scale, see Table 7.

The core with respect to the decision attribute is empty, and if we consult the liter-
ature on rough set analysis we get the advice that

. . . Nondeterminism is particularly strong if the core knowledge is void. Hence
nondeterminism introduces synonymy to the knowledge, which in some cases
may be a drawback [13], p.38.

There are no tools within rough set analysis to proceed in this situation, and some-
times questionable procedures like counting of the appearance of attributes within
rule reducts are applied to cope with this problem [18].

Because it is likely that the joint granularity of the attributes is too fine for a sig-
nificant description of the decision attribute, the application of the data filtering
procedure described in Section 5 suggests a way to improve the measurement of
the attributes.

In the example of Table 7, one rule reduct of the decision attribute consists of the
attributes

RADON 11, RADON 21, RADON 32, RADON 42, RADON 52, RADON 62,

where Radon XY means

Yth Radon measure at location X.

The significance analysis tells us that the chance to obtain the rule randomly is
close to 100%, and thus there is no evidence that the deterministic rule

RADON 11, RADON 21, RADON 32, RADON 42, RADON 52, RADON 62⇒ SEISMIC

ACTIVITY

is not due to chance.

The method of local reducts described in Section 5 shows that some variables can
be recoded without loss of information by the following transformations:

– Radon 11 should be filtered by{3, 4, 5} → {5},

11



– Radon 21 should be filtered by{1, 2} → {1},
– Radon 32 should be filtered by{1, 5} → {5},
– Radon 62 should be filtered by{1, 4} → {1}.

The significance test of 400 simulations with the recoded data shows that the chance
to obtain the rule at random is 0.25%, thus, we can assume that the recoded rule is
significant.

8 Conclusions

We offer a technique of filtering attributes within rough set data analysis which has
only marginal computational costs – in comparison to the standard procedures (like
reduct searching) of RSDA – and which improves the strength of the results – i.e.
the statistical significance of the rules – remarkably.

The technique can be applied as a cheap standard algorithm if the decision attributes
P are fixed, and we have implemented the proposed procedure in GROBIAN, our
engine for rough set data analysis [6]. Filtering leads to a conglomeration of equiv-
alence classes which does not change the structure and the precision of the predic-
tion.

If desired, the conglomeration process can be made to respect an ordinal structure
of the attributes, by performing the union of equivalence classes only with classes
which cannot be separated by “intermediate” classes. E.g. the elements 1 and 5
of Radon 32 would not be conglomerated, because they were separated by other
measures (2, 3 and 4), whereas the conglomerations within Radon 11 and Radon
12 can be done, because the order structure of the value sets is not damaged by the
procedure. More about rough set procedures which respect ordinal information of
data values can be found in [4].
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Table 1
The sample information systemI1

U m p H U m p H

x1 1 3 0 x5 2 4 1

x2 3 2 0 x6 4 1 1

x3 2 1 0 x7 1 5 1

x4 3 3 0 x8 5 4 1

Table 2
The binarized systemIB

1

m p
U

m1 m2 m3 m4 m5 p1 p2 p3 p4 p5
H

x1 1 0 0 0 0 0 0 1 0 0 0

x2 0 0 1 0 0 0 1 0 0 0 0

x3 0 1 0 0 0 1 0 0 0 0 0

x4 0 0 1 0 0 0 0 1 0 0 0

x5 0 1 0 0 0 0 0 0 1 0 1

x6 0 0 0 1 0 1 0 0 0 0 1

x7 1 0 0 0 0 0 0 0 0 1 1

x8 0 0 0 0 1 0 0 0 1 0 1

Table 3
The recoded example of Table 1

U m p H U m p H

x1 0 0 0 x5 0 1 1

x2 0 0 0 x6 1 0 1

x3 0 0 0 x7 0 1 1

x4 0 0 0 x8 1 1 1
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Table 4
The system(IB

1 )∗

U m1 m2 m3 m45 p1 p2 p3 p45 H

x1 1 0 0 0 0 0 1 0 0

x2 0 0 1 0 0 1 0 0 0

x3 0 1 0 0 1 0 0 0 0

x4 0 0 1 0 0 0 1 0 0

x5 0 1 0 0 0 0 0 1 1

x6 0 0 0 1 1 0 0 0 1

x7 1 0 0 0 0 0 0 1 1

x8 0 0 0 1 0 0 0 1 1

Table 5
Filtered binary system

U m1 m2 m3 m45 p1 p23 p45 H

x1 1 0 0 0 0 1 0 0

x2 0 0 1 0 0 1 0 0

x3 0 1 0 0 1 0 0 0

x4 0 0 1 0 0 1 0 0

x5 0 1 0 0 0 0 1 1

x6 0 0 0 1 1 0 0 1

x7 1 0 0 0 0 0 1 1

x8 0 0 0 1 0 0 1 1

Table 6
Filtered binary reducts

1 {m1, m2, m3, p45}
2 {m2, p1, p45}
3 {m2, p23, p45}
4 {m2, p1, p23}
5 {m45, p1, p23}
6 {m45, p45}
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Table 7
Earthquake system attributes

No ATTRIBUTE No ATTRIBUTE

0 1st Radon measure (location 1) 8 Atmospheric pressure

1 2nd Radon measure (location 1) 9 Sun period

2 3rd Radon measure (location 2) 10 Air temperature

3 4th Radon measure (location 2) 11 Relative humidity

4 5th Radon measure (location 2) 12 Rainfall

5 6th Radon measure (location 2) 13 Frost (measured at location 1)

6 7th Radon measure (location 2) 14 Frost (measured at location 2)

7 8th Radon measure (location 2) 15 Seismic activity
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