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1 Introduction

It is fair to say that the development of algebraic logic started in the middle of last century with
the work of George Boole [16]. The formalisation of what we know as classical propositional logic
(which goes back to at least Aristotle) became immensely successful. At about the same time, the
shortcomings of propositional (Aristotelian ) logic, which were aptly summarised in de Morgan'’s
aphorism

“All the logic of Aristotle does not permit us, from the fact that a horse is an animal, to
conclude that the head of a horse is the head of an animal”. [cited in 83]

caused the investigation into the theory of relations as a foundation for mathematical logic. After the
initial efforts of de Morgan [25], it was in particular the work of Peirce [73] and Schroder [79] who
pioneered the study of the (equational) calculus of relations. It can be said that

“algebraic logicwasmathematical logic, or was, at any rate, the late-nineteenth century
state-of-the-art version of mathematical logic”. [11]

With the advent of Frege-Peano-Russell style of “quantificational logic” and the appearance of the
Principiain which the equational theory was subsumed under the quantification formalism, algebraic
logic lay more or less dormant for over forty years. It was K. Twardowski, a Polish philosopher
and a student of Franz Brentano in Vienna, who became interested in Schréder’s work. He, together
with LeSniewski, Lukasiewicz, and lseiewski’s sole doctoral student, Tarski, formed the core of the
Lwow — Warsaw school of Logic and Philosophy, which

“ ... in the 20s — 30s of this century made the University of Warsaw perhaps the most
important research centre in the world for formal logic”. [13]

In the seminal paper “On the calculus of relations” [83], Tarski picked up where Schroder had left off
forty five years earlier. He gave two axiomatisations of a theory of binary relations, one in the style
of Hilbert and Ackermann, and one as an equational formalism. At the end of this paper, Tarski raises
some questions in the solution of which he would be engaged for the rest of his life:

1. Is every model of the axiom system of the calculus of relations isomorphic to an algebra of
binary relations?

2. What is the expressive power of the calculus of relations? To what extent can this calculus
provide a framework for the development of first order logic or, indeed, Mathematics?

3. Is there a decision procedure for expressible first order sentences?



Tarski had proved in the late 1940s that set theory and number theory could be formulated in the
calculus of relation algebras:

“It has even been shown that every statement from a given set of axioms can be reduced
to the problem of whether an equation is identically satisfied in every relation algebra.
One could thus say that, in principle, the whole of mathematical research can be carried
out by studying identities in the arithmetic of relation algebras”. [19]

A full account of this appeared for the first time in 1987 after Tarski's death [86]. The theory of
cylindric algebras led to an algebraisation of first order logic [43, 44], just as Boolean algebras were
an algebraisation of the propositional calculus.

Further references for relation algebras are [19, 49, 50]. For a brief overview of the history of algebraic
logic with a large bibliography, we invite the reader to consult [11] and also [62]; a survey of the
current state of algebraisation of quantifier logics is [67].

In our days, the calculus of relations has found many applications in Logic and Computer Science,
references to many of which can be found in Németi’'s survey [67], and also in the publications of
the International Seminar on Relational Methods in Computer Sci¢Réd MICS) [18, 71]. As a
general introduction to algebraic logic | recommend Andréka et al1[10]

Why would relation algebras be interesting to researchers of spatial reasoning? A large part of (no
pun intended) contemporary spatial reasoning is based on the investigations of the behaviour of “part
of” relations and their extensions to “contact relations” in various domains [see e.g. 21, 36, 87], going
back, among others, to [24, 58, 68]. Also, the consistency of topological relations can be checked
by the techniques of relation algebras. The relational calculus tells us which relations must exist,
given several basic operations, such as Boolean operations on relations, relational composition and
converse. Each equation in the calculus corresponds to a theorem, and, for a situation where there are
only finitely many relations, one can construat@mposition tablédefined below) which can serve

as a look up table for the relations involved. Furthermore, since the calculus handles relations, no
knowledge about the concrete geometrical objects is hecessary. Relation algebras were introduced
into spatial reasoning in [38] with additional results published in [35, 39], and | would like to refer
the reader to these papers for additional motivation.

We will see below, that relational reasoning in general corresponds to a fragment of first order logic.

On some domains, however, the relations definable by equations are those which are definable by full
first order logic. In these cases, the calculus is sufficient to express all first order properties of the
relations in question.

The tutorial is structured as follows: In Section 2 | will present basic facts on binary relations and
their algebras. This will be followed by an introduction to abstract relation algebras. | will keep this

! Available viahttp://www.math-inst.hu/pub/algebraic-logic/Contents.html



Section brief, since we will be more concerned with concrete relations. Expressiveness and powers of
definability of the calculus of binary relations will be explored in Section 4. As a gentle introduction

to relation algebras occurring in reasoning about time and space, we will recall Allen’s interval algebra
and the algebra of closed circles in the Euclidean plane. Contact relations and some small relation
algebras generated by them are introduced in Section 6. The smallest relation algebras on an atomless
Boolean algebra generated by a contact relation whose associated order is the Boolean order will be
presented in Section 7. In the next Section, | will introduce the Region Connection Calculus of [77]
(RCC), and will explore which relations must be present in any model of the RCC, in particular, in
any standard topological model whose base consists of regular open sets. | will also interpret some of
these relations topologically in the Euclidean plane. Section 9 presents a sound and complete proof
system for relation algebras generated by a contact relation, and, finally, | will propose a frame for
reasoning about regions with imperfect information, which is based on the data model of rough sets.

I should like to finish this introduction with the closing sentences of Tarski’'s 1941 paper, which ex-
press a feeling for Mathematics which often is lostin our days where commercial exploitability is ev-
erything and recognition (and funding) is given by the criterion of immediate applicability, but which,
at least for me, is still a major motivation for engaging in the pursuit of mathematical knowledge:

“Aside from the fact that the concepts occurring in this calculus possess an objective
importance and are in these times almost indispensable in any scientific discussion, the
calculus of relations has an intrinsic charm and beauty which makes it a source of intel-
lectual delight to all who become acquainted with it.” [83]

2 Binary relations and their algebras

A binary relation? on a set/ is a subset of/ x U, i.e. a set of ordered paits, y) wherez,y € U.
| shall usually just speak ak as arelation, and instead ofz, y) € R, we shall usually write: Ry.
The collection of all binary relations ofi is denoted bye/(U). The smallest relation off is the
empty relation, and the largest one the universal reldtion U, which we will denote by

A pictorial representation of the fact thaky can be given by drawing an arrow framto 3, which
is labelledR:

R

Let R be arelation ord/.

1. Risreflexiveif z Rz forallz € U.

2. Risirreflexiveif xRz fornoz € U.



3. Risantisymmetridf for all =,y € U, 2 Ry andy Rz impliesz = .
4. Risasymmetridf forall »,y € U, 2 Ry implies— yRxR.
5. Ristransitiveif forall z,y, z € U, x Ry andy Rz impliesz Rz.

6. Risfunctionalifforall z,y,z € U, x Ry andz Rz imply y = z. O

A function f : Rel(U)" — Rel(U) is called am-ary relational operator Since relations o/ are
sets, we have the binary operatars). We also have the unary operator of set theoretic complemen-
tationV \ R, which we just denote by if V' is understood. Our first observation now is

Proposition 2.1. (Rel(U),U,N, —, 0, V) is a Boolean algebra.

We are going to introduce two more standard operators on relationscdrhpositionor relative
multiplication R o S of two relations is defined as

(2.1) RoS ={{z,y): (I2)[zRzandzSy]}
z
Q\// NS S
/// RoS \\
x y

The fact that: (R o S)y implies the existence of somewith z Rz andzSy. This is sometimes called
existential impor{12]. Let us denote the identity relatidm, =) : « € U by 1/, and its complement
by 0’. Then,

Proposition 2.2. (U, o, 1') is amonoid, i.e.
1. o is associative.
2.1'oR=Rol'=Rforall R € Rel(U).
Another distinguished unary operatorétational convers@r justconverse
(2.2) R ={{y,z): Ry}
The interplay between and” is given by

Proposition 2.3. ~is an involution on the semigroy@rel(U), o), i.e.

1. "is bijective and of order two, i.e:™ = z.

2. (RoS)y"=5S"oRforall R, S € Rel(U).



We observe that’, o, ~are first order definable. There are, of course, widely used relational operators
which are not first order definable, an example in point being the transitive closure of a relation.

An algebra of binary relation$BRA) is a structurd A, N, U, —, 0, E, 0, ¥, 1%}, whereE is an equiv-
alence relation on some skt 1%, = EN 1/, andA C 2% is closed under the operations listed and
contains the constants. f = U x U andA = 2%V then the algebra is called tfigl BRA onl,
and | denote it simply by2el/(U). The subalgebras of sonie:!/(U) are calledBRAs onl. In the
sequel I will mean by a BRA always a BRA on some U (i.e. with= U?), unless stated otherwise.

| shall usually identify algebras with their base set, and, with some abuse of notation, | will also denote
classes of algebras by the abbreviation of their type, e.g. BRA is also the class of all algebras of binary
relations. IfA is an algebra and® is a subalgebra ofl, | denote this by writings < A.

ForR C Rel(U), let[R] be the subalgebra afe/(U) generated byR. In other words[R] is the
smallest subset aff which is closed under the Boolean and relational operators, and contains the
constants.

If Aisafinite BRA, then, as a Boolean algebra, itis atomic; hence the actions of the Boolean operators
are uniquely determined. To determine the structuré dfis therefore enough to specify the relative
multiplication and the converse operation. This is usually donedaraposition tablewhere rows

and columns are labelled by the atoms, and a cell contains all atoms below the (result of) the relative
multiplication. If 1’ is an atom, it is usually omitted from the table. We observe that the converse of
an atom is again an atom, and that each atom either is contairéairdisjoint from it; thus, in a
relational representation of a BRA, we can obtain the conversdxflooking for the unique element

() of the table for whicHR o Q) N1’ # 0.

I need to mention another form of relational composition which has appeared in the literature [77], and
which | will call weak compositioto distinguish it from the usual relational composition: Suppose
thatR is a set of relations off, andR, S € R. Then,

(2.3) RoyS=|J{T € R:(RoS)NT #0}.

Necessary and sufficient conditions for a composition table to be the composition table of a relation
algebra are given in Proposition 3.1.

As our first example of a composition table, Ktbe the disjoint union of &5 and akK, on a seven
element selU (see Fig. 1)..5; generates a relation algebfaon U with atomsS;, 71, 1’ and the
composition shown in Table 1. | use lower case letters in the table to emphasise that the table can be
used for various situations.

If S, is the relation shown in Figure 2, then the table of the BRA generates} yill also be given

by 1. This shows that different BRAs can have the same algebraic structure, and that, in general, the
algebraic structure of a BRA is too weak to determine the size of the base set or what the relations
look like. Nevertheless, the expressive power of BRA can be surprisingly strong. We shall return to
this theme in Section 4.



Figure 1: The relations; Table 1: The BRAS Figure 2: The relationS,
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At the other end of the spectrum is the BRA generated by the relation shown in Figure 3. The

Figure 3: Pentagon and pentagram Table 2: The pentagon algebra
HEIEN
R|1,S| 0
S o |1.R

relation R is the pentagony is the pentagram, and they generate a BRA whose composition is given
in Table 2. It can be shown that every BRA with such a table must be defined on a base set with five
elements, and consist of the relations given in Figure 3 [7].

A finite BRA need not act on a finite set: LEtbe the seQ of rational numbers, and let < Rel(U)
be generated by the natural strict orderidf on Q. The resulting relation algebra has the three atoms
PP, PP, 1" and composition as in Table 3. In fact, any representatioA afust be on an infinite

Table 3: The dense order algebra

\ o H PP\ PP
PP [ PP| Vv
pr | v | PP

set: SincePP N PP” = (), we see thaP P is asymmetric; in particulaé’P N 1’ = ). The fact that
PP o PP = PP tells us two things:

1. PP istransitive, sinc’P o PP C PP.

2. PPisdense, sinc&P C PP o PP, i.e. between two different elementsiéfthere is a third
one:

(Va,y)[ PPy = (3z)(z PPz andzPPy)].



This implies thatU is infinite.

As a further example consider the algebra shown in Table 4. Its domain is the set of all open disks in
the plane, and we set

(2.4) PPy <z Cy,

(2.5) PPy <z Dy,

(2.6) tPOy<—=aNy#0,2 Zy,z Py,
(2.7) tDCy <= azny=40.

This algebra is also known as thentainment algebrgs6].

Table 4: Open disk algebr®,

| o | pr |PP| PO |DC]
pr| pp | v | - |DC
pr| —pc | PP | PP PO|-P
PO ||prPO| P v |-P
pc| -p |pc| —P |V

3 Abstract relation algebras

One of Tarski’s aims was to give a formal axiomatisation of the calculus of relatives. This led to the
definition of the class afelation algebras

A relation algebra (RA)
<A7 +7 Ty T 07 17 o, v7 1/>

is a structure of typé2,2, 1,0, 0,2, 1,0) which satisfies
(RO). (A,+,-,—,0,1)is a Boolean algebra.

(R1). zo(yoz)=(xoy)oz
(R2). (z+y)oz=(zo02)+ (yo=z).

(R3). x 01’ = .

(R4). =z~ = .

(R5). (z+y) =a"+y.
(R6). (zoy) =y oa”.



(R7). (+"0 —(z 0y)) < .

This axiom system is the one given in [44]. With some abuse of language, | will denote the class of
relation algebras also by RA.

A decisive property of RA is the followingycle law which is de Morgan’s Theorem K [25]:

(3.1) The following conditions are equivalent:
(aob)-c#0, (aoc)-b#0, (cob’)-a#0.

In concrete relations, (3.1) expresses the fact that if one of the directed triangles in Figure 4 exists,
then so do the others. Itis not hard to see that each BRA is an RA, and an RA isreplieskntable

Figure 4: Condition (3.1) for binary relations
[ ]
YN
[ ] [ ]
T
[ ] [ ]
XX
[ ] [ ] [ ] [ ]
T T

(RRA) ifitis isomorphic to a BRA.

The following Proposition makes precise when a composition table is indeed the composition table of
a relation algebra:

Proposition 3.1. [47] Let B be a complete and atomic Boolean algebra witle B a distinguished
element; a unary operation o3, ando a binary operation, both of which are completely distributive
over+, and for which0” = 0 and (0 o ) = (z 0 0) = 0. Let A¢(B) be the set of atoms @&. Then,
(B, 0, 1"y is an RA if and only if the following conditions hold for ally, = € At(B):

"€ At(B).
zo(yoz) < (rxoy)oz.
zol =1

x <yozimpliesz” < z"oy andy < z o 2"



For things to come, | will introduce some more concepts at this stage. In analogy to rings, &msRA
calledintegral, if forall z,y € A,

(3.2) zoy=0impliesz =0ory = 0.

A is calledsimple if every onto homomorphism with domaihis an isomorphism. We now have the
following properties [47, 52]:

Proposition 3.2. 1. Aisintegral if and only ifl’ is an atom.
2. If Ais anintegral RRA, then it has a representation as a subalgebra of sii{é’).
3. Aissimpleifandonlyif:o 1oz = 1 forall 2 # 0.

4. To every open formula in the language of relation algebras there is a tegthin the same
language such that for every simple RA

AEp<= ¢ =1
Another concept we require is that mfsiduation Since(A, o, 1) is in general not a group, the
equationz o z = b does not necessarily have a solution. However, it can be shown that the inequality
aox <b

always has a greatest solution, called fhight) residual ofb by a, written asa \ b. The concept of
residuation is intimately related to Axiom (3.1) of RAs, cf. [62, 76] and also [15].

The residual can be expressed as an RA termandb by

(3.3) a\b=—(a"o-b).

If R, S € Rel(U), then the residual is given by the condition
(3.4) 2(R\ S)y < Rz C S%.

Some properties of the residual are given in

Proposition 3.3. Suppose thatl is an RA and: € A.

1. [75] a \ «a is reflexive and transitive.

2. [34] If a is reflexive and symmetric, théa\ «) o (¢ \ @) < a.

One of the first questions which arose was whether the system (R0) — (R7) captures RRA, i.e. whether
each RA is representable. Unfortunately, this is not the case; the first non-representable RA was
found by Lyndon [59]. It had 56 atoms and was constructed using projective planes; other examples
were subsequently given by [46] and [60]. A non-representablelRA smallest size was found by
McKenzie [64]. It is integral, has four atoms, and is 1-generated; its composition is listed in Table 5.
It is not hard to show thad is not representable: Assume thab, c € Rel(U) for somel; since A

is integral, we can assume tha& U x U by Proposition 3.2. Now,

9



Table 5: A non-representable RA

o b c d

b b 1 b+ d
c 1 c c+d
d|b+d|c+d|b+c+1

1. I/ < bocimpliesthate = b".

2. 1'-b=0,andbo b = bimply thatb is a strict dense partial order. | will sometimes writdor
b, and< forb + 1'.

3. boc = cob = 1imply that for each paifz, y), there arep, ¢ € U such thatp < =,y and
T,y < q..

4. dod = b+ b+ 1" implies thatz, y are comparable if and only if they are incomparable to a
third element.

These conditions cannot live together: Supposeithatc U are incomparable, and tha =,y < ¢

as provided by 3. above. By 4. there isar U such thats is incomparable tgp andz. If s were
incomparable tg, then, by the other direction of 4t, would be comparable tg, which is not the
case. Hences is comparable tg; furthermores < y, since otherwisgy < y < s. Similarly, there is
somet € U, such that < =z, andt is incomparable tp andy. Sincep is incomparable to bothand
t, 4. implies that andt are comparable. i < ¢, thens < z, and ift < s, thent < y, a contradiction
in both cases. O

The following proposition summarises the structural properties of RRA:

Proposition 3.4. 1. RRA is an equational class [84].
2. The equational theory of RRA is undecidable [see 86, Section 8.7. for references].
3. RRAis not finitely axiomatisable [65].

4. RRA is not axiomatisable with finitely many variables [49].

As already noted by Tarski, at times the property of associativity of the relational composition is too
strong, and weaker properties are considered [61]. A structure similar to RAs is called a

1. non-associative RANA), if it satisfies (R0) and (R2) — (R7).
2. weakly associative RAVA), if it satisfies (R0) and (R2) — (R7) and

(3.5) (1"-z)ol)ol=(1"-2)0(lo1).

10



3. semi-associative RESA), if it satisfies (RO) and (R2) — (R7) and

(3.6) (zol)ol==zo0(lol).

It was shown by Maddux [61] that
RACSACWAC NA.
An alternative axiomatisation of NA consists of (R0), (R2), (R4), (R5), the identities
orx=x0l =z,

and the cycle law (3.1) [61].

The equational theory of WA is decidable [66]. Moreover, each WA is isomorphic to a subalgebra of
an algebra2" U, N, —w, 0, W, ow, ~, 1), whereW is a reflexive and symmetric binary relation on
asetU,and oy y = (zoy)NW.

For many decidability results for various classes of relation algebras, as well as pointers to earlier
work, the reader will find [6] and [55] valuable sources.

4 The expressiveness of BRAs

The question arises what can be expressed by the logic of relation algebras. To answer this question
needs some preparation. A first order language consists of predicate symbols, logical conngectives

-, the existential quantifiet and equality, and the usual abbreviations. When considering relational
structures U, R) as first order models, | tacitly assume that an appropriate first order landguiage

given. For notational convenience, | shall sometimes identify predicate symbols with the predicates
which interpret them, when no confusion is likely to arise.

If »(z,y) is a formula with the free variables y, and(U, R) is a model of the languagk, then the
truth setof ¢ (z, y) in the modekU, R) is the relation

def ¢(z,y) = {{a,b) € U : (U, R) Iz p(x/a, y/b).

If S C U?%andS = defp(z,y) for someyp, thens is calleddefinablen the modekU, R). Similarly,
we extend this definition to languages with more than one predicate symbol and formulas with other
than two free variables. For example, (the result of) relative composition is definable by the formula

elz,y) : (Fz)[zRz A 25y],
and the fact that is R connected to every element is expressed by

p(z): (Vy)rRy.

11



A relationS is RA definable fronk, . . . , Ry, ifitis in the BRA generated by thg;. In other words,
S is RA definable from theR;, if it is equal to a relational term constructed from tRe and the
relational operators and constants.

As an example which we will need later, | shall show how extreme elements of an ordered set can be
relationally defined. As a consequence of this, when considering relation algebras which contain an
order relation, it is enough to look at the base set with the extreme elements removed.

Let (U, P) be an ordered set with largest elemeérgind smallest elemet furthermore, sePP =
PN0. LetlUy = U\ {1}, Uy = {1}, andU;; = U; x U; fori,j < 1. Now, we first observe that
(1,1) ¢ PP o PFP", since there is no element bfwhich is strictly greater thah. On the other hand,
(z,z) € PPo PP forallz # 1. Thus,

Up=1n-[(PPoPP)n1Y,
defines{(1, 1)}. Now, set
1, =1n-U.
Then,

UOOZ 1;OU201;,
Uio = Uy 0 U? 0 Uy,
Uor = Upg o U? 0 Uyy,

which shows that all/;; and1, are RA definable fron®. The equation which tells us thatis the
largest element with respect tbnow is

(4.1) U C P.

Similarly, we can RA defing¢0}.

In order to fathom the expressive power of the relational calculus, | will translate the relational prop-
erties listed on page 3 into relational equations:

1. Risreflexive iff’'Nn R =1".

2. Risirreflexive iff 1' N R = 0.

3. Ris antisymmetriciffR N R”C 1.

4. Ris asymmetriciffR N R" = 0.

5. RistransitiveiffRo R C R.

12



6. Ris functional, iff R"o R C 1'.

The expressiveness of BRAs corresponds to a fragment of first order logic, and the following funda-
mental result is due to A. Tarski [see 86]:

Proposition 4.1. If R C Rel(U), then[R]is the set of all binary relations ofi which are definable in
the (language of the) relational structu{&’, R ) by first order formulas using at most three variables,
two of which are free.

The question arises: Is this as good as it gets? Let us call a BRist order closedif it contains

every relation which is first order definable i regarded as a relational structure. It is worthy to
point out that first order closedness is a property of BRAS, i.e. relational representations of (abstract)
RAs.

The first result in this direction is
Proposition 4.2. [3] Every BRA on a set with at most six elements is first order closed.

Hence, on small sets, RA logic, i.e. the three variable fragment of first order logic, is as powerful as
full first order logic. In the sequel, we will meet many other first order closed BRASs.

Look again at the RA of Table 1 on page 6, and its two representationg<J irethe right represen-
tation is first order definable by

olz,y): 2Sz A (Yu)(V2)(eRuAyRuAzRzAyR: > x =uVe=zVy=uVy=zVu=z).

As a relation, thé<; is not in the BRAA generated by, and thusA is not first order closed. On
the other hand, the representatiomo$hown in Figure 2 on page 6 is first order closed by Proposition
4.2

Let us consider the quinary operati@non Rel(U) of [49], which is defined by
2Q(Ro, ..., Ri)y < (32)(3u) (2 RozR1y N 2 RouRsy A zRau).

The situation thafz, y) € Q(Ro, ..., R4) is pictured below:

z
Q\f\)

&
z R4 )
A

u

Looking again at the BRAs associated with Table 1 on page 6, we see that

Q(Sl, S, 51, 51, Sl) = TheK4,
Q(52752752752752) — @

13



Hence, the network defined b9 (S, S1, S1, S1,.51) is satisfiable, while the network defined by
Q(S27 S9,55,.59, 52) is not.

More generally, ifR = {R; ; : 1,7 < n}, let

4.2) 2Qn(R)y <= (Fz0,...,20—1)[T =20 ANY = 21 A /\/\ZZ'RZ']‘Z]‘]

,jsn
Note that the formula on the right hand side of (4.2) is existential, and thus, it asserts the existence of
a certain network on a complete digraphronodes. | say that a BRA is@Q,, closedif Q. (R) € A
for every choice ofR C A; note that each BRA i§); closed. A is () closed if it is ), closed for
everyn > 4.

We now have

Proposition 4.3. 1. [49] If U is finite andA < Rel(U), then

A is first order closed<— A is () closed.
2. [9]If U is infinite, then there is & closedA < Rel(U) which is not first order closed.

It may be interesting to note that the formyléz, y) in the proof of 2. above, which exhibits that
is not first order closed, contains only four variables:

e(z,y): (Fz)(Vw)[zPz A 2Py A ((wPz AN wPy) — wPz)].
Thus,{a, b) € def ¢(z,y), if @ andb have a minimum with respect t8, which is a partial order in

this example.

A property which is stronger than first order closedness has been introduced in [49] and further in-
vestigated in [3, 17, 48]. Let us first define invariant relations: Xetbe the symmetric group df,

R € Rel(U) andf € ¥y, i.e. fis a permutation of/. | will write f(z,y) instead of f(z), f(v)),

and set

R = {f(z,y) : xRy}.
R is calledinvariant underf, if R = R/. There are only four relations which are invariant under
every permutation, namel§, V, 1’ and0’. 2

If A< Rel(U),andf € Xy, then,f is called abase automorphism of if R/ = R for everyR ¢ A.
It is not hard to see that the collection of all base automorphismsisfa subgroup of:;;, denoted
by A”. Conversely, if7 is a subgroup ofs, then the sets of the form

Goy={f(z,y): f €G]}

2] would like to draw the reader’s attention to Tarski's discussion of invariance in geometry, topology, and logic [85].
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with z,y € U are the atoms of a subalgebra®é/(U/), denoted by?. The pair of assignments
(»,7) forms a Galois connection between the subgroups;ofand the subalgebras &fel/(U), and

A < Rel(U) is calledGalois closedif A = A”?. The following is known about the connection
between first order closure and Galois closure:

Proposition 4.4. 1. [49] If A < Rel(U) is Galois closed, then itis first order closed.
2. [9]If U is finite, then the two notions coincide.

3. [9] There is a BRA on an infinite sét which is first order closed, but not Galois closed.

If one is able to find a suitable subgroup of the group of base automorphisms of 4pihés
sometimes easier to show first order closure by showingAhiatGalois closed. It < A”, then
Ar? < (G, and every element of is a union of atoms of/?. If A is atomic as well, and one can
exhibit for each atonR of A a pair(z,y) € U? such that7,, = R, thenA is Galois closed, and
hence, first order closed.

The situation of the definability of sets instead of relations (or, if you like, subsets of the identity

relation) is understood. Suppose that< Rel(U); we regard(U, A) as a first order structure of a
suitable languag€. We denote by s the three variable fragment df, i.e. the collection of those
L formulas which contain at most three distinct variablesis calledpermutational64] if A” is
transitive, i.e.

For allz,y € U there is som¢g € A’ such thatf(z) = y.

Proposition 4.5. [4]

1. Aisintegral if and only if for anyp(z) € L3,

(U, 4) | (Fe)e(z) = (Vo)p(z).

In other words, no proper nonempty subselofs definable by a formula with at most three
variables.

2. Ais permutational if and only if for any(z) € £,
(U, A) = (Fr)p(z) = (Ya)p(z).
In this case, no proper nonempty subset/ds definable by any formula.

3. If Alisintegral and Galois closed, thefiis permutational.

McKenzie [63] posed the problem, whether every integral RRA had a permutational representation.
This was solved by Andréka et al. [2] who exhibited an RA on a set of 32 elements which is integral

and has no permutational representation.
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Table 6: Interval relations

before: {{[¢,r],[¢, ") : g <r < ¢ <1 q,r ¢, € R}
meets:{{(¢,r],[¢, ") ¢ < r=¢ <1 q,r ¢, €R}
overlaps:{([q,r],[¢, "]y ¢ < ¢’ < r <+, q,r, ¢, 1" €R}
starts:{([q, 7], [, ") :q=¢ <r <t q,r ¢,r € R}
ends:{([q,r],[d,"]) : ¢ <q<r=r"qr ¢ R}
contains{([¢, 7], [¢", "]y : ¢ < ¢’ <1’ < r,q,r,¢,r € R}

Figure 5: Interval relations Figure 6: Disk relations

Before
DC
Meets
Overlaps @ EC
<>
< z Starts @
@ NTPP

< z Ends

Contains

TPP

5 Relations of time and plane

Allen [1] has presented a set of 13 relations which characterise the possible relations between intervals
of time. These are the six relations of Table 6, their converses, and the identity. They are the atoms
of an integral BRAZ on the set of all closed intervals on the real line; its composition table can be
found in e.g. [56]. The countable representatiof @fiven in Table 6 is Galois closed [45], and thus

RA logic is sufficient to describe the interval relations.

If we want to extend the time interval relations to two dimensional Euclidean space, a natural domain
to choose is the sdb of closed disks. In the plane, we do not have the unique directions “left - right”

of the real line any more, and thus, for example, we cannot distinguish between the “starts” and the
“ends” relations, and between the “before” relation and its converse. In this spirit, we obtain the plane
relations which are defined in Table 7, and pictured in Figure 6.
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Table 7: Disk relations

Disconnected (DC) :{{a, by :anb=10}

Externally connected (EC) {{a, by :anb#0D, int(anbd) =0}
Partial overlap (PO) {{a, by :a € b, bZ a, int(anb) £ D}
Tangential proper part (TPP)  : {{a,b) : a C b, F'r(a) N Fr(b) # 0}
Nontangential proper part (NTPR)a, b) : a C int(b)}.

In Table 7,int(a) is the topological interior o, andF'r(a) its boundary, i.eF'r(a) = a N —int(a).

Note thatDC', EC', and PO are symmetric, whild' PP and NT PP are not; this gives us the addi-
tional disk relationd” PP"and NT PP". Along with 1/, they are the atoms of a BRB,. on D whose
composition is given in Table 9 [34]. These relations are exactly the topological spatial relations on
convex regular open sets of [36] obtained by classifying pairs of such regions by the intersection of
their respective interiors and boundaries, shown in Table 8. The composition tablehas previ-

ously appeared in [39, 80]. | do not know, whetfieris first order closed.

Table 8: Topological properties of pairs of convex regions [36]

R frofr antnet  frOwmt it fr
1 #0 #0 0 0
DC 0 0 0 0
EC £ 0 0 0 0
PO # 0 # 0 # 0 #0
TPP £0 #0 #0 0
NTPP 0 £ 0 £ 0 0
Table 9: Closed disk algebr®..

o TPP TPP NTPP NTPFP PO EC DC
TPP PP —(NTPPUNTPP) NTPP —P — P EC,DC DC
TP P~ 1/, TPP,TPP, PO PP~ PP, PO NTPP” | PP, PO PP, PO, EC —P
NTPP NTPP — P NTPP 1 — P DC DC

NTPP” PP, PO NTPP” —(ECUDC) | NTPP | PP, PO PP, PO —P
PO PP, PO —P PP, PO —P 1 —P —P
EC PP, PO, EC ECuUDC PP, PO DC — P —(NTPPUNTPP) —P
DC — P DC — P DC — P — P 1

D. is isomorphic to the subalgebraBfgenerated by the union of the “before” relation and its con-
verse, but its circle representation cannot be embedded into any representafioGafisider the
square and its diagonals in Figure 7 on the next page, and label the sides of the squ&l@ waitt
its diagonals withDC'. This network cannot be satisfied in any representaticghag shown in [56],
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but it can be satisfied in the closed circle algebra by the indicated configuration.

Figure 7: Satisfiable circle network

6 Contact relation algebras

In this Section we shall look at relation algebras generated by a contact relation; results are from
[34], unless otherwise indicated. To avoid trivialities, we always assume that the structures under
consideration have at least two elements. Supposdilst nonempty set of regions, and tidais

a binary relation ot/ which satisfies

(6.1) C'is reflexive and symmetric,
(6.2) Cz = Cyimpliesz = y.

These are the axioms A0.1 and A0.2 given by Clarke [20] for the mereological part of his calculus
of individuals, but these properties are already mentioned in [24]. (6.2) is an extensionality axiom,
which says that each region is completely determined by those regions to which it is C — related. We
call a binary relatio’ which satisfies (6.1) and (6.2)cantact relationan RA generated by a contact
relation will be called acontact RACRA). It is easily seen that the identity is a contact relation; in

the sequel we will assume that a contact relation is different from the identity. We note that (6.2) is a
statement about binary relations, and the question arises if there is an equivalent RA expression. An
answer is given by

Proposition 6.1. [34] C'is a contact relation iff" is reflexive and symmetric, and

(6.3) C'\ C'is antisymmetric.

Condition (6.2) thus is equivalent to the RA inclusion
(6.4) —(co—c)-—(c-—c)"< 1.

| have used RA symbols to emphasise that (6.4) is independent of binary relations. Together with
Lemma 3.3(1), we obtain the equivalence of (6.3) and

(6.5) ¢\ cis a partial order
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It is not hard to see that the closed and open disk algebra are CRAs with contact defined by
aCy = aNy#0,

whereas the interval algebfais not.

In the rest of the paper, | assume thais a contact relation on a sEtwith at least two elements, and
thatC' is not the identity.

All disk relations of Table 7 are RA definable frott and the relational constants, and | shall use
these definitions for the rest of the paper:

(6.6) DC =-C disconnected

(6.7) P=—(CoDC) Part of

(6.8) PP=P.-0 Proper part of

(6.9) O=PFPoP Overlap

(6.10) PO=0-—-(P+ F) Partial overlap

(6.11) FC=C -0 External contact

(6.12) TPP=PP- - (FCoEC) Tangential proper part
(6.13) NTPP=PP--TPP Non-tangential proper part

Intuitive interpretations of these relation can be taken from the closed disk algebra. However, as we
shall see presently, there are highly non-standard models of CRAs.

Our first non-standard example is a CRA of minimal cardinality knowVasvith composition as

in Table 10 [23]. It is integral, has four atoms, and is generated by a strict partial BrderTwo
elements are in contact, if and only if they are comparable. A concrete representation of this algebra
was first given in [27], and a sketch #fP from the slightly different representation in [5] is shown

in Figure 8: Think of PP as a fractal-like structure with a cofy of the rational numbers as its
“backbone”, and ever branching at each pointinto two copiép;d? P is like a time-structure, where

the past is fixed, and there are three possibilities for the futuracit moment in time.

Clearly,C'= P"o P = P 4+ P"is symmetric and reflexive, anfd is a partial order. Finally,
C\C=—-(CoDC)=-((P+PP)oDC)=—(DC+P) =P
It may be worthy of mention that this representatioo\Gfis first order closed [45].

As a next step, we look for a CRA whefe# €', and hencel/C' # 0; thus, our algebra should have
the five atomd’, PP, PP", EC,and DC'. There are 14 isomorphism types of such algebras. As an
example, | preser, in Table 11, with a representation as follows: Let

S:{:;ik:a§3’“,aodd,k:1,2,3,...},

T:{%:0<a§Sk,aeven,k:1,2,3,...}.

<
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Table 10: The algebraV; Figure 8: An ordering forA\;

| o | PP |PP| DC
prPl PP 1 DC
pr|| —pc | pP| PP, DC
DC || PP, DC | DC 1

Table 11: The algebras, Figure 9: An ordering forSy

PP

| o] pp | P | EC | DC e
PP PP PP,PP1' | EC,DC DC )
PP || PP, PP 1 PP’ EC EC,DC .
EC EC EC,DC | PP,PP, 1 PP’ ©
pc || Ec,DC DC PP PP, PP, 1 \
DC
It is not hard to see that
(6.14) SNT=40,5T=Q,
(6.15) S andT are dense in each other
(6.16) reS=>r=inf{yeT:a<y}=sup{yeT :y <},
(6.17) relT=z=inflyeS:a2<y}=sup{yeS:y<a},
(6.18) reS<—1l-z€el.

Now, we let({Sy, <), (S1, <) be two disjoint copies ofS, <), U = Sy U S, and letP be extension
of the orders on thé; to U. Furthermore,

rFECy < x € S,y € Sipq andl —z < y,
rDCy <=z € 5;,y € Siprandl —z > y.

Here,i € {0, 1}, and addition in the indices is mad The BRA generated by = PU P"U EC'is
justSo.
The non-identity atoms of this representation foare shown in Figure 9. The lines represent the two

copies ofS, and, for anz, the labels on the various section of the lines indicate the relation which a
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point in this section has te. Note that the white circle labelled— z is the “border point” between
EC andDC', butitis not an element of.

The structures occurring in spatial reasoning do not only have a relational part, but also an underly-
ing algebra. It has been shown by Tarski [82] that the algebraic structures arising from models of

classical mereology are complete atomless Boolean algebras witremd Biacino & Gerla [14] ex-

hibit the models of Clarke’s system as complete orthocomplemented lattices with the smallest element
removed. In both cases,

(6.19) Cy<—=z £ -y

defines the contact relation. Recall that an operatiomn a bounded lattice is calleatthocomple-
mentation if

(6.20) z-—zx=0,——z=z,2<y=>—-y< -z

The orderingP of (6.19) is compatible with the lattice ordering in the sense fhat <. More
generally, let us call a contact relatichon an ordered structufé/, <) compatible with<, if P = <.

For the rest of this Section, we will consider compatible contact relations on orthocomplemented
lattices. Since extreme elements are RA definable, we can suppose that the contact relations which
are compatible with the ordering on a bounded lattice are defined on the base set of the model with the
extreme element®, 1 removed. This does not mean, however, that we may disregard these elements
altogether: If

(6.21) T'=-(PoF),
thenT has the property that
(6.22) Ty<—=az+y=1.

Indeed,zT'y if and only if there is no element if \ {1} above both: andy. Sincez + y exists, we
must have: + y = 1. Conversely, if: + y = 1, then the smallest element above bo#ndy is 1, and
it follows that there is no element ih \ {1} above both: andy, i.e. Ty. If

(6.23) DD =-0nNT,
then

2DDy<— z-y=0andz +y = 1.
In the sequel, | will writeDN for DC'n—DD, i.e.

(6.24) DN=-0On-T={{z,2):2-2=0, 2+ 2 < 1},
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Table 12: The scale algebr&; Figure 10: An ordering forS;

| o[ PP | PP | EC | DN |DD]
PP PP cPp |-cr| DN |DN PP
PP CP rr | EC | EC,DC | EC ‘O — e
EC EC —cp | cpP rr | PP 5
- 1-x =x*
DN || Ec,Dc | DN | PP CP PP PP DDN\@

DD EC DN | PP PP 1! \

The relationd) D andD D are present in any CRA whose associated partial drderthe ordering of

an orthocomplemented lattice.df = O, then the underlying structure is a quasi — Boolean algebra,
i.e. a Boolean algebra with the smallest element removed; we will consider this case in Section 7.
Otherwise:C' = C'N —0O # ), and a model, similar to the previous one, is as follows: EgtF; be

two copies of the real interval, 1) ordered as usual by, and setF = Ey U Fy, Et = FU{1}.
OrderE+ by

zPy<— z,yec F;andz <y, ory=1

In the following, addition is modul@. Letm : ¥ — F be defined in such a way thatqife F;, then
m(z) is the value ofc in F;11. Now, the relatiorC' defined on¥' by

(6.25) (z,y e C <= yLm(l —2z)
defines a contact relation, and

PP =<
O=PoP=P4+P+1,

EC=C\O={{z,y):y 2 m(l-2)},

DD =—[(=P o DCYU (P o C)] = {{z,y) : y = m(1 — z)},

DN =DCN-DD = {{z,y):y <m(l—2)}

The composition of the RA&, generated by’ is given in Table 12. | callb; ascale algebrasincex
is related to its complement like a scale, as indicated in Figure 10.

An algebra wherd’C' splits into two atomd” N and 2D, and DC' splitsinto DN and D D is given
in Table 13. Sincd) D is a one-one function of order two disjoint frol U P~, there must be an
even number of components Bf Furthermore, the Table tells us thatgif’ Ny or 2 DC'y, theny is
in the same component @D (z), and, ifz £'Dy, theny is in a component different from those ©of
or DD(z). LetS;, i < 4 be disjoint copies of the rational intervd, 1). The mappingn is defined
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Table 13: Algebras; with complement and split EC

| o | PP PP EN ED | DN | DD]
PP PP pp, PP 1'| EN,DC | ED DN DN
pP || PP, PP PP EN ED | EN,DC | EN
EN EN EN,DC | PP,PP1'| ED P P
ED ED ED ED _ED ED ED
DN || EN,DC DN PP ED | PP PP 1| PP
DD EN DN PP ED PP T

from

Figure 11: An ordering forS,

So
S
S
S

— Sl,
— So,
— 53,

— SQ.

andm putsz € (0, 1) onto its twin in the other component. Let us now define

tPPy < z,y € S; andz < y,

DDy <= y=m(l —z),

BNy <= m(l—-z) <y,

DNy <= m(l—z) >y,

tF Dy < yis in a component different from that ofor DD (z).

If C = —(DN U DD), thenS, is isomorphic to the algebra generated®y An indication of the

atoms ofS; is given in Fig. 11.

We can also hav&' D o D = 1; in this case, we need (at least) six components, and, otherwise, use

the same definitions as féh.
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7 Boolean contact algebras

The standard model of a contact structure is the colledtion.X ) of regular open sets of a connected
regular’y spaceX, with contact given by

(7.1) eCy <= cl(z)Ncl(y) # 0.
RO(X) is a complete Boolean algebra with the operations
z+y=int(cl(zUy)),
r-y=zNy,
e =aint(X \ z).
| use* for complementation itRO (X) to distinguish it from the set complement.

It is not hard to see, that

P=C.

A Boolean contact algebdBCA) is a pair{ B, C'), whereB is an atomless Boolean algebra, &nis

a contact relation otV = B\ {0, 1}. Since0 and1 are RA definable frond”, | will not include them

in the fieldU of C. If (B,C) and(B’,C") are BCAs, | calkB’, C") asubstructure of B, '), if B’

is a Boolean subalgebra &f, andC’ = C'n (B x B). As a note of caution | want to point out that
the BRA generated by a substructyf®’, C") of (B, C') is not necessarily a subalgebra of the BRA
of (B, C).

The relation algebra generated by the contact relation offtiyi must include the relation algebra
generated by the Boolean orderon By, sinceC' is compatible, and thus; = P € [C]. To find this
algebra, | first define the following relations in addition to the relations defined in Section 6:

#=—-(PUP) = {(z, z) :  andz are incomparable w.r.t<}

T=-(PoP) ={{(z,2):x+2z=1}
PON=0nNn#n-T ={{z,z)ra#z, - 2#£0, 0+ 2# 1}
POD=00#nNnT ={{z,z)ra#z, - 2#£0, 0+ 2= 1}
DD=-0nNnT ={{z,z):2-2=0, 2+ 2=1},
DN=-0n-T ={{(z,2)r2-2=0, 2+ 2 <1},

wherez, z € U. We also note that compatibility &¢f implies
2Oy <= x-y>0.
Proposition 7.1. [34] Let B be an atomless Boolean algebra. Then, the relations
1', PP, PP°, PON, POD, DN, DD
as defined above are the atoms of the algabran B \ {0, 1} generated by the Boolean ordét

whose composition is given in Table 14.
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Table 14: The algebra;

0 D
° PP PP | PON | POD DN DD
PP PP —(PODUDD) | PP,PON,DN | PP,PO,D DN DN
PP 1,0 PP PP, PO POD PP, PO,D POD
PON PP, PO PP, PON,DN 1 PP, PO PP, PON,DN | PON
POD POD PP PO,D PP, PO 1,0 PP PP
DN || PP,PO,D DN PP,PON,DN PP —(PODUDD) | PP
DD POD DN PON PP PP 1

In the algebray, there are two possibilities to define a contact relation: We can take éitket) or
C =0UDD. Inboth casesP = C'\ C.

In order to answer the question when a representatigri®Galois closed, we need some preparation.
If BisaBooleanalgebraande B, thenB | z isthe Boolean algebra with base ¢gtc B : y < 2},
meet and join inherited fronB, and complementation relative to B is calledhomogeneoysf

B | z = B foreveryxz € B,z > 0. We now have

Proposition 7.2. [33] An atomless representatidi3, C'y of G is Galois closed if and only iB is a
homogeneous Boolean algebra. In particulars Galois closed, ifB is the set of all regular open
sets of the two dimensional Euclidean space.

The atoms of7 constitute a refined version of what is knownRGCS5 [57].

8 The standard model and the RCC

A special instance of a BCA is the region connection calculus (RCC) [77]. Since it can be shown
from the original axioms that any RCC model is a quasi — Boolean algebra [33, 81], | use an axiom
system, which incorporates this and which is equivalent to the original one; | also restrict the contact
relation to the non-extremal elements: A model of the RCC is a stru¢tgiré’) such that for all
z,y,z € U =B\{0,1},

RCC 1. B is aBoolean algebra, aridis a compatible contact relation éh
RCC 2. z(C' — =x.

RCC3. Ify+z=1orzC(y + z), thenzCy or zC’z.

RCC4.2C —y <~ 2(—NTPP)y.

RCC5. 20 — y < z(—P)y.

The original RCC axioms asserted that there aréVifoP P-minimal elements: Using the relational
formalism, one can give a simple proof of this from the remaining axioms:
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Proposition 8.1. [33]

(8.1) (Ve e U)(Jy € U)yNT PPx

Proof. Assume that there is some € U such that for ally € U, y(-NTPP)z; by RCC 4, this
implies thatyC' — « for all y € R. SinceP = C' \ C (i.e. P is the largest relatiory on U with
CoS <) and(z,—z) ¢ P, we obtain that” o {(z, —z)} £ C. Hence, there is somec U such
(t,—z) ¢ C, acontradiction. O

Corollary 8.2. Each model of the RCC is a BCA.

It is known thatRO(.X') with X" connected and reguldp is a model for the RCC [41]. In fact, more
is true:

Proposition 8.3. [32] If X is a connected reguldk, space, then each substructudef (RO (X ), C)
is a model of the RCC axioms.

This shows that the polygonal algebras of [74] are RCC models. | do not know, whether the converse
of Proposition 8.3 holds, i.e. whether every RCC model is isomorphic to a substructure of some
RO(X) with contact as in (7.1). At any rate, each atomless Boolean algebra can be made into an
RCC model:

Proposition 8.4. [53] Every BA can be embedded into the algebra of regular open sets of a connected
regular Ty space.

Corollary 8.5. On each atomless Boolean algebBathere is some contact relatiofi such that
(B, 'y is an RCC model.

The disk relations shown in Figure 6, together with the identity and the conver§dseand NT PP

are usually taken as the base relations of the RCC, cBRi&d8 These relations were defined in [20]
without a pictorial representation. Indeed, from a relational point of view, to take Figure 6 as an
example for these relations, is somewhat misleading. The circles used to exemplify the connections,
are much too special to get an intuitive feeling of the relations in the standard model. As we shall see
below, the situations where the relations hold, and the landscape of relations which must exist in an
RCC model is much richer than the picture indicates. As a simple exampiehéethe disjoint union

of two disksy andz. Then,yT PPx, =T PPx, which, topologically, is a totally different situation

from the “touching circles” of Figure 6. Indeed, the weak composition table foRES relations

of [77] is exactly the (“real”) composition table of the closed circle algebra.

In the rest of this Section | shall exhibit nonempty relations which must exist in any RCC model
(B, CY, and thus, in particular, in a standard model of any dimension; unless stated otherwise, all of
the material is drawn from [32]. Only relational operations and constants are used in deriving these
relations and showing that they are not zero.
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A different approach to obtain (more special) topological relations based on the concepts of interior,
boundary, exterior is the generalisation of the 4 - intersection model of [36] by Egenhofer & Her-
ring [37]. This leads to th& x 3 matrix given in Table 15. Many examples of instances of these
configurations are given in [35]. At the time of writing, | do not know the relationship between the
expressiveness of the relational calculus and that of the 9 - intersection model, and more research is
needed to clarify the situation.

Table 15: 9 relation configuration

int(z) Nnt(y) nt(z) N Fr(y) int(z)N -y
Fr(z)nint(y) Fr(z)NnFry) Fr(z)Nn -y
—x Nint(y) —x N Fr(z) —zN—y

Since | assumé’ to be defined o/ = B\ {0, 1}, we immediately obtain the complement relation
from (6.23). Since each element is connected to its complement, | will change the notation to
(8.2) ECD=—(PoP)N—(PoP) rECDy & y = —ux,

(8.3) FCN=FCN-FECD tFCNy<=z-y=0,2+y <1, 2Cy.

Partial overlap splits as well into

(8.4) POD =PON—(PoF) 2PODy <— zPOy, z +y =1,
(8.5) PON =PON-POD tPONy <= xPOY, z +y < 1.

We will use the 10 disjoint relations
I', NTPP,NTPP, TPP,TPP,PON,POD,ECN,ECD, DC

as base relations in which we can express other relations.

In Table 16 on the following page | list some properties of the relations and their interplay with the
algebraic operators.

The weak composition table for these 10 relations is not the composition table of a relation algebra.
However, they are the atoms of a semi-associative relation algebra in the sense Maddux [61].

One can easily show th&O D splits into the relations

(8.6) PODZ = ECDo NTPP
(8.7) PODY = POD\ (ECD o NTPP).
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Table 16: Some properties of the 10 base relations

NTPP=ECDoNTPP oECD
PoNTPP< NTPP
NTPPoT'PP=NTPP
NTPPoP=NTPP
TPPoNTPP=NTPP
ECN =TPPo ECD
eDCz = aTPP(x+ z)
tNTPPzandyNTPPz < (¢ +y)NTPPz
sNTPPz= —x-2I'PPz
e NTPPyandaNTPPz <= «NTPPy-z
ECDoDC < NTPP
tECNoTPPz <= a2ECNa* - zTPPz
2T'PP o TPPz<—= T PPz -zI'PPz
tTPPoTPP%z <= ¢TPP(x+z)TPPz
yNTPP(z + z)andyDCz = yNTPPx
ECDo NTPP < POD

28




6¢

Table 17: The RCC 11 weak composition

0w | PP TPP~ NTPP | NTPP~ | PON | PODY PODZ ECN ECD DC
TPP TPP, NTPP 1, TPP, TPP*, | NTPP= TPP-, NTPP-, | TPP, NTPP,| TPP, NTPP,| TPP, NTPP,| ECN, DC ECN,= DC,=
PON, ECN, PON, ECN, | PON,ECN,DC | PON, PODY,| PON, PODY,
DC#£ DC#£ ECN, ECD PODZ
TPP- 1, TPP, TPF, | TPP~,NTPP~ | TPP, NTPP,| NTPP- = TPP-, NTPP-, | PODY, PODZ PODZ TPP-, NTPP-, | PODY TPP-, NTPP-,
PON, PODY, PON, PODY, PON, PODY, PON, PODY, PON, ECN, DC
PODZ PODZ PODZ ECN, ECD#£
NTPP NTPP= TPP, NTPP,| NTPP 1, TPP, TPP, | TPP, NTPP,| TPP, NTPP,| TPP, NTPP,| DC,= DC,= DC
PON, ECN, NTPP, NTPP’, | PON, ECN, DC | PON, ECN,DC | PON, PODY,
DC# PON, ECN, PODZ, ECN,
DC= ECD, DC
NTPP- || TPP~, NTPP-, | NTPP~ = 1’, TPP, TPP’, | NTPP~ TPP~, NTPP~, | PODZ PODZ TPP~, NTPP~, | PODZ TPP~, NTPP~,
PON, PODY, NTPP, NTPP, PON, PODY, PON, PODY, PON, PODY
PODZ PON, PODY, PODZ,= PODZ PODZ, ECN
PODZ,= ECD, DC,=
PON TPP, NTPP,| TPP~, NTPP-, | TPP, NTPP,| TPP-, NTPP-, | 1, TPP, TPP, | TPP, NTPP,| TPP, NTPP,| TPP~, NTPP-, | PON,= TPP-, NTPP-,
PON, PODY,| PON, ECN,DC | PON, PODY,| PON, ECN, | NTPP, NTPP, | PON, PODY,| PON, PODY,| PON, ECN, PON, ECN
PODZ PODZ DC,= PON, PODY, | PODZ PODZ DC# DC,=
PODZ, ECN,
ECD, DC,=
PODY || PODY,PODZ | TPP-, NTPP-, | PODZ TPP-, NTPP-, | TPP*, NTPP-, | 1, TPP, TPP, | TPP, NTPP,| TPP*,NTPP- | TPP- NTPP~
PON, PODY, PON, ECN,DC | PON, PODY,| PON, PODY,| PON, PODY,
ECN, ECD PODZ PODZ PODZ
PODz || PODZ TPP-, PODZ TPP-, NTPP-, | TPP-, NTPP-, | TPP~, NTPP-, | 1, TPP, TPF*, | NTPP~ NTPP- NTPP-
NTPP~, PON, PON, PODY,| PON, PODY,| PON, PODY,| NTPP, NTPP",
PODY,PODZ PODZ, ECN,| PODZ PODZ PON, PODY,
ECD, DC PODZ
ECN TPP, NTPP,| ECN, DC TPP, NTPP,| DC,= TPP, NTPP,| TPP, NTPP NTPP 1, TPP, TPP, | TPP= TPP~, NTPP~,
PON, PODY, PON, PODY, PON, ECN, DC PON, ECN, DC PON, ECN, DC
ECN, ECD PODZ
ECD PODY,= ECN,= PODZ,= DC PON,= TPP= NTPP= TPP- = 1= NTPP- =
DC TPP, NTPP,| DC,= TPP, NTPP,| DC TPP, NTPP,| NTPP= NTPP= TPP, NTPP,| NTPP= 1, TPP, TPP",
PON, ECN, DC PON, PODY, PON, ECN, PON, ECN, NTPP, NTPP,
PODZ, ECN, DC,= DC,= PON, ECN, DC
ECD, DC,=




A weak composition table for the 11 relations can be found in Table 17. For cells containthg

RCC axioms together with general RA properties imply that equality holds; for cells contaéning
there is a model in which the composition is strictly smaller than the cell entry. In this way, one can
indicate in which cells the composition may be weak, and when it is not.

It turns out that there is a relation algebtavhose composition is represented by BRE€C11 table.
A, however, cannot come from an RCC model as Proposition 8.6 shows, and no representétion of
is known.

Proposition 8.6. [32] The relations given in Table 18 are present and not zero in any RCC model,
and they are the atoms of an integral relation algebra.

Table 18: RCC necessary relations

1/

TPPA  =TPPN(ECN oTPP)

TPPA" =TPP'N(ECN oTPP)

TPPB  =TPPN—(ECN oTPP)

TPPB° =TPP'N—(ECN oTPP)

NTPP

NTPP

PONY Al = PON N (ECN o TPP)N—(ECN o TPP)"N(TPPoTPP)N(TPP oTPP)
PONY A1 = PON N (ECN o TPP)"N—(ECN o TPP)N (TPPoTPP)N(TPP oTPP)
PONYA2 = PON N (ECN o TPP)N—(ECN o TPP)N (T'PP o TPP)N—(TPP oTPP)
PONY A2 = PON N (ECN o TPP)"N—(ECN o TPP)N (TPPoTPP)N—(TPP oTPP)
PONYB =PONN(ECN oTPP)N—(ECN oTPP)"N—(TPPoTPP)

PONYB =PONN(ECN o TPP)"N—(ECN o TPP)N —(TPP o TPP)

PONXA1 = PON N (ECN o TPP)N (ECN o TPP)"N(TPPoTPP)N(TPP oTPP)
PONXA2 = PON N (ECN o TPP)N (ECN o TPP)"N(TPPoTPP)N—(TPP oTPP)
PONXB1 = PON N (ECN o TPP)N (ECN o TPP)"N—(TPPoTPP)N (TPP oTPP)
PONXB2 = PON N (ECN o TPP)N (ECN o TPP)"N—(TPPoTPP)N—(TPP o TPP)

PONZ =PONN—(ECN oTPP)N—(ECN oTPP)
PODYA =ECDo(TPPN(ECN oTPP))
PODYB =ECDo(TPPN—(ECN oTPP))

PODZ  =ECDoNTPP

ECNA  =ECNN(TPPoTPP)
ECNB =ECNN—(TPPoTPP)
ECD

DC

We have not found a representation of this algebra. In particular, we have as yet not been able to
determine whether this algebra is the BRA generated by the contact relation on a standard model. If

30



Table 19: Splitting of PON

ECNoTPP (ECNoTPP)” TPPoTPP TPP oTPP

PONY Al + - + +
PONY AT” - + + +
PONY A2 + - + -
PONY A2 - + + -
PONY B + - -

PONY B~ - + -

PONX A1 + + + +
PONX A2 + + + -
PONXBI1 + + - +
PONX B2 + + - -

PONZ - -

the CRA of someRRO(X) is integral, then it is not permutational (and thus, not first order closed),
since connectivity is relationally definable by the formula

e(z): (Vy)(V2)(yPz A zPz A (Yw)((yPw A zPw) — 2Pw)) — yC'z)

and not all regular open sets are connected.

To give an impression of some of these relations in a standard model, consider Figures 12 — 14 on the
following page.

Figure 12: sDCt, sDCw, tDCw, Figure 13: aNTPPbNTPPs < 1
s+t+w § 1,
aNTPPs, bNTPPt. s

s t w

c

tTPPAz: InFigure13set =a+t, z =s+1t.

xTPPBz: InFigure 12,set =5, z=s+t0orz =a*-s,z=s.
xPONY Alz: InFigure 12,set = a+1t + w, z = s + w.

xPONY A2z: InFigure 12,set =t + a, z = s.
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Figure 14: aNTPPb, bNTPPs, cNTPPs, bDCe

xPONY Bz: InFigure 13,set = b, z = s - a™.
xPONXAlz: InFigure 12,set =t+a, z = s+ b.
xPONX A2z InFigure 12,set = s, z =a + c.
tPONXB1z: InFigure 14,set = s - (a +¢)*, z = s" + b.
xPONXB2z: InFigure 13,set = b, z = a + s - b*.
*PONZz: InFigure 12,set =s+t-0*, z=t+s-a”.

The topological properties of some of these relations are shown in Table 20 on the next page. From
these, the topological characterisations of most of the remaining ones can be determined, since they
are intersections, respectively, complements of the given ones. For example,

tTPPAz < z(T'PPN(ECNoTPP))z
= Cz Frz)NFr(—znz) #0, Fr(z)NFr(—zNz) #0,cl(z)Ucl(z) # X.

Our final example in this Section from [32] shows that not every RCC model is integral: CoReider
and definel{ as the collection of sets of the form

peR*:as|pl$b}, ifO#q

K(a,b) =
{p € Ri|p| < b}, if a=0.

wherea € R,b € RU {oo}, and|p| is the Euclidian distance of € R* to (0,0)). Let R be the
set of all finite unions of elements @€ including). ThenR is a subalgebra okRO(R?), and, by
Proposition 8.3{ i, C') is a model of the RCC.

Now, consider: = K (0, 1). | want to show that there is npe R with 2T PP Ay.
Every elemeny of R with 27 PPy is of the formz U { K (a,b) : 1 < a}. We conclude:T PP By

because-z -y = {K(a,b) : 1 < a} and{K(a,b) : 1 < a} is disconnected to.
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Table 20: Topological interpretation of RCC25 relations

Atom Name | z,z € RO(X)\ {0, X}
Base relations
TPP v Cz Friz)NnFr(z) #0
* NTPP c(z) C z
PON ez 2@ x, anNz#£0, cd(z)Uc(z) #X
POD ez 2@ x, anNz#£0, cd(z)Uc(z)=X
ECN eNz=0, Fr(z)NEFr(z) #0, cl(z)Ucl(z) # X
* ECD eNz=0, Fr(z)NEFr(z) #0, cl(z)Uc(z) =X
* DC cd(z)ynel(z)=10

Other relations

ECNoTPP | Fr(z)NFr(—znz)#0,Fr(z)NFr(-anz) #

0,cl(z)Ucl(z) #X

TPPoTPP | Fr(z) N Fr(int(cl(z U 2))) # 0,Fr(z) N
Fr(int(cl(zUz))) #0

TPP oTPP | Fr(z)NFr(znz)#0

ECDoNTPP |2Uz=X

JEr(z)nFr(znz) £ 0

* PODZ rUz=X

* ECNA tECNz, Fr(z) N Fr(z + 2z) # 0, Fr(z) N
Fr(z 4+ 2)#£0

* ECNB tECNz, cl(z) Cx+z orc(z)Ca+z

9 Arelational logic for CRAs

Semantics for modal logic are nowadays mostly given by frafWésR;), i.e. sets with accessliy

relations [54]. The meaning function assigns subsefd’ao formulas, where the classical logical
operators are interpreted by set operations. The meaning of the modal operators is interpreted by
properties of the accesdliby relations. Equivalent to the frame semantics are the algebraic semantics
which translates the modal operators to normal and additive operators on suitable Boolean algebras
[51]. Ortlowska [69] has shown that any classical modal logic can be interpreted in a purely relation
algebraic setting, and has exhibited a sound and complete proof system for the logic.

Such systems are in the style of Rasiowa & Sikorski [78], and consist of decomposition rules, specific
rules and (sequences of) axiomatic expressions. A decomposition rule when applied to an expression
of the theory returns a set of expressions which are syntactically simpler than the original one. These
rules provide definitions of relational operators. The specific rules are the counterparts of relational
constraints. It is worth mentioning that in the Hilbert-style proof systems for applied modal logics it is
often the case that not all the relational constraints can be explicitly expressed and axiomatised. The
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experience with relational proof systems designed until now shows that many constraints which are
not modally expressible receive an explicit representation in the form of a relational rule or a relational

axiomatic sequence. As a case in point, it was shown in [30] that the extensionality axiom (6.2) of

contact relations is not expressible in a classical modal logic, nor, as shown in [29], in its sufficiency

counterpart of [40]. Another example is that the fact that a relation is an intersection of other relations

is not expressible in the standard modal language, but it is expressible in the form of a relational rule.
More details on relational proof systems can be found in [70].

| shall present a relational proof system for CRAs, which was put forward in [30], from which all
material in this Section is taken.

The alphabet of the languageconsists of the disjoint union of the following sets:
1. Aset{C, 1’} of constants, representing, respectively, the contact relation and the identity.
2. A countably infinite seV' I of individuum variables.
3. Aset{U,n, —,;,”} of names for the relational operators.

4. Aset{(,)} of delimiters.

With some abuse of language, | use the same symbols as for the actual operations; it will be clear from
the context which meaning is intended.

The set” F of terms (“contact expressions”) is defined as follows:
1. C'andl’ are terms.
2. If R and$ are terms, so are
(RUS), (RNS), (=R), (k;5), (i)
3. No other string is a term.

I will use the usual conventions of reducing brackets. Notedhatcan be regarded as the absolutely
free algebra of typé2, 2, 1,2, 1) over{C', 1'}.
The set ofL—formulas is

{zRy: Re CE,z,ye VI}.

A model of £ is a pairM = (W, m), whereW is a nonempty set, andh : CE — W x Wis a
mapping such that

(9.1) m(C') is a contact relation.
(9.2) m (1) is the identity relation oV
(9.3) m is a homomorphism from' £ to (Rel (W), U, N, —,;,%).
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Table 21: Decomposition rules

) K,z(RUS)y, H (—U) K,2— (RUS)y, H
K,xzRy, xSy, H K,2(-R)y, H | K,z(=S)y, H
) K,z(RNS), H ) K,z— (RN S)y, H
K,2Ry,H | K,zSy, H K,2(-R)y,«(=S)y, H
. K, xRy, H . K, 2(-R)y, H
) K,yRe, H =) K,y(—R)z, H
K,2(—— Ry, H
(=) K,zRy, H
(;) . K, o(R; S),y’ A wherez is any variable
K2Rz, H x(R; S)y| K, 25y, H,z(R; S)y
(=) - Kz = (B S)y, A where: is a restricted variable
K,2(-R)z,z(—=S)y, H

A valuationv is a mapping fromV' I to W. If 2Ry is a formula, then | say that/ satisfiesz Ry
underv, written asM, v = xRy, if (v(z),v(y)) € m(R). xRy is calledtrue in the modelM, if
M, v | xRy for all valuationsy, i.e. if m(R) = W?. z Ry is calledvalid, if it is true in all models.

Proofs have the form of trees: Given a formul&y, we successively apply decomposition or specific
rules; in this way we obtain a tree whose root:iBy, and whose nodes consist of sequences of
formulas. A branch of a tree @osedif it contains a node which contains an axiomatic sequence as a
subsequence. A tree is callelbsedif all its branches are closed.

Rasiowa-Sikorski (RS) proof systems are, in a way, dual to tableaux systems: Whereas in the latter
one tries to refute the negation of a formula, the RS systems attempt to verify a formula by closing
the branches of a decomposition tree with axiomatic sequences. Rules in RS systems go in both
directions: | call a ruladmissibleif

The upper sequence is valid iff the lower sequence(s) is (are). valid

Here, a sequence of formulas is valid if its meta-level disjunction s valid.

The rules of our system are given in Tables 21 and 22, and the axiomatic sequences are

(9.5) z1'x,
whereR € C'E.

A variablez is calledrestricted in a rulef it does not occur in the upper part of that rule.

As an example of a derivation, | want to show that the relattaas defined by (6.7) is antisymmetric,
i.e. that

PP Cl,
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Table 22: Specific rules

K, xzl'y,H
(sym 1) b Ik
K, yl'z H
K, xzl'y,H .
(tran 1) - Ak y’r , z avariable
Koal'z, Hal'y | K, 21"y, H,z1'y
K, xRy, H .
(1)) . D, , > avariable
K,2l'z,H,2Ry | K, zRy, H, 2Ry
K, xRy, H .
(1) . R Ak , > avariable
K,2Rz,H 2Ry| K, 21"y, HxRy
K,2Cy, H
(refl C) - Y
K, zl'y, xCy, H
K,2Cy, H
(sym ) ——
K,yCx H
K . .
(ext C') - - - z andt restrictedvariables
K,2(-C)z,yCz | K, y(—CYt,2Ct | K, 2(—1")y
[/7
(cut C) . X,
K, 2Cy| K,z(—-C)y

that is, by definition ofP,
(C;-CHYU (=C;CHYul’ =V.

W use the same symbols asdnwith some abuse of notation. To prove the claim, one must find a
closed proof tree for the formula

(9.6) z((C;—CYU (=C; YU )y,
Applying rule (U) to (9.6) and again to the resulting formula, we obtain
(9.7) 2(C;=Cy, 2(=C;C)y, «l'y.

Rule (ext C') with K given by (9.7) leads to three branches:

(9.8) a(C; =C)y, 2(=C;C)y, a1y, x(=C)z, yCz
(9.9) 2(C; =Cy, =(=C;C)y, 21y, y(=C)t, zCt,
(9.10) 2(C;=Cy, x(-=C;C)y, x1'y, x(-1")y,
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Node (9.10) is closed, and we look at node (9.8). Decomposfng —C')y with rule (;) gives two
more branches:

(911) $CZ, x(—C;C)y, $1/y, $(—C)Z7 yCZ,$(C; _C)y7

(912) Z(_C)y7 $(—C;C)y, $1/y, $(—C)Z7 yCZ,$(C; _C)y

Node (9.11) is closed. If we apply ruleym C') to yC'z in (9.12), we obtain
(9.13) 2(=Cy, x(=C;C)y, 21y, x(=C)z, 2Cy,2(C; -C)y,

which is closed. Similarly, one shows that (9.9) leads to closed branches as well.

We now have

Proposition 9.1. 1. All decomposition rules are admissible.
2. All specific rules are admissible.
3. The axiomatic sequences are valid.

4. If a formulais valid then it has a closed proof tree.

10 Approximating regions

The final part of these tutorial notes is taken from the forthcoming [31].

It is rarely the case that spatial regions can be determined up to their true boundaries, if, indeed, they
have such boundaries; in most cases, we can only observe regions up to a certain granularity. Often,
this is a desirable feature, since too much detail can disturb the view, and we will not be able to see

the wood for the trees, if our desire is to see the wood.

Having as our basic assumption that regions can (or need to) be observed only approximately, we
want to find an operationalisation of the domain of regions, which is broad enough to express the
properties which we want to study, and, at the same time, has enough mathematical structure to serve
as a reasoning mechanisms without being overly restrictive to our intuition.

I make three model assumptions:

1. The first assumption is that there is a collection of regions each of which can be observed only
up to the granularity given by the elements of a Baif crisp or definableregions; this power
of observation is expressed by pairs of the fdrmb), a < b, wherea, b are definable regions.
In other words, to each (unknown) regiorthere is is a lower bouné{z) = « and an upper
boundh(z) = b, both of which are crisp, up to whichis discernible. Ifi(z) = h(z), thenz
itself is definable. The paifi(z), h(z)) is called amapproximating region
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Figure 15: An approximating region

Boundary of Set X

Lower approximation of X

Difference of upper and
lower appraxiration of X

2. The next assumption is that the domairof definable regions forms a Boolean algebraln
practice, B will be finite, in particular, complete and atomic, but we will not use this in our
theoretical approach.

3. The final assumption is that the bourdsb) are best possible; in other wordsgifs a region
approximated bya, b}, then
(10.1) No definable regior with a < cis a part ofz,
(10.2) If ¢ < b, thenz overlaps with—c.
This implies that for each approximating regies= (a, b) there is a collectiom:(z) of regions

each of which is approximated by and for which (10.1) and (10.2) hold. Furthermorey i§
an approximating region different from thenm(z) N m(y) = 0.

These assumptions may seem too strong, but the example below shows that they are fulfilled in an
important area of application, namely, screen resolution.

Consider the regioX in the Euclidean plane, depicted in Figure 15. We suppose in our example that
granularity in the plane is determined by an equivalence relation on the points, the classes of which
are the atoms of the Boolean algeli#af definable regions; these are drawn as squares. We can, for
example, think of the squares as pixels on a computer screen. The Pégian only be discerned up

to the bounds given by its lower and upper approximation, each of which is a union of squares, i.e.

(10.3) i(X)={z€eU:0x C X},
(10.4) MX)={zeU:0xnX #0}

38



is thelower, resp. upper approximation of. Here,fz = {y : 26y} is the equivalence class
containingz. It is obvious that our three model assumptions are fulfilled. This is the rough set
approach to data analysis of [72]; similar paradigms have been put forward in the field of spatial
reasoning by [22, 57, 88, 89]. An up to date introduction to rough set data analysis with many pointers
to further reading is [28]

Ouir first task is to find appropriate algebraic structures in which our model assumptions can be ex-
pressed.

Throughout{B, +, -, —, 0, 1) will denote a Boolean algebra (BA); we may think Bfas an algebra

of definable (or crisp) objects within some domain as mentioned in the introduction. Since we intend
to identify approximate objects with pairs of definable objects from below and above , we start by
setting

(10.5) B = {{a,b) € B? : a < b}.
We regardB!? as a sublattice oB x B, so that

{a,b) + {c,d)y={a+ ¢,b+ d),
{a,b)-{c,dy="{a-c,b-d).

Lower and upper approximation are defined by

i(a,b) = (a,a),
h(a,b) = (b, b)
We observe that
(10.6) h(i(a,b)) =1i(a,b), i(h(a,b)) = h(a,b).

We can recoveB by identifyingB with {{a, a) : @ € B}. Thus, an approximating region is definable,
if itis equal to its lower and upper approximation. The operatargdc are a co-normal multiplicative
interior, respectively, a normal additive closure operator, i.ezfgre B2,

(10.7) i(1) =1,

(10.8) v <y=i(r) <i(y),
(10.9) i(z) <@

(10.10) i(i(2)) = (w)
(10.11) iz -y) =i(x)-i(y),

3Technical report version available viaml:/Aww.infj.ulst.ac.uk/~cccz23/papers/papers.html
“To the best of my knowledge, the notatiB#’! has been introduced by [42]
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and

(10.12) h(0) = 0,

(10.13) v <y= h(z) <h(y),
(10.14) z < h(z),

(10.15) h(h(z)) = h(z),

(10.16) h(z +y) = h(z) + h(y),
Furthermore, we see that fory € B2,

(10.17) i(z) = i(y) andh(z) = h(y) imply 2 = y.

This expresses the intuition that approximating regions are uniquely determined by their lower and
upper bound. The algebil?! may be too large for certain situations. It describes the situation that
for eachz = (a, b) with ¢ < b there are “true” regions which are approximated{byb); however,

this may not be always the case. Thus, a less restrictive notion is required, and we geB&fatise
follows:

An approximating algebrgAA) (L, +, -, 0, 1,1, h) is a structure of typé2, 2, 0, 0, 1, 1) such that for
allz,y e L,

(10.18) (L,+,-,0,1)is a bounded distributive lattice.
(10.19) ¢ is a co-normal multiplicative interior operator @n
(10.20) h is a normal additive closure operator bn
(10.21) i(h(z)) = h(z), h(i(z)) =i(x).

(10.22) i(z) = i(y) andh(z) = h(y) imply z = y.

(10.23) Each closed element has a complement.

It is not hard to see tha!?! is an AA, and one can show that each AA is a subalgebra of S9fie
[26]. We will denote byB(L) — or just byB if no confusion can arise — the set of closed elements of
L. By (10.21),B is also the set of interior elements bf

It has been shown in [31] that the class AA is term equivalent to the class of regular double Stone
algebras, which, in turn are equipollent to three valued tukasiewicz algebras.

Thus far, we have operationalised the notion of approximating region, and the question arises, how
we can deal with a contact relation. Our first observation is

Proposition 10.1. On an AA(L, <) which is not a Boolean algebra there is no compatible proper
contact relation.

Since each AA is obtained from its Boolean algeBr@f definable elements via the approximation
functions, we suppose that we have a contact relatioon B, which we want to approximate in a
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similar way. It seems natural far, y € L to say that

x andy are certainly connected—> i(z)C'i(y),

x andy are possibly connected—=> h(z)Ch(y).
Thus, giverk B, C'), we let

(10.24) 2C'y = i(z)Ci(y),

(10.25) 2CMy = h(z)Ch(y).

For formal reasons, however, we do not want to start witm B, but with the approximation relations
C*,C" on L, whose restriction t@ is a contact relatiod’ such that (10.24) and (10.25) hold.

An approximating contact algebrgACA) is a structur L, i, h, C*, ") such that L, i, h) is an AA
and

(10.26) =, ch =t
(10.27) 'ccinch,

(10.28) 2Cly = i(z)C"i(y),
(10.29) 2Cy = h(z)C"h(y),
(10.30) h(2)C'h(y) <= h(z)C"h(y),
(10.31) CMh(a)) € C*(h(y)) <= h(z) < h(y).

The following theorem shows that the notion captures our intention:

Proposition 10.2. 1. Let(L,i,h,C*,C") be an ACA, and set' = C" | B%. Then,C is a
compatible contact relation o, and (10.24)and (10.25)hold. Furthermore(” | B? =
Ci rBZ

2. If (L,, k) is an AA and_' a contact relation onB, then,C* andC", defined by(10.24)and
(10.25)satisfy(10.26)— (10.31) Furthermore(' = C" | B2

In the sequel, we letZ, i, h, C*, C*) be a generic ACA, and' = C" | B? be the associated contact
relation onB.

Let
(10.32) 20y = i(x) = i(y),
(10.33) 2"y = h(z) = h(y)..

Then, ¢ is an{L,-,0,1,7) congruenced” is an (L, +,0, 1, h) congruence, and’ N §" = 1’ by
(10.17). The following is easy to prove, observing that Rel(B):
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Figure 16: Approximate part of
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Proposition 10.3. C* = ¢*; C'; #" andC" = ¢"; C; 6". O

The question arises, how the orderiRdpelonging ta”' can be sensibly approximated, in other words,
what does it mean to say that the approximating regi@(approximately) a part of the approximat-
ing regiony?

We know that the part-of relatioR on B generated by is the Boolean order. Besides the lattice
ordering< on L which extends?, there are, on first glance, several possibilities to generRliwel :

(10.34) v Poy = h(z) < i(y),
(10.35) v Pry <= h(z) < h(y),
(10.36) 2Py = i(2) < i(y),

(10.37) rPay <= i(z) < h(y).

A sketch of theC relationships among these part-of relations is given in Figure 16. Not&thdt, =
<.

Following our assumptions (10.1) and (10.2), we think of lower bound as certainty and upper bound
as possibility, where both bounds are best possible. With this in mind, we see that an approximated
part-of P* relation on an ACA must satisfy

(10.38) The restriction ofP® to B is equal toP.
(10.39) e Py = i(z) <i(y) andh(z) < h(y).
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While the first part of condition (10.39) is clear, | should explain the second parts Bipproximately
a part ofy, and ifz is certainly part of:, i.e. part of all regions which approximates, thenshould be
certainly part of anything which is approximated gylIf ~(z) Z h(y), then no region approximated
by y has a common part with(z) - —i(y), but every region approximated kyhas. Thus, there can
be no region inm(z) which is part of some region im(y).

With these observations, there can be only two suitable ordering relations, namely, the lattice ordering
<, and the ordering, denoted by<, which is defined by

(10.40) r=y< h(z)<i(y).

The lattice ordering can be interpreted as as “possible part of”, whiley says that anything which
x approximates is certainly a part of anything whichpproximates.

Proposition 10.4. Forall =,y € L,

(10.41) x <y C'(z) CCy) andC"(z) C CM(y).

Work on this topic is still in progress. We have implemented a relational proof system for AA, some
of whose specific rules are shown in Table 23.

Table 23: Interior operator rules of AA

Lzl'y, A
(10.42) it eV,
[ zle, Axl'y |T,zHy, 1’y
I xly, A
(10.43) S it e eV,
Dyxlz, A xly
Iax<y A
(10.44) 229
Uoyle, Az <y
Iax<y A
(10.45) = eV
F’ZI:E’A’:ESy|F’x§t’A’x§y|F’tIy’A’x§y
Lzl'y, A
(10.46) oY evVI
T 2Rz, A,al'y | T, 21y, A, zl'y
I',(IoM 1), A
(1047) a( o )($ayaza )a
T elz, A|T,ylt, A

11 Summary

| have given an introduction to the theory of algebras of binary relations, and have shown, how the
relational calculus can aid in obtaining results in spatial reasoning. | have defined contact relation
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algebras, and have given a sound and complete relational proof system for these structures. An in-
vestigation of Boolean contact algebras showed that there is exactly one RA which is obtained from
classical mereology, and that the region connection calculus has at least 25 disjoint base relations
which must be present in any of its models. The standard model for contact structures and any of its
atomless Boolean subalgebras are RCC models with contact inherited from the whole space. Finally,
| have described a class of algebras which models regions which are only known up to a crisp lower
and a crisp upper bound, and have exhibited how contact and part of relations can be sensibly defined
under these model assumptions.
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