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1 Introduction

It is fair to say that the development of algebraic logic started in the middle of last century with

the work of George Boole [16]. The formalisation of what we know as classical propositional logic

(which goes back to at least Aristotle) became immensely successful. At about the same time, the

shortcomings of propositional (Aristotelian ) logic, which were aptly summarised in de Morgan’s

aphorism

“All the logic of Aristotle does not permit us, from the fact that a horse is an animal, to

conclude that the head of a horse is the head of an animal”. [cited in 83]

caused the investigation into the theory of relations as a foundation for mathematical logic. After the

initial efforts of de Morgan [25], it was in particular the work of Peirce [73] and Schröder [79] who

pioneered the study of the (equational) calculus of relations. It can be said that

“algebraic logicwasmathematical logic, or was, at any rate, the late-nineteenth century

state-of-the-art version of mathematical logic”. [11]

With the advent of Frege-Peano-Russell style of “quantificational logic” and the appearance of the

Principia in which the equational theory was subsumed under the quantification formalism, algebraic

logic lay more or less dormant for over forty years. It was K. Twardowski, a Polish philosopher

and a student of Franz Brentano in Vienna, who became interested in Schröder’s work. He, together

with Leśniewski, Łukasiewicz, and Le´sniewski’s sole doctoral student, Tarski, formed the core of the

Lwów – Warsaw school of Logic and Philosophy, which

“ : : : in the 20s – 30s of this century made the University of Warsaw perhaps the most

important research centre in the world for formal logic”. [13]

In the seminal paper “On the calculus of relations” [83], Tarski picked up where Schröder had left off

forty five years earlier. He gave two axiomatisations of a theory of binary relations, one in the style

of Hilbert and Ackermann, and one as an equational formalism. At the end of this paper, Tarski raises

some questions in the solution of which he would be engaged for the rest of his life:

1. Is every model of the axiom system of the calculus of relations isomorphic to an algebra of

binary relations?

2. What is the expressive power of the calculus of relations? To what extent can this calculus

provide a framework for the development of first order logic or, indeed, Mathematics?

3. Is there a decision procedure for expressible first order sentences?
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Tarski had proved in the late 1940s that set theory and number theory could be formulated in the

calculus of relation algebras:

“It has even been shown that every statement from a given set of axioms can be reduced

to the problem of whether an equation is identically satisfied in every relation algebra.

One could thus say that, in principle, the whole of mathematical research can be carried

out by studying identities in the arithmetic of relation algebras”. [19]

A full account of this appeared for the first time in 1987 after Tarski’s death [86]. The theory of

cylindric algebras led to an algebraisation of first order logic [43, 44], just as Boolean algebras were

an algebraisation of the propositional calculus.

Further references for relation algebras are [19, 49, 50]. For a brief overview of the history of algebraic

logic with a large bibliography, we invite the reader to consult [11] and also [62]; a survey of the

current state of algebraisation of quantifier logics is [67].

In our days, the calculus of relations has found many applications in Logic and Computer Science,

references to many of which can be found in Németi’s survey [67], and also in the publications of

the International Seminar on Relational Methods in Computer Science(RELMICS) [18, 71]. As a

general introduction to algebraic logic I recommend Andréka et al. [10]1.

Why would relation algebras be interesting to researchers of spatial reasoning? A large part of (no

pun intended) contemporary spatial reasoning is based on the investigations of the behaviour of “part

of” relations and their extensions to “contact relations” in various domains [see e.g. 21, 36, 87], going

back, among others, to [24, 58, 68]. Also, the consistency of topological relations can be checked

by the techniques of relation algebras. The relational calculus tells us which relations must exist,

given several basic operations, such as Boolean operations on relations, relational composition and

converse. Each equation in the calculus corresponds to a theorem, and, for a situation where there are

only finitely many relations, one can construct acomposition table(defined below) which can serve

as a look up table for the relations involved. Furthermore, since the calculus handles relations, no

knowledge about the concrete geometrical objects is necessary. Relation algebras were introduced

into spatial reasoning in [38] with additional results published in [35, 39], and I would like to refer

the reader to these papers for additional motivation.

We will see below, that relational reasoning in general corresponds to a fragment of first order logic.

On some domains, however, the relations definable by equations are those which are definable by full

first order logic. In these cases, the calculus is sufficient to express all first order properties of the

relations in question.

The tutorial is structured as follows: In Section 2 I will present basic facts on binary relations and

their algebras. This will be followed by an introduction to abstract relation algebras. I will keep this

1Available viahttp://www.math-inst.hu/pub/algebraic-logic/Contents.html
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Section brief, since we will be more concerned with concrete relations. Expressiveness and powers of

definability of the calculus of binary relations will be explored in Section 4. As a gentle introduction

to relation algebras occurring in reasoning about time and space, we will recall Allen’s interval algebra

and the algebra of closed circles in the Euclidean plane. Contact relations and some small relation

algebras generated by them are introduced in Section 6. The smallest relation algebras on an atomless

Boolean algebra generated by a contact relation whose associated order is the Boolean order will be

presented in Section 7. In the next Section, I will introduce the Region Connection Calculus of [77]

(RCC), and will explore which relations must be present in any model of the RCC, in particular, in

any standard topological model whose base consists of regular open sets. I will also interpret some of

these relations topologically in the Euclidean plane. Section 9 presents a sound and complete proof

system for relation algebras generated by a contact relation, and, finally, I will propose a frame for

reasoning about regions with imperfect information, which is based on the data model of rough sets.

I should like to finish this introduction with the closing sentences of Tarski’s 1941 paper, which ex-

press a feeling for Mathematics which often is lost in our days where commercial exploitability is ev-

erything and recognition (and funding) is given by the criterion of immediate applicability, but which,

at least for me, is still a major motivation for engaging in the pursuit of mathematical knowledge:

“Aside from the fact that the concepts occurring in this calculus possess an objective

importance and are in these times almost indispensable in any scientific discussion, the

calculus of relations has an intrinsic charm and beauty which makes it a source of intel-

lectual delight to all who become acquainted with it.” [83]

2 Binary relations and their algebras

A binary relationR on a setU is a subset ofU � U , i.e. a set of ordered pairshx; yi wherex; y 2 U .

I shall usually just speak ofR as arelation, and instead ofhx; yi 2 R, we shall usually writexRy.

The collection of all binary relations onU is denoted byRel(U). The smallest relation onU is the

empty relation, and the largest one the universal relationU � U , which we will denote byV .

A pictorial representation of the fact thatxRy can be given by drawing an arrow fromx to y, which

is labelledR:

x
R - y

LetR be a relation onU .

1. R is reflexiveif xRx for all x 2 U .

2. R is irreflexiveif xRx for nox 2 U .
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3. R is antisymmetricif for all x; y 2 U , xRy andyRx impliesx = y.

4. R is asymmetricif for all x; y 2 U , xRy implies: yRxR.

5. R is transitiveif for all x; y; z 2 U , xRy andyRz impliesxRz.

6. R is functional, if for all x; y; z 2 U , xRy andxRz imply y = z. 2

A functionf : Rel(U)n ! Rel(U) is called ann–ary relational operator. Since relations onU are

sets, we have the binary operators[;\. We also have the unary operator of set theoretic complemen-

tationV nR, which we just denote by� if V is understood. Our first observation now is

Proposition 2.1. hRel(U);[;\;�; ;; V i is a Boolean algebra.

We are going to introduce two more standard operators on relations: Thecompositionor relative

multiplicationR Æ S of two relations is defined as

R Æ S = fhx; yi : (9z)[xRz andzSy]g(2.1)

z

x
R Æ S -

R

-

y

S

-

The fact thatx(R Æ S)y implies the existence of somez with xRz andzSy. This is sometimes called

existential import[12]. Let us denote the identity relationhx; xi : x 2 U by 10, and its complement

by 00. Then,

Proposition 2.2. hU; Æ; 10i is a monoid, i.e.

1. Æ is associative.

2. 10 ÆR = R Æ 10 = R for all R 2 Rel(U).

Another distinguished unary operator isrelational converseor justconverse:

R�= fhy; xi : xRyg:(2.2)

The interplay betweenÆ and� is given by

Proposition 2.3. � is an involution on the semigrouphRel(U); Æi, i.e.

1. � is bijective and of order two, i.e.x��= x.

2. (R Æ S)�= S�ÆR� for all R; S 2 Rel(U).
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We observe that10; Æ; �are first order definable. There are, of course, widely used relational operators

which are not first order definable, an example in point being the transitive closure of a relation.

An algebra of binary relations(BRA) is a structurehA;\;[;�; ;;E; Æ; �; 10Ei, whereE is an equiv-

alence relation on some setU; 10E = E \ 10, andA � 2E is closed under the operations listed and

contains the constants. IfE = U � U andA = 2U�U , then the algebra is called thefull BRA onU ,

and I denote it simply byRel(U). The subalgebras of someRel(U) are calledBRAs onU . In the

sequel I will mean by a BRA always a BRA on some U (i.e. withV = U2), unless stated otherwise.

I shall usually identify algebras with their base set, and, with some abuse of notation, I will also denote

classes of algebras by the abbreviation of their type, e.g. BRA is also the class of all algebras of binary

relations. IfA is an algebra andB is a subalgebra ofA, I denote this by writingB � A.

ForR � Rel(U), let [R] be the subalgebra ofRel(U) generated byR. In other words,[R] is the

smallest subset ofU which is closed under the Boolean and relational operators, and contains the

constants.

If A is a finite BRA, then, as a Boolean algebra, it is atomic; hence the actions of the Boolean operators

are uniquely determined. To determine the structure ofA it is therefore enough to specify the relative

multiplication and the converse operation. This is usually done in acomposition table, where rows

and columns are labelled by the atoms, and a cell contains all atoms below the (result of) the relative

multiplication. If 10 is an atom, it is usually omitted from the table. We observe that the converse of

an atom is again an atom, and that each atom either is contained in10 or disjoint from it; thus, in a

relational representation of a BRA, we can obtain the converse ofR by looking for the unique element

Q of the table for which(R ÆQ) \ 10 6= ;.

I need to mention another form of relational composition which has appeared in the literature [77], and

which I will call weak compositionto distinguish it from the usual relational composition: Suppose

thatR is a set of relations onU , andR; S 2 R. Then,

R Æw S =
[
fT 2 R : (R Æ S) \ T 6= ;g:(2.3)

Necessary and sufficient conditions for a composition table to be the composition table of a relation

algebra are given in Proposition 3.1.

As our first example of a composition table, letS1 be the disjoint union of aK3 and aK4 on a seven

element setU (see Fig. 1).S1 generates a relation algebraA on U with atomsS1; T1; 10 and the

composition shown in Table 1. I use lower case letters in the table to emphasise that the table can be

used for various situations.

If S2 is the relation shown in Figure 2, then the table of the BRA generated byS2 will also be given

by 1. This shows that different BRAs can have the same algebraic structure, and that, in general, the

algebraic structure of a BRA is too weak to determine the size of the base set or what the relations

look like. Nevertheless, the expressive power of BRA can be surprisingly strong. We shall return to

this theme in Section 4.
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Figure 1: The relationS1

� �

�
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Table 1: The BRAS

Æ s t

s -t t

t t -t

Figure 2: The relationS2

� �

� � � �

At the other end of the spectrum is the BRA generated by the relation shown in Figure 3. The

Figure 3: Pentagon and pentagram

R

S

Table 2: The pentagon algebra

Æ R S

R 10; S 00

S 00 10; R

relationR is the pentagon,S is the pentagram, and they generate a BRA whose composition is given

in Table 2. It can be shown that every BRA with such a table must be defined on a base set with five

elements, and consist of the relations given in Figure 3 [7].

A finite BRA need not act on a finite set: LetU be the setQ of rational numbers, and letA � Rel(U)

be generated by the natural strict orderingPP onQ. The resulting relation algebra has the three atoms

PP; PP�; 10 and composition as in Table 3. In fact, any representation ofA must be on an infinite

Table 3: The dense order algebra

Æ PP PP�

PP PP V

PP� V PP�

set: SincePP \ PP� = ;, we see thatPP is asymmetric; in particular,PP \ 10 = ;. The fact that

PP Æ PP = PP tells us two things:

1. PP is transitive, sincePP Æ PP � PP .

2. PP is dense, sincePP � PP Æ PP , i.e. between two different elements ofU there is a third

one:

(8x; y)[xPPy ) (9z)(xPPz andzPPy)]:
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This implies thatU is infinite.

As a further example consider the algebra shown in Table 4. Its domain is the set of all open disks in

the plane, and we set

xPPy () x ( y;(2.4)

xPP�y () x ) y;(2.5)

xPOy () x \ y 6= ;; x 6� y; x 6� y;(2.6)

xDCy () x \ y = ;:(2.7)

This algebra is also known as thecontainment algebra[56].

Table 4: Open disk algebraDo

Æ PP PP� PO DC

PP PP V �P� DC

PP� �DC PP� PP�; PO �P

PO PP; PO �P V �P

DC �P� DC �P� V

3 Abstract relation algebras

One of Tarski’s aims was to give a formal axiomatisation of the calculus of relatives. This led to the

definition of the class ofrelation algebras.

A relation algebra (RA)

hA;+; �;�; 0; 1; Æ; �; 10i

is a structure of typeh2; 2; 1; 0; 0; 2; 1; 0iwhich satisfies

(R0). hA;+; �;�; 0; 1i is a Boolean algebra.

(R1). x Æ (y Æ z) = (x Æ y) Æ z.

(R2). (x+ y) Æ z = (x Æ z) + (y Æ z).

(R3). x Æ 10 = x.

(R4). x��= x.

(R5). (x+ y)�= x�+ y�.

(R6). (x Æ y)�= y�Æ x�.
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(R7). (x�Æ �(x Æ y)) � �y.

This axiom system is the one given in [44]. With some abuse of language, I will denote the class of

relation algebras also by RA.

A decisive property of RA is the followingcycle law, which is de Morgan’s Theorem K [25]:

The following conditions are equivalent:(3.1)

(a Æ b) � c 6= 0; (a�Æ c) � b 6= 0; (c Æ b�) � a 6= 0:

In concrete relations, (3.1) expresses the fact that if one of the directed triangles in Figure 4 exists,

then so do the others. It is not hard to see that each BRA is an RA, and an RA is calledrepresentable

Figure 4: Condition (3.1) for binary relations

�

�
T

-

R
-

�

S

-

� �

�
T

-�

R�

�

S

-

�
T

-

R
-

�

�
S�

(RRA) if it is isomorphic to a BRA.

The following Proposition makes precise when a composition table is indeed the composition table of

a relation algebra:

Proposition 3.1. [47] Let B be a complete and atomic Boolean algebra with10 2 B a distinguished

element,�a unary operation onB, andÆ a binary operation, both of which are completely distributive

over+, and for which0�= 0 and(0 Æ x) = (x Æ 0) = 0. LetAt(B) be the set of atoms ofB. Then,

hB; Æ;�; 10i is an RA if and only if the following conditions hold for allx; y; z 2 At(B):

x�2 At(B):

x Æ (y Æ z) � (x Æ y) Æ z:

x Æ 10 = 10:

x � y Æ z impliesx�� z�Æ y�andy � x Æ z�:
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For things to come, I will introduce some more concepts at this stage. In analogy to rings, an RAA is

calledintegral, if for all x; y 2 A,

x Æ y = 0 impliesx = 0 or y = 0:(3.2)

A is calledsimple, if every onto homomorphism with domainA is an isomorphism. We now have the

following properties [47, 52]:

Proposition 3.2. 1. A is integral if and only if10 is an atom.

2. If A is an integral RRA, then it has a representation as a subalgebra of someRel(U).

3. A is simple if and only ifx Æ 1 Æ x = 1 for all x 6= 0.

4. To every open formula' in the language of relation algebras there is a term'� in the same

language such that for every simple RAA,

A j= '() '� = 1:

Another concept we require is that ofresiduation. SincehA; Æ; 10i is in general not a group, the

equationa Æ x = b does not necessarily have a solution. However, it can be shown that the inequality

a Æ x � b

always has a greatest solution, called the(right) residual ofb by a, written asa n b. The concept of

residuation is intimately related to Axiom (3.1) of RAs, cf. [62, 76] and also [15].

The residual can be expressed as an RA term ina andb by

a n b = �(a�Æ �b):(3.3)

If R; S 2 Rel(U), then the residual is given by the condition

x(R n S)y () R�x � S�y:(3.4)

Some properties of the residual are given in

Proposition 3.3. Suppose thatA is an RA anda 2 A.

1. [75] a n a is reflexive and transitive.

2. [34] If a is reflexive and symmetric, then(a n a)�Æ (a n a) � a.

One of the first questions which arose was whether the system (R0) – (R7) captures RRA, i.e. whether

each RA is representable. Unfortunately, this is not the case; the first non-representable RA was

found by Lyndon [59]. It had 56 atoms and was constructed using projective planes; other examples

were subsequently given by [46] and [60]. A non-representable RAA of smallest size was found by

McKenzie [64]. It is integral, has four atoms, and is 1-generated; its composition is listed in Table 5.

It is not hard to show thatA is not representable: Assume thata; b; c 2 Rel(U) for someU ; sinceA

is integral, we can assume that1 = U � U by Proposition 3.2. Now,
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Table 5: A non-representable RA

Æ b c d

b b 1 b+ d

c 1 c c+ d

d b+ d c+ d b+ c+ 10

1. 10 � b Æ c implies thatc = b�.

2. 10 � b = 0, andb Æ b = b imply thatb is a strict dense partial order. I will sometimes write� for

b, and� for b+ 10.

3. b Æ c = c Æ b = 1 imply that for each pairhx; yi, there arep; q 2 U such thatp � x; y and

x; y � q. .

4. d Æ d = b + b�+ 10 implies thatx; y are comparable if and only if they are incomparable to a

third element.

These conditions cannot live together: Suppose thatx; y 2 U are incomparable, and thatp � x; y � q

as provided by 3. above. By 4. there is ans 2 U such thats is incomparable top andx. If s were

incomparable toy, then, by the other direction of 4.,x would be comparable toy, which is not the

case. Hence,s is comparable toy; furthermore,s � y, since otherwise,p � y � s. Similarly, there is

somet 2 U , such thatt � x, andt is incomparable top andy. Sincep is incomparable to boths and

t, 4. implies thats andt are comparable. Ifs � t, thens � x, and ift � s, thent � y, a contradiction

in both cases. 2

The following proposition summarises the structural properties of RRA:

Proposition 3.4. 1. RRA is an equational class [84].

2. The equational theory of RRA is undecidable [see 86, Section 8.7. for references].

3. RRA is not finitely axiomatisable [65].

4. RRA is not axiomatisable with finitely many variables [49].

As already noted by Tarski, at times the property of associativity of the relational composition is too

strong, and weaker properties are considered [61]. A structure similar to RAs is called a

1. non-associative RA(NA), if it satisfies (R0) and (R2) – (R7).

2. weakly associative RA(WA), if it satisfies (R0) and (R2) – (R7) and

((10 � x) Æ 1) Æ 1 = (10 � x) Æ (1 Æ 1):(3.5)
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3. semi-associative RA(SA), if it satisfies (R0) and (R2) – (R7) and

(x Æ 1) Æ 1 = x Æ (1 Æ 1):(3.6)

It was shown by Maddux [61] that

RA � SA � WA � NA:

An alternative axiomatisation of NA consists of (R0), (R2), (R4), (R5), the identities

10 Æ x = x Æ 10 = x;

and the cycle law (3.1) [61].

The equational theory of WA is decidable [66]. Moreover, each WA is isomorphic to a subalgebra of

an algebrah2W ;[;\;�W ; ;;W; ÆW ; �; 10i, whereW is a reflexive and symmetric binary relation on

a set U, andx ÆW y = (x Æ y)\W .

For many decidability results for various classes of relation algebras, as well as pointers to earlier

work, the reader will find [6] and [55] valuable sources.

4 The expressiveness of BRAs

The question arises what can be expressed by the logic of relation algebras. To answer this question

needs some preparation. A first order language consists of predicate symbols, logical connectives^,

:, the existential quantifier9 and equality, and the usual abbreviations. When considering relational

structureshU;Ri as first order models, I tacitly assume that an appropriate first order languageL is

given. For notational convenience, I shall sometimes identify predicate symbols with the predicates

which interpret them, when no confusion is likely to arise.

If '(x; y) is a formula with the free variablesx; y, andhU;Ri is a model of the languageL, then the

truth setof '(x; y) in the modelhU;Ri is the relation

def '(x; y) = fha; bi 2 U2 : hU;Ri j= '(x=a; y=b):

If S � U2 andS = def'(x; y) for some', thenS is calleddefinablein the modelhU;Ri. Similarly,

we extend this definition to languages with more than one predicate symbol and formulas with other

than two free variables. For example, (the result of) relative composition is definable by the formula

'(x; y) : (9z)[xRz ^ zSy];

and the fact thatx isR connected to every element is expressed by

'(x) : (8y)xRy:
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A relationS is RA definable fromR0; : : : ; Rk, if it is in the BRA generated by theRi. In other words,

S is RA definable from theRi, if it is equal to a relational term constructed from theRi and the

relational operators and constants.

As an example which we will need later, I shall show how extreme elements of an ordered set can be

relationally defined. As a consequence of this, when considering relation algebras which contain an

order relation, it is enough to look at the base set with the extreme elements removed.

Let hU; P i be an ordered set with largest element1 and smallest element0; furthermore, setPP =

P \ 00. Let U0 = U n f1g; U1 = f1g, andUij = Ui � Uj for i; j � 1. Now, we first observe that

h1; 1i 62 PP Æ PP�, since there is no element ofU which is strictly greater than1. On the other hand,

hx; xi 2 PP Æ PP� for all x 6= 1. Thus,

U11 = 10 \ �[(PP Æ PP�) \ 10];

definesfh1; 1ig. Now, set

10u = 10 \ �U11:

Then,

U00 = 10u Æ U
2 Æ 10u;

U10 = U11 Æ U
2 Æ U00;

U01 = U00 Æ U
2 Æ U11;

which shows that allUij and10u are RA definable fromP . The equation which tells us that1 is the

largest element with respect toP now is

U01 � P:(4.1)

Similarly, we can RA definef0g.

In order to fathom the expressive power of the relational calculus, I will translate the relational prop-

erties listed on page 3 into relational equations:

1. R is reflexive iff10 \R = 10.

2. R is irreflexive iff 10 \ R = ;.

3. R is antisymmetric iffR \R�� 10.

4. R is asymmetric iffR \R�= ;.

5. R is transitive iffR ÆR � R.

12



6. R is functional, iffR�ÆR � 10.

The expressiveness of BRAs corresponds to a fragment of first order logic, and the following funda-

mental result is due to A. Tarski [see 86]:

Proposition 4.1. If R � Rel(U), then[R] is the set of all binary relations onU which are definable in

the (language of the) relational structurehU;Ri by first order formulas using at most three variables,

two of which are free.

The question arises: Is this as good as it gets? Let us call a BRAA first order closed, if it contains

every relation which is first order definable inA, regarded as a relational structure. It is worthy to

point out that first order closedness is a property of BRAs, i.e. relational representations of (abstract)

RAs.

The first result in this direction is

Proposition 4.2. [3] Every BRA on a set with at most six elements is first order closed.

Hence, on small sets, RA logic, i.e. the three variable fragment of first order logic, is as powerful as

full first order logic. In the sequel, we will meet many other first order closed BRAs.

Look again at the RA of Table 1 on page 6, and its two representations. TheK3 in the right represen-
tation is first order definable by

'(x; y) : xSz ^ (8u)(8z)(xRu ^ yRu ^ xRz ^ yRz ) x = u _ x = z _ y = u _ y = z _ u = z):

As a relation, theK3 is not in the BRAA generated byS1, and thus,A is not first order closed. On

the other hand, the representation ofA shown in Figure 2 on page 6 is first order closed by Proposition

4.2

Let us consider the quinary operationQ onRel(U) of [49], which is defined by

xQ(R0; : : : ; R4)y () (9z)(9u)(xR0zR1y ^ xR2uR3y ^ zR4u):

The situation thathx; yi 2 Q(R0; : : : ; R4) is pictured below:

z

x

R 0
-

y

R
1

-

u

R4

? R 3

-
R
2 -

Looking again at the BRAs associated with Table 1 on page 6, we see that

Q(S1; S1; S1; S1; S1) = TheK4;

Q(S2; S2; S2; S2; S2) = ;:
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Hence, the network defined byQ(S1; S1; S1; S1; S1) is satisfiable, while the network defined by

Q(S2; S2; S2; S2; S2) is not.

More generally, ifR = fRi;j : i; j � ng, let

xQn(R)y () (9z0; : : : ; zn�1)[x = z0 ^ y = zn�1 ^
^^
i;j�n

ziRijzj ](4.2)

Note that the formula on the right hand side of (4.2) is existential, and thus, it asserts the existence of

a certain network on a complete digraph onn nodes. I say that a BRAA isQn closed, if Qn(R) 2 A

for every choice ofR � A; note that each BRA isQ3 closed.A is Q closed, if it is Qn closed for

everyn � 4.

We now have

Proposition 4.3. 1. [49] If U is finite andA � Rel(U), then

A is first order closed() A isQ closed.

2. [9] If U is infinite, then there is aQ closedA � Rel(U) which is not first order closed.

It may be interesting to note that the formula'(x; y) in the proof of 2. above, which exhibits thatA

is not first order closed, contains only four variables:

'(x; y) : (9z)(8w)[zPx^ zPy ^ ((wPx ^ wPy)! wPz)]:

Thus,ha; bi 2 def '(x; y), if a andb have a minimum with respect toP , which is a partial order in

this example.

A property which is stronger than first order closedness has been introduced in [49] and further in-

vestigated in [3, 17, 48]. Let us first define invariant relations: Let�U be the symmetric group ofU ,

R 2 Rel(U) andf 2 �U , i.e. f is a permutation ofU . I will write f(x; y) instead ofhf(x); f(y)i,

and set

Rf = ff(x; y) : xRyg:

R is calledinvariant underf , if R = Rf . There are only four relations which are invariant under

every permutation, namely,;; V; 10 and00. 2

If A � Rel(U), andf 2 �U , then,f is called abase automorphism ofA if Rf = R for everyR 2 A.

It is not hard to see that the collection of all base automorphisms ofA is a subgroup of�U , denoted

byA�. Conversely, ifG is a subgroup of�U , then the sets of the form

Gx;y = ff(x; y) : f 2 Gg

2I would like to draw the reader’s attention to Tarski’s discussion of invariance in geometry, topology, and logic [85].
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with x; y 2 U are the atoms of a subalgebra ofRel(U), denoted byG�. The pair of assignments

h�; �i forms a Galois connection between the subgroups of�U and the subalgebras ofRel(U), and

A � Rel(U) is calledGalois closed, if A = A��. The following is known about the connection

between first order closure and Galois closure:

Proposition 4.4. 1. [49] If A � Rel(U) is Galois closed, then it is first order closed.

2. [9] If U is finite, then the two notions coincide.

3. [9] There is a BRA on an infinite setU which is first order closed, but not Galois closed.

If one is able to find a suitable subgroup of the group of base automorphisms of someA, it is

sometimes easier to show first order closure by showing thatA is Galois closed. IfG � A�, then

A�� � G�, and every element ofA is a union of atoms ofG�. If A is atomic as well, and one can

exhibit for each atomR of A a pairhx; yi 2 U2 such thatGx;y = R, thenA is Galois closed, and

hence, first order closed.

The situation of the definability of sets instead of relations (or, if you like, subsets of the identity

relation) is understood. Suppose thatA � Rel(U); we regardhU;Ai as a first order structure of a

suitable languageL. We denote byL3 the three variable fragment ofL, i.e. the collection of those

L formulas which contain at most three distinct variables.A is calledpermutational[64] if A� is

transitive, i.e.

For allx; y 2 U there is somef 2 A� such thatf(x) = y:

Proposition 4.5. [4]

1. A is integral if and only if for any'(x) 2 L3,

hU;Ai j= (9x)'(x)! (8x)'(x):

In other words, no proper nonempty subset ofU is definable by a formula with at most three

variables.

2. A is permutational if and only if for any'(x) 2 L,

hU;Ai j= (9x)'(x)! (8x)'(x):

In this case, no proper nonempty subset ofU is definable by anyL formula.

3. If A is integral and Galois closed, thenA is permutational.

McKenzie [63] posed the problem, whether every integral RRA had a permutational representation.

This was solved by Andréka et al. [2] who exhibited an RA on a set of 32 elements which is integral

and has no permutational representation.
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Table 6: Interval relations

before:fh[q; r]; [q0; r0]i : q < r < q0 < r0; q; r; q0; r0 2 Rg

meets:fh[q; r]; [q0; r0]i : q < r = q0 < r0; q; r; q0; r0 2 Rg

overlaps:fh[q; r]; [q0; r0]i : q < q0 < r < r0; q; r; q0; r0 2 Rg

starts:fh[q; r]; [q0; r0]i : q = q0 < r < r0; q; r; q0; r0 2 Rg

ends:fh[q; r]; [q0; r0]i : q0 < q < r = r0; q; r; q0; r0 2 Rg

contains:fh[q; r]; [q0; r0]i : q < q0 < r0 < r; q; r; q0; r0 2 Rg

Figure 5: Interval relations Figure 6: Disk relations

DC

EC

PO

NTPP

TPP

5 Relations of time and plane

Allen [1] has presented a set of 13 relations which characterise the possible relations between intervals

of time. These are the six relations of Table 6, their converses, and the identity. They are the atoms

of an integral BRAI on the set of all closed intervals on the real line; its composition table can be

found in e.g. [56]. The countable representation ofI given in Table 6 is Galois closed [45], and thus

RA logic is sufficient to describe the interval relations.

If we want to extend the time interval relations to two dimensional Euclidean space, a natural domain

to choose is the setD of closed disks. In the plane, we do not have the unique directions “left - right”

of the real line any more, and thus, for example, we cannot distinguish between the “starts” and the

“ends” relations, and between the “before” relation and its converse. In this spirit, we obtain the plane

relations which are defined in Table 7, and pictured in Figure 6.
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Table 7: Disk relations

Disconnected (DC) : fha; bi : a \ b = ;g

Externally connected (EC) : fha; bi : a \ b 6= ;; int(a \ b) = ;g

Partial overlap (PO) : fha; bi : a 6� b; b 6� a; int(a \ b) 6= ;g

Tangential proper part (TPP) : fha; bi : a ( b; Fr(a) \ Fr(b) 6= ;g

Nontangential proper part (NTPP): fha; bi : a � int(b)g:

In Table 7,int(a) is the topological interior ofa, andFr(a) its boundary, i.e.Fr(a) = a\ �int(a).

Note thatDC;EC, andPO are symmetric, whileTPP andNTPP are not; this gives us the addi-

tional disk relationsTPP�andNTPP�. Along with10, they are the atoms of a BRADc onD whose

composition is given in Table 9 [34]. These relations are exactly the topological spatial relations on

convex regular open sets of [36] obtained by classifying pairs of such regions by the intersection of

their respective interiors and boundaries, shown in Table 8. The composition table ofDc has previ-

ously appeared in [39, 80]. I do not know, whetherDc is first order closed.

Table 8: Topological properties of pairs of convex regions [36]

R fr \ fr int \ int fr \ int int \ fr

10 6= ; 6= ; ; ;

DC ; ; ; ;

EC 6= ; ; ; ;

PO 6= ; 6= ; 6= ; 6= ;

TPP 6= ; 6= ; 6= ; ;

NTPP ; 6= ; 6= ; ;

Table 9: Closed disk algebraDc

Æ TPP TPP� NTPP NTPP� PO EC DC

TPP PP �(NTPP [NTPP�) NTPP �P �P� EC;DC DC

TPP� 10; TPP; TPP�; PO PP� PP�; PO NTPP� PP�; PO PP�; PO; EC �P

NTPP NTPP �P� NTPP 1 �P� DC DC

NTPP� PP�; PO NTPP� �(EC [DC) NTPP� PP�; PO PP�; PO �P

PO PP; PO �P PP; PO �P 1 �P �P

EC PP; PO; EC EC [DC PP; PO DC �P� �(NTPP [NTPP�) �P

DC �P� DC �P� DC �P� �P� 1

Dc is isomorphic to the subalgebra ofI generated by the union of the “before” relation and its con-

verse, but its circle representation cannot be embedded into any representation ofI: Consider the

square and its diagonals in Figure 7 on the next page, and label the sides of the square withPO and

its diagonals withDC. This network cannot be satisfied in any representation ofI as shown in [56],
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but it can be satisfied in the closed circle algebra by the indicated configuration.

Figure 7: Satisfiable circle network

6 Contact relation algebras

In this Section we shall look at relation algebras generated by a contact relation; results are from

[34], unless otherwise indicated. To avoid trivialities, we always assume that the structures under

consideration have at least two elements. Suppose thatU is a nonempty set of regions, and thatC is

a binary relation onU which satisfies

C is reflexive and symmetric,(6.1)

Cx = Cy impliesx = y:(6.2)

These are the axioms A0.1 and A0.2 given by Clarke [20] for the mereological part of his calculus

of individuals, but these properties are already mentioned in [24]. (6.2) is an extensionality axiom,

which says that each region is completely determined by those regions to which it is C – related. We

call a binary relationC which satisfies (6.1) and (6.2) acontact relation; an RA generated by a contact

relation will be called acontact RA(CRA). It is easily seen that the identity is a contact relation; in

the sequel we will assume that a contact relation is different from the identity. We note that (6.2) is a

statement about binary relations, and the question arises if there is an equivalent RA expression. An

answer is given by

Proposition 6.1. [34] C is a contact relation iffC is reflexive and symmetric, and

C n C is antisymmetric.(6.3)

Condition (6.2) thus is equivalent to the RA inclusion

�(c Æ �c) � �(c � �c)�� 10:(6.4)

I have used RA symbols to emphasise that (6.4) is independent of binary relations. Together with

Lemma 3.3(1), we obtain the equivalence of (6.3) and

c n c is a partial order:(6.5)
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It is not hard to see that the closed and open disk algebra are CRAs with contact defined by

xCy () x \ y 6= ;;

whereas the interval algebraL is not.

In the rest of the paper, I assume thatC is a contact relation on a setU with at least two elements, and

thatC is not the identity.

All disk relations of Table 7 are RA definable fromC and the relational constants, and I shall use

these definitions for the rest of the paper:

DC = �C disconnected(6.6)

P = �(C ÆDC) Part of(6.7)

PP = P � 00 Proper part of(6.8)

O = P�Æ P Overlap(6.9)

PO = O � �(P + P�) Partial overlap(6.10)

EC = C � �O External contact(6.11)

TPP = PP � (EC ÆEC) Tangential proper part(6.12)

NTPP = PP � �TPP Non-tangential proper part(6.13)

Intuitive interpretations of these relation can be taken from the closed disk algebra. However, as we

shall see presently, there are highly non-standard models of CRAs.

Our first non-standard example is a CRA of minimal cardinality known asN1 with composition as

in Table 10 [23]. It is integral, has four atoms, and is generated by a strict partial orderPP . Two

elements are in contact, if and only if they are comparable. A concrete representation of this algebra

was first given in [27], and a sketch ofPP from the slightly different representation in [5] is shown

in Figure 8: Think ofPP as a fractal-like structure with a copyQ of the rational numbers as its

“backbone”, and ever branching at each point into two copies ofQ;PP is like a time-structure, where

the past is fixed, and there are three possibilities for the future ateach moment in time.

Clearly,C = P�Æ P = P + P� is symmetric and reflexive, andP is a partial order. Finally,

C n C = �(C ÆDC) = �((P + PP�) ÆDC) = �(DC + P�) = P:

It may be worthy of mention that this representation ofN1 is first order closed [45].

As a next step, we look for a CRA whereO 6= C, and hence,EC 6= 0; thus, our algebra should have

the five atoms10; PP; PP�; EC; andDC. There are 14 isomorphism types of such algebras. As an

example, I presentS0 in Table 11, with a representation as follows: Let

S = f
a

3k
: a � 3k; a odd,k = 1; 2; 3; : : :g;

T = f
a

3k
: 0 � a � 3k; a even,k = 1; 2; 3; : : :g:
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Table 10: The algebraN1

Æ PP PP� DC

PP PP 1 DC

PP� �DC PP� PP�; DC

DC PP;DC DC 1

Figure 8: An ordering forN1

Table 11: The algebraS0

Æ PP PP� EC DC

PP PP PP; PP�; 10 EC;DC DC

PP� PP; PP�;10 PP� EC EC;DC

EC EC EC;DC PP; PP�; 10 PP�

DC EC;DC DC PP PP; PP�; 10

Figure 9: An ordering forS0

PP

PP

(

DC

EC

1-x

x

It is not hard to see that

S \ T = ;; S; T �= Q;(6.14)

S andT are dense in each other;(6.15)

x 2 S ) x = inffy 2 T : x � yg = supfy 2 T : y � xg;(6.16)

x 2 T ) x = inffy 2 S : x � yg = supfy 2 S : y � xg; ;(6.17)

x 2 S () 1� x 2 T:(6.18)

Now, we lethS0;�i; hS1;�i be two disjoint copies ofhS;�i, U = S0 [ S1, and letP be extension

of the orders on theSi toU . Furthermore,

xECy() x 2 Si; y 2 Si+1 and1� x � y;

xDCy () x 2 Si; y 2 Si+1 and1� x 
 y:

Here,i 2 f0; 1g, and addition in the indices is mod2. The BRA generated byC = P [ P�[ EC is

justS0.

The non-identity atoms of this representation forP are shown in Figure 9. The lines represent the two

copies ofS, and, for anx, the labels on the various section of the lines indicate the relation which a
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point in this section has tox. Note that the white circle labelled1� x is the “border point” between

EC andDC, but it is not an element ofS.

The structures occurring in spatial reasoning do not only have a relational part, but also an underly-

ing algebra. It has been shown by Tarski [82] that the algebraic structures arising from models of

classical mereology are complete atomless Boolean algebras without0, and Biacino & Gerla [14] ex-

hibit the models of Clarke’s system as complete orthocomplemented lattices with the smallest element

removed. In both cases,

xCy () x 6� �y(6.19)

defines the contact relation. Recall that an operation� on a bounded lattice is calledorthocomple-

mentation, if

x � �x = 0; �� x = x; x � y ) �y � �x:(6.20)

The orderingP of (6.19) is compatible with the lattice ordering in the sense thatP = �. More

generally, let us call a contact relationC on an ordered structurehU;�i compatible with�, if P = �.

For the rest of this Section, we will consider compatible contact relations on orthocomplemented

lattices. Since extreme elements are RA definable, we can suppose that the contact relations which

are compatible with the ordering on a bounded lattice are defined on the base set of the model with the

extreme elements0; 1 removed. This does not mean, however, that we may disregard these elements

altogether: If

T = �(P Æ P�);(6.21)

thenT has the property that

xTy () x+ y = 1:(6.22)

Indeed,xTy if and only if there is no element inL n f1g above bothx andy. Sincex+ y exists, we

must havex+ y = 1. Conversely, ifx+ y = 1, then the smallest element above bothx andy is 1, and

it follows that there is no element inL n f1g above bothx andy, i.e. xTy. If

DD = �O \ T;(6.23)

then

xDDy () x � y = 0 andx+ y = 1:

In the sequel, I will writeDN for DC \ �DD, i.e.

DN = �O \ �T = fhx; zi : x � z = 0; x+ z � 1g;(6.24)
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Table 12: The scale algebraS1

Æ PP PP� EC DN DD

PP PP CP �CP DN DN

PP� CP PP� EC EC;DC EC

EC EC �CP CP PP� PP�

DN EC;DC DN PP CP PP

DD EC DN PP PP� 10

Figure 10: An ordering forS1

PP

PP

( 1-x

x

= x*

EC

DD

DN

The relationsDD andDD are present in any CRA whose associated partial orderP is the ordering of

an orthocomplemented lattice. IfC = O, then the underlying structure is a quasi – Boolean algebra,

i.e. a Boolean algebra with the smallest element removed; we will consider this case in Section 7.

OtherwiseEC = C \�O 6= ;, and a model, similar to the previous one, is as follows: LetE0; E1 be

two copies of the real interval(0; 1) ordered as usual by�, and setE = E0 [ E1; E
+ = E [ f1g.

OrderE+ by

xPy () x; y 2 Ei and x � y; or y = 1:

In the following, addition is modulo2. Letm : E ! E be defined in such a way that, ifx 2 Ei, then

m(x) is the value ofx in Ei+1. Now, the relationC defined onE by

hx; yi 2 C () y 6� m(1� x)(6.25)

defines a contact relation, and

PP =�

O = P�Æ P = P + P�+ 10;

EC = C nO = fhx; yi : y 
 m(1� x)g;

DD = �[(�P�ÆDC) [ (P�ÆC)] = fhx; yi : y = m(1� x)g;

DN = DC \ �DD = fhx; yi : y � m(1� x)g

The composition of the RAS1 generated byC is given in Table 12. I callS1 a scale algebra, sincex

is related to its complement like a scale, as indicated in Figure 10.

An algebra whereEC splits into two atomsEN andED, andDC splits intoDN andDD is given

in Table 13. SinceDD is a one-one function of order two disjoint fromP [ P�, there must be an

even number of components ofP . Furthermore, the Table tells us that, ifxENy or xDCy, theny is

in the same component asDD(x), and, ifxEDy, theny is in a component different from those ofx

orDD(x). Let Si; i < 4 be disjoint copies of the rational interval(0; 1). The mappingm is defined
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Table 13: AlgebraS2 with complement and split EC

Æ PP PP� EN ED DN DD

PP PP PP; PP�; 10 EN;DC ED DN DN

PP� PP; PP�; 10 PP� EN ED EN;DC EN

EN EN EN;DC PP;PP�; 10 ED P� P�

ED ED ED ED �ED ED ED

DN EN;DC DN PP ED PP;PP�; 10 PP

DD EN DN PP ED PP� 10

Figure 11: An ordering forS2

x
PP

PP

(

ED
EC

ED

1-x
DD

DN

from

m :

8>>>>>><
>>>>>>:

S0 ! S1;

S1 ! S0;

S2 ! S3;

S3 ! S2:

andm putsx 2 (0; 1) onto its twin in the other component. Let us now define

xPPy () x; y 2 Si andx � y;

xDDy () y = m(1� x);

xENy () m(1� x) � y;

xDNy () m(1� x) 
 y;

xEDy () y is in a component different from that ofx orDD(x):

If C = �(DN [ DD), thenS2 is isomorphic to the algebra generated byC. An indication of the

atoms ofS2 is given in Fig. 11.

We can also haveED ÆED = 1; in this case, we need (at least) six components, and, otherwise, use

the same definitions as forS2.
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7 Boolean contact algebras

The standard model of a contact structure is the collectionRO(X) of regular open sets of a connected

regularT0 spaceX , with contact given by

xCy () cl(x)\ cl(y) 6= ;:(7.1)

RO(X) is a complete Boolean algebra with the operations

x+ y = int(cl(x[ y));

x � y = x \ y;

x� = int(X n x):

I use� for complementation inRO(X) to distinguish it from the set complement.

It is not hard to see, that

P = � :

A Boolean contact algebra(BCA) is a pairhB;Ci, whereB is an atomless Boolean algebra, andC is

a contact relation onU = B n f0; 1g. Since0 and1 are RA definable fromC, I will not include them

in the fieldU of C. If hB;Ci andhB0; C0i are BCAs, I callhB0; C0i a substructure ofhB;Ci, if B0

is a Boolean subalgebra ofB, andC0 = C \ (B � B). As a note of caution I want to point out that

the BRA generated by a substructurehB0; C0i of hB;Ci is not necessarily a subalgebra of the BRA

of hB;Ci.

The relation algebra generated by the contact relation of anyBCA must include the relation algebra

generated by the Boolean order� onB0, sinceC is compatible, and thus,� = P 2 [C]. To find this

algebra, I first define the following relations in addition to the relations defined in Section 6:

# = �(P [ P�) = fhx; zi : x andz are incomparable w.r.t.�g

T = �(P Æ P�) = fhx; zi : x+ z = 1g

PON = O \# \ �T = fhx; zi : x#z; x � z 6= 0; x+ z 6= 1g

POD = O \# \ T = fhx; zi : x#z; x � z 6= 0; x+ z = 1g

DD = �O \ T = fhx; zi : x � z = 0; x+ z = 1g;

DN = �O \ �T = fhx; zi : x � z = 0; x+ z � 1g;

wherex; z 2 U . We also note that compatibility ofC implies

xOy () x � y 
 0:

Proposition 7.1. [34] Let B be an atomless Boolean algebra. Then, the relations

10; PP; PP�; PON; POD; DN; DD

as defined above are the atoms of the algebraG on B n f0; 1g generated by the Boolean orderP

whose composition is given in Table 14.
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Table 14: The algebraG

O D
Æ

PP PP� PON POD DN DD

PP PP �(POD [DD) PP; PON;DN PP; PO;D DN DN

PP� 10;O PP� PP�; PO POD PP�; PO;D POD

PON PP; PO PP�; PON;DN 1 PP; PO PP�; PON;DN PON

POD POD PP�; PO;D PP�; PO 10; O PP� PP�

DN PP; PO;D DN PP; PON;DN PP �(POD [DD) PP

DD POD DN PON PP PP� 10

In the algebraG, there are two possibilities to define a contact relation: We can take eitherC = O or

C = O [DD. In both cases,P = C nC.

In order to answer the question when a representation ofG is Galois closed, we need some preparation.

If B is a Boolean algebra andx 2 B, thenB � x is the Boolean algebra with base setfy 2 B : y � xg,

meet and join inherited fromB, and complementation relative tox. B is calledhomogeneous, if

B � x �= B for everyx 2 B; x > 0. We now have

Proposition 7.2. [33] An atomless representationhB;Ci of G is Galois closed if and only ifB is a

homogeneous Boolean algebra. In particular,G is Galois closed, ifB is the set of all regular open

sets of the two dimensional Euclidean space.

The atoms ofG constitute a refined version of what is known asRCC5 [57].

8 The standard model and the RCC

A special instance of a BCA is the region connection calculus (RCC) [77]. Since it can be shown

from the original axioms that any RCC model is a quasi – Boolean algebra [33, 81], I use an axiom

system, which incorporates this and which is equivalent to the original one; I also restrict the contact

relation to the non-extremal elements: A model of the RCC is a structurehB;Ci such that for all

x; y; z 2 U = B n f0; 1g,

RCC 1. B is a Boolean algebra, andC is a compatible contact relation onU .

RCC 2. xC � x.

RCC 3. Ify + z = 1 or xC(y + z), thenxCy or xCz.

RCC 4. xC � y () x(�NTPP )y.

RCC 5. xO � y () x(�P )y.

The original RCC axioms asserted that there are noNTPP -minimal elements: Using the relational

formalism, one can give a simple proof of this from the remaining axioms:
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Proposition 8.1. [33]

(8x 2 U)(9y 2 U)yNTPPx(8.1)

Proof. Assume that there is somex 2 U such that for ally 2 U , y(�NTPP )x; by RCC 4, this

implies thatyC � x for all y 2 R. SinceP = C n C (i.e. P is the largest relationS on U with

C Æ S � C), andhx;�xi 62 P , we obtain thatC Æ fhx;�xig 6� C. Hence, there is somet 2 U such

ht;�xi 62 C, a contradiction.

Corollary 8.2. Each model of the RCC is a BCA.

It is known thatRO(X) with X connected and regularT0 is a model for the RCC [41]. In fact, more

is true:

Proposition 8.3. [32] If X is a connected regularT0 space, then each substructureB of hRO(X); Ci

is a model of the RCC axioms.

This shows that the polygonal algebras of [74] are RCC models. I do not know, whether the converse

of Proposition 8.3 holds, i.e. whether every RCC model is isomorphic to a substructure of some

RO(X) with contact as in (7.1). At any rate, each atomless Boolean algebra can be made into an

RCC model:

Proposition 8.4. [53] Every BA can be embedded into the algebra of regular open sets of a connected

regularT0 space.

Corollary 8.5. On each atomless Boolean algebraB there is some contact relationC such that

hB;Ci is an RCC model.

The disk relations shown in Figure 6, together with the identity and the converses ofTPP andNTPP

are usually taken as the base relations of the RCC, calledRCC8. These relations were defined in [20]

without a pictorial representation. Indeed, from a relational point of view, to take Figure 6 as an

example for these relations, is somewhat misleading. The circles used to exemplify the connections,

are much too special to get an intuitive feeling of the relations in the standard model. As we shall see

below, the situations where the relations hold, and the landscape of relations which must exist in an

RCC model is much richer than the picture indicates. As a simple example, letx be the disjoint union

of two disksy andz. Then,yTPPx; zTPPx, which, topologically, is a totally different situation

from the “touching circles” of Figure 6. Indeed, the weak composition table for theRCC8 relations

of [77] is exactly the (“real”) composition table of the closed circle algebra.

In the rest of this Section I shall exhibit nonempty relations which must exist in any RCC model

hB;Ci, and thus, in particular, in a standard model of any dimension; unless stated otherwise, all of

the material is drawn from [32]. Only relational operations and constants are used in deriving these

relations and showing that they are not zero.
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A different approach to obtain (more special) topological relations based on the concepts of interior,

boundary, exterior is the generalisation of the 4 - intersection model of [36] by Egenhofer & Her-

ring [37]. This leads to the3 � 3 matrix given in Table 15. Many examples of instances of these

configurations are given in [35]. At the time of writing, I do not know the relationship between the

expressiveness of the relational calculus and that of the 9 - intersection model, and more research is

needed to clarify the situation.

Table 15: 9 relation configuration

0
B@
int(x)\ int(y) int(x) \ Fr(y) int(x) \ �y

Fr(x) \ int(y) Fr(x) \ Fr(y) Fr(x) \ �y

�x \ int(y) �x \ Fr(x) �x \ �y

1
CA

Since I assumeC to be defined onU = B n f0; 1g, we immediately obtain the complement relation

from (6.23). Since each element is connected to its complement, I will change the notation to

ECD = �(P Æ P�) \ �(P�Æ P ) xECDy() y = �x;(8.2)

ECN = EC \ �ECD xECNy() x � y = 0; x+ y � 1; xCy:(8.3)

Partial overlap splits as well into

POD = PO \ �(P Æ P�) xPODy () xPOy; x+ y = 1;(8.4)

PON = PO \ �POD xPONy () xPOY; x+ y � 1:(8.5)

We will use the 10 disjoint relations

10; NTPP;NTPP�; TPP; TPP�; PON; POD;ECN;ECD;DC

as base relations in which we can express other relations.

In Table 16 on the following page I list some properties of the relations and their interplay with the

algebraic operators.

The weak composition table for these 10 relations is not the composition table of a relation algebra.

However, they are the atoms of a semi-associative relation algebra in the sense Maddux [61].

One can easily show thatPOD splits into the relations

PODZ = ECD ÆNTPP(8.6)

PODY = POD n (ECD ÆNTPP ):(8.7)
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Table 16: Some properties of the 10 base relations

NTPP = ECD ÆNTPP�ÆECD

P ÆNTPP � NTPP

NTPP Æ TPP = NTPP

NTPP Æ P = NTPP

TPP ÆNTPP = NTPP

ECN = TPP ÆECD

xDCz ) xTPP (x+ z)

xNTPPz andyNTPPz () (x+ y)NTPPz

xNTPPz)�x � zTPPz

xNTPPy andxNTPPz() xNTPPy � z

ECD ÆDC � NTPP�

xECN Æ TPPz() xECNx� � zTPPz

xTPP�Æ TPPz() xTPP�x � zTPPz

xTPP Æ TPP�z () xTPP (x+ z)TPP�z

yNTPP (x+ z) andyDCz ) yNTPPx

ECD ÆNTPP � POD
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Table 17: The RCC 11 weak composition

Æw TPP TPP` NTPP NTPP` PON PODY PODZ ECN ECD DC

TPP TPP, NTPP 1’, TPP, TPP`,

PON, ECN,

DC,6=

NTPP,= TPP`, NTPP`,

PON, ECN,

DC,6=

TPP, NTPP,

PON, ECN, DC

TPP, NTPP,

PON, PODY,

ECN, ECD

TPP, NTPP,

PON, PODY,

PODZ

ECN, DC ECN,= DC,=

TPP` 1’, TPP, TPP`,

PON, PODY,

PODZ

TPP`, NTPP` TPP, NTPP,

PON, PODY,

PODZ

NTPP`,= TPP`, NTPP`,

PON, PODY,

PODZ

PODY, PODZ PODZ TPP`, NTPP`,

PON, PODY,

ECN, ECD,6=

PODY TPP` , NTPP`,

PON, ECN, DC

NTPP NTPP,= TPP, NTPP,

PON, ECN,

DC,6=

NTPP 1’, TPP, TPP`,

NTPP, NTPP`,

PON, ECN,

DC,=

TPP, NTPP,

PON, ECN, DC

TPP, NTPP,

PON, ECN, DC

TPP, NTPP,

PON, PODY,

PODZ, ECN,

ECD, DC

DC,= DC,= DC

NTPP` TPP` , NTPP`,

PON, PODY,

PODZ

NTPP`,= 1’, TPP, TPP`,

NTPP, NTPP`,

PON, PODY,

PODZ,=

NTPP` TPP`, NTPP`,

PON, PODY,

PODZ,=

PODZ PODZ TPP`, NTPP`,

PON, PODY,

PODZ

PODZ TPP` , NTPP`,

PON, PODY,

PODZ, ECN,

ECD, DC,=
PON TPP, NTPP,

PON, PODY,

PODZ

TPP`, NTPP`,

PON, ECN, DC

TPP, NTPP,

PON, PODY,

PODZ

TPP`, NTPP`,

PON, ECN,

DC,=

1’, TPP, TPP`,

NTPP, NTPP`,

PON, PODY,

PODZ, ECN,

ECD, DC,=

TPP, NTPP,

PON, PODY,

PODZ

TPP, NTPP,

PON, PODY,

PODZ

TPP`, NTPP`,

PON, ECN,

DC,6=

PON,= TPP` , NTPP`,

PON, ECN,

DC,=

PODY PODY, PODZ TPP`, NTPP`,

PON, PODY,

ECN, ECD

PODZ TPP`, NTPP`,

PON, ECN, DC

TPP`, NTPP`,

PON, PODY,

PODZ

1’, TPP, TPP`,

PON, PODY,

PODZ

TPP, NTPP,

PON, PODY,

PODZ

TPP`, NTPP` TPP` NTPP`

PODZ PODZ TPP`,

NTPP`, PON,

PODY,PODZ

PODZ TPP`, NTPP`,

PON, PODY,

PODZ, ECN,

ECD, DC

TPP`, NTPP`,

PON, PODY,

PODZ

TPP`, NTPP`,

PON, PODY,

PODZ

1’, TPP, TPP`,

NTPP, NTPP`,

PON, PODY,

PODZ

NTPP` NTPP` NTPP`

ECN TPP, NTPP,

PON, PODY,

ECN, ECD

ECN, DC TPP, NTPP,

PON, PODY,

PODZ

DC,= TPP, NTPP,

PON, ECN, DC

TPP, NTPP NTPP 1’, TPP, TPP`,

PON, ECN, DC

TPP,= TPP` , NTPP`,

PON, ECN, DC

ECD PODY,= ECN,= PODZ,= DC PON,= TPP,= NTPP,= TPP`,= 1’,= NTPP` ,=

DC TPP, NTPP,

PON, ECN, DC

DC,= TPP, NTPP,

PON, PODY,

PODZ, ECN,

ECD, DC,=

DC TPP, NTPP,

PON, ECN,

DC,=

NTPP,= NTPP,= TPP, NTPP,

PON, ECN,

DC,=

NTPP,= 1’, TPP, TPP`,

NTPP, NTPP`,

PON, ECN, DC

2
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A weak composition table for the 11 relations can be found in Table 17. For cells containing=, the

RCC axioms together with general RA properties imply that equality holds; for cells containing6=,

there is a model in which the composition is strictly smaller than the cell entry. In this way, one can

indicate in which cells the composition may be weak, and when it is not.

It turns out that there is a relation algebraA whose composition is represented by theRCC11 table.

A, however, cannot come from an RCC model as Proposition 8.6 shows, and no representation ofA

is known.

Proposition 8.6. [32] The relations given in Table 18 are present and not zero in any RCC model,

and they are the atoms of an integral relation algebra.

Table 18: RCC necessary relations

10

TPPA = TPP \ (ECN Æ TPP )

TPPA� = TPP�\ (ECN Æ TPP )�

TPPB = TPP \�(ECN Æ TPP )

TPPB� = TPP�\�(ECN Æ TPP )�

NTPP

NTPP�

PONYA1 = PON \ (ECN Æ TPP )\�(ECN Æ TPP )�\ (TPP Æ TPP�) \ (TPP�Æ TPP )

PONYA1�= PON \ (ECN Æ TPP )�\�(ECN Æ TPP )\ (TPP Æ TPP�) \ (TPP�Æ TPP )

PONYA2 = PON \ (ECN Æ TPP )\�(ECN Æ TPP )�\ (TPP Æ TPP�) \�(TPP�Æ TPP )

PONYA2�= PON \ (ECN Æ TPP )�\�(ECN Æ TPP )\ (TPP Æ TPP�) \�(TPP�Æ TPP )

PONYB = PON \ (ECN Æ TPP )\�(ECN Æ TPP )�\�(TPP Æ TPP�)

PONYB� = PON \ (ECN Æ TPP )�\�(ECN Æ TPP )\�(TPP Æ TPP�)

PONXA1 = PON \ (ECN Æ TPP )\ (ECN Æ TPP )�\ (TPP Æ TPP�) \ (TPP�Æ TPP )

PONXA2 = PON \ (ECN Æ TPP )\ (ECN Æ TPP )�\ (TPP Æ TPP�) \�(TPP�Æ TPP )

PONXB1 = PON \ (ECN Æ TPP )\ (ECN Æ TPP )�\�(TPP Æ TPP�) \ (TPP�Æ TPP )

PONXB2 = PON \ (ECN Æ TPP )\ (ECN Æ TPP )�\�(TPP Æ TPP�) \�(TPP�Æ TPP )

PONZ = PON \�(ECN Æ TPP )\�(ECN Æ TPP )�

PODY A = ECD Æ (TPP \ (ECN Æ TPP ))

PODY B = ECD Æ (TPP \�(ECN Æ TPP ))

PODZ = ECD ÆNTPP

ECNA = ECN \ (TPP Æ TPP�)

ECNB = ECN \�(TPP Æ TPP�)

ECD

DC

We have not found a representation of this algebra. In particular, we have as yet not been able to

determine whether this algebra is the BRA generated by the contact relation on a standard model. If
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Table 19: Splitting ofPON

ECN Æ TPP (ECN Æ TPP )� TPP Æ TPP� TPP�Æ TPP

PONY A1 + � + +

PONY A1� � + + +

PONY A2 + � + �

PONY A2� � + + �

PONY B + � �

PONY B� � + �

PONXA1 + + + +

PONXA2 + + + �

PONXB1 + + � +

PONXB2 + + � �

PONZ � �

the CRA of someRO(X) is integral, then it is not permutational (and thus, not first order closed),

since connectivity is relationally definable by the formula

'(x) : (8y)(8z)(yPx^ zPx ^ (8w)((yPw ^ zPw)! xPw))! yCz)

and not all regular open sets are connected.

To give an impression of some of these relations in a standard model, consider Figures 12 – 14 on the

following page.

Figure 12: sDCt; sDCw; tDCw;

s+ t +w � 1,

aNTPPs; bNTPPt.

s t

b

w

a

c

Figure 13: aNTPPbNTPPs � 1

a

b

s

xTPPAz: In Figure 13 setx = a+ t; z = s+ t.

xTPPBz: In Figure 12, setx = s; z = s+ t or x = a� � s; z = s.

xPONY A1z: In Figure 12, setx = a+ t + w; z = s + w.

xPONY A2z: In Figure 12, setx = t+ a; z = s.

31



Figure 14: aNTPPb; bNTPPs; cNTPPs; bDCc

c
a

b
s

xPONY Bz: In Figure 13, setx = b; z = s � a�.

xPONXA1z: In Figure 12, setx = t+ a; z = s+ b.

xPONXA2z: In Figure 12, setx = s; z = a+ c.

xPONXB1z: In Figure 14, setx = s � (a+ c)�; z = s� + b.

xPONXB2z: In Figure 13, setx = b; z = a+ s � b�.

xPONZz: In Figure 12, setx = s+ t � b�; z = t + s � a�.

The topological properties of some of these relations are shown in Table 20 on the next page. From

these, the topological characterisations of most of the remaining ones can be determined, since they

are intersections, respectively, complements of the given ones. For example,

xTPPAz () x(TPP \ (ECN Æ TPP ))z

() x ( z; Fr(x) \ Fr(�x \ z) 6= ;; Fr(z)\ Fr(�x \ z) 6= ;; cl(x)[ cl(z) 6= X:

Our final example in this Section from [32] shows that not every RCC model is integral: ConsiderR2

and defineK as the collection of sets of the form

K(a; b) =

8<
:
fp 2 R2 : a � jpj � bg; if 0 6= a;

fp 2 R:jpj � bg; if a = 0:

wherea 2 R; b 2 R[ f1g, andjpj is the Euclidian distance ofp 2 R2 to (0; 0)). Let R be the

set of all finite unions of elements ofK including;. ThenR is a subalgebra ofRO(R2), and, by

Proposition 8.3,hR;Ci is a model of the RCC.

Now, considerx = K(0; 1). I want to show that there is noy 2 R with xTPPAy.

Every elementy of R with xTPPy is of the formx [ fK(a; b) : 1 � ag. We concludexTPPBy

because�x � y = fK(a; b) : 1 < ag andfK(a; b) : 1 � ag is disconnected tox.
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Table 20: Topological interpretation of RCC25 relations

Atom Name x; z 2 RO(X) n f;; Xg

Base relations

TPP x ( z; Fr(x) \ Fr(z) 6= ;

� NTPP cl(x) ( z

PON x 6� z; z 6� x; x \ z 6= ;; cl(x)[ cl(z) 6= X

POD x 6� z; z 6� x; x \ z 6= ;; cl(x)[ cl(z) = X

ECN x\z = ;; Fr(x)\Fr(z) 6= ;; cl(x)[cl(z) 6= X

� ECD x\z = ;; Fr(x)\Fr(z) 6= ;; cl(x)[cl(z) = X

� DC cl(x)\ cl(z) = ;

Other relations

ECN Æ TPP Fr(x)\Fr(�x\ z) 6= ;; Fr(z)\Fr(�x\ z) 6=

;; cl(x)[ cl(z) 6= X

TPP Æ TPP� Fr(x) \ Fr(int(cl(x [ z))) 6= ;; Fr(z) \

Fr(int(cl(x[ z))) 6= ;

TPP�Æ TPP Fr(x) \ Fr(x \ z) 6= ;; Fr(z)\ Fr(x \ z) 6= ;

ECD ÆNTPP x [ z = X

� PODZ x [ z = X

� ECNA xECNz; Fr(x) \ Fr(x + z) 6= ;, Fr(z) \

Fr( x + z ) 6= ;

� ECNB xECNz; cl(x) � x+ z or cl(z) � x+ z

9 A relational logic for CRAs

Semantics for modal logic are nowadays mostly given by frameshW;Rii, i.e. sets with accessibility

relations [54]. The meaning function assigns subsets ofW to formulas, where the classical logical

operators are interpreted by set operations. The meaning of the modal operators is interpreted by

properties of the accessibility relations. Equivalent to the frame semantics are the algebraic semantics

which translates the modal operators to normal and additive operators on suitable Boolean algebras

[51]. Orłowska [69] has shown that any classical modal logic can be interpreted in a purely relation

algebraic setting, and has exhibited a sound and complete proof system for the logic.

Such systems are in the style of Rasiowa & Sikorski [78], and consist of decomposition rules, specific

rules and (sequences of) axiomatic expressions. A decomposition rule when applied to an expression

of the theory returns a set of expressions which are syntactically simpler than the original one. These

rules provide definitions of relational operators. The specific rules are the counterparts of relational

constraints. It is worth mentioning that in the Hilbert-style proof systems for applied modal logics it is

often the case that not all the relational constraints can be explicitly expressed and axiomatised. The
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experience with relational proof systems designed until now shows that many constraints which are

not modally expressible receive an explicit representation in the form of a relational rule or a relational

axiomatic sequence. As a case in point, it was shown in [30] that the extensionality axiom (6.2) of

contact relations is not expressible in a classical modal logic, nor, as shown in [29], in its sufficiency

counterpart of [40]. Another example is that the fact that a relation is an intersection of other relations

is not expressible in the standard modal language, but it is expressible in the form of a relational rule.

More details on relational proof systems can be found in [70].

I shall present a relational proof system for CRAs, which was put forward in [30], from which all

material in this Section is taken.

The alphabet of the languageL consists of the disjoint union of the following sets:

1. A setfC; 10g of constants, representing, respectively, the contact relation and the identity.

2. A countably infinite setV I of individuum variables.

3. A setf[;\;�; ; ;�g of names for the relational operators.

4. A setf(; )g of delimiters.

With some abuse of language, I use the same symbols as for the actual operations; it will be clear from

the context which meaning is intended.

The setCE of terms (“contact expressions”) is defined as follows:

1. C and10 are terms.

2. If R andS are terms, so are

(R [ S); (R\ S); (�R); (R;S); (R�):

3. No other string is a term.

I will use the usual conventions of reducing brackets. Note thatCE can be regarded as the absolutely

free algebra of typeh2; 2; 1; 2; 1i overfC; 10g.

The set ofL–formulas is

fxRy : R 2 CE; x; y 2 V Ig:

A model ofL is a pairM = hW;mi, whereW is a nonempty set, andm : CE ! W � W is a

mapping such that

m(C) is a contact relation.(9.1)

m(10) is the identity relation onW .(9.2)

m is a homomorphism fromCE to hRel(W );[;\;�; ; ;�i.(9.3)
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Table 21: Decomposition rules

([)
K;x(R [ S)y;H

K; xRy; xSy;H
(�[)

K;x� (R [ S)y;H

K; x(�R)y;H jK;x(�S)y;H

(\)
K;x(R \ S);H

K; xRy;H jK;xSy;H
(�\)

K;x� (R \ S)y;H

K; x(�R)y; x(�S)y;H

(�)
K;xR�y;H

K; yRx;H
(��)

K;x(�R�)y;H

K; y(�R)x;H

(��)
K;x(��R)y;H

K; xRy;H

(; )
K;x(R;S)y;H

K; xRz;H; x(R;S)y jK; zSy;H; x(R;S)y
wherez is any variable

(�; )
K;x� (R;S)y;H

K; x(�R)z; z(�S)y;H
wherez is a restricted variable

A valuationv is a mapping fromV I to W . If xRy is a formula, then I say thatM satisfiesxRy

underv, written asM; v j= xRy, if hv(x); v(y)i 2 m(R). xRy is calledtrue in the modelM , if

M; v j= xRy for all valuationsv, i.e. ifm(R) = W 2. xRy is calledvalid, if it is true in all models.

Proofs have the form of trees: Given a formulaxRy, we successively apply decomposition or specific

rules; in this way we obtain a tree whose root isxRy, and whose nodes consist of sequences of

formulas. A branch of a tree isclosedif it contains a node which contains an axiomatic sequence as a

subsequence. A tree is calledclosedif all its branches are closed.

Rasiowa-Sikorski (RS) proof systems are, in a way, dual to tableaux systems: Whereas in the latter

one tries to refute the negation of a formula, the RS systems attempt to verify a formula by closing

the branches of a decomposition tree with axiomatic sequences. Rules in RS systems go in both

directions: I call a ruleadmissible, if

The upper sequence is valid iff the lower sequence(s) is (are) valid.

Here, a sequence of formulas is valid if its meta-level disjunction is valid.

The rules of our system are given in Tables 21 and 22, and the axiomatic sequences are

xRy; x(�R)y;(9.4)

x10x;(9.5)

whereR 2 CE.

A variablez is calledrestricted in a ruleif it does not occur in the upper part of that rule.

As an example of a derivation, I want to show that the relationP as defined by (6.7) is antisymmetric,

i.e. that

P \ P�� 10;
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Table 22: Specific rules

(sym10)
K;x10y;H

K; y10x;H

(tran 10)
K;x10y;H

K; x10z;H; x10y jK; z10y;H; x10y
, z a variable

(10
1
)

K;xRy;H

K; x10z;H; xRy jK; zRy;H; xRy
, z a variable

(10
2
)

K;xRy;H

K; xRz;H; xRy jK; z10y;HxRy
, z a variable

(re
C)
K;xCy;H

K; x10y; xCy;H

(symC)
K;xCy;H

K; yCx;H

(extC)
K

K;x(�C)z; yCz jK; y(�C)t; xCt jK;x(�10)y
z andt restrictedvariables

(cutC)
K

K;xCy jK;x(�C)y

that is, by definition ofP ,

(C;�C)[ (�C;C)[ 10 = V:

W use the same symbols as inL with some abuse of notation. To prove the claim, one must find a

closed proof tree for the formula

x((C;�C)[ (�C;C)[ 10)y:(9.6)

Applying rule([) to (9.6) and again to the resulting formula, we obtain

x(C;�C)y; x(�C;C)y; x10y:(9.7)

Rule(extC) with K given by (9.7) leads to three branches:

x(C;�C)y; x(�C;C)y; x10y; x(�C)z; yCz(9.8)

x(C;�C)y; x(�C;C)y; x10y; y(�C)t; xCt;(9.9)

x(C;�C)y; x(�C;C)y; x10y; x(�10)y;(9.10)
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Node (9.10) is closed, and we look at node (9.8). Decomposingx(C;�C)y with rule (; ) gives two

more branches:

xCz; x(�C;C)y; x10y; x(�C)z; yCz; x(C;�C)y;(9.11)

z(�C)y; x(�C;C)y; x10y; x(�C)z; yCz; x(C;�C)y:(9.12)

Node (9.11) is closed. If we apply rule(symC) to yCz in (9.12), we obtain

z(�C)y; x(�C;C)y; x10y; x(�C)z; zCy; x(C;�C)y;(9.13)

which is closed. Similarly, one shows that (9.9) leads to closed branches as well.

We now have

Proposition 9.1. 1. All decomposition rules are admissible.

2. All specific rules are admissible.

3. The axiomatic sequences are valid.

4. If a formula is valid then it has a closed proof tree.

10 Approximating regions

The final part of these tutorial notes is taken from the forthcoming [31].

It is rarely the case that spatial regions can be determined up to their true boundaries, if, indeed, they

have such boundaries; in most cases, we can only observe regions up to a certain granularity. Often,

this is a desirable feature, since too much detail can disturb the view, and we will not be able to see

the wood for the trees, if our desire is to see the wood.

Having as our basic assumption that regions can (or need to) be observed only approximately, we

want to find an operationalisation of the domain of regions, which is broad enough to express the

properties which we want to study, and, at the same time, has enough mathematical structure to serve

as a reasoning mechanisms without being overly restrictive to our intuition.

I make three model assumptions:

1. The first assumption is that there is a collection of regions each of which can be observed only

up to the granularity given by the elements of a setB of crispor definableregions; this power

of observation is expressed by pairs of the formha; bi; a � b, wherea; b are definable regions.

In other words, to each (unknown) regionx there is is a lower boundi(x) = a and an upper

boundh(x) = b, both of which are crisp, up to whichx is discernible. Ifi(x) = h(x), thenx

itself is definable. The pairhi(x); h(x)i is called anapproximating region.
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Figure 15: An approximating region

2. The next assumption is that the domainB of definable regions forms a Boolean algebraB. In

practice,B will be finite, in particular, complete and atomic, but we will not use this in our

theoretical approach.

3. The final assumption is that the boundsha; bi are best possible; in other words, ifx is a region

approximated byha; bi, then

No definable regionc with a � c is a part ofx;(10.1)

If c � b, thenx overlaps with�c.(10.2)

This implies that for each approximating regionx = ha; bi there is a collectionm(x) of regions

each of which is approximated byx, and for which (10.1) and (10.2) hold. Furthermore, ify is

an approximating region different fromx, thenm(x)\m(y) = ;.

These assumptions may seem too strong, but the example below shows that they are fulfilled in an

important area of application, namely, screen resolution.

Consider the regionX in the Euclidean plane, depicted in Figure 15. We suppose in our example that

granularity in the plane is determined by an equivalence relation on the points, the classes of which

are the atoms of the Boolean algebraB of definable regions; these are drawn as squares. We can, for

example, think of the squares as pixels on a computer screen. The regionX can only be discerned up

to the bounds given by its lower and upper approximation, each of which is a union of squares, i.e.

i(X) = fx 2 U : �x � Xg;(10.3)

h(X) = fx 2 U : �x \X 6= ;g(10.4)
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is the lower, resp. upper approximation ofX . Here,�x = fy : x�yg is the equivalence class

containingx. It is obvious that our three model assumptions are fulfilled. This is the rough set

approach to data analysis of [72]; similar paradigms have been put forward in the field of spatial

reasoning by [22, 57, 88, 89]. An up to date introduction to rough set data analysis with many pointers

to further reading is [28]3.

Our first task is to find appropriate algebraic structures in which our model assumptions can be ex-

pressed.

Throughout,hB;+; �;�; 0; 1i will denote a Boolean algebra (BA); we may think ofB as an algebra

of definable (or crisp) objects within some domain as mentioned in the introduction. Since we intend

to identify approximate objects with pairs of definable objects from below and above , we start by

setting4

B[2] = fha; bi 2 B2 : a � bg:(10.5)

We regardB[2] as a sublattice ofB �B, so that

ha; bi+ hc; di= ha+ c; b+ di;

ha; bi � hc; di= ha � c; b � di:

Lower and upper approximation are defined by

i(a; b) = ha; ai;

h(a; b) = hb; bi:

We observe that

h(i(a; b)) = i(a; b); i(h(a; b)) = h(a; b):(10.6)

We can recoverB by identifyingB with fha; ai : a 2 Bg. Thus, an approximating region is definable,

if it is equal to its lower and upper approximation. The operatorsi andc are a co-normal multiplicative

interior, respectively, a normal additive closure operator, i.e. forx; y 2 B[2],

i(1) = 1;(10.7)

x � y ) i(x) � i(y);(10.8)

i(x) � x;(10.9)

i(i(x)) = i(x);(10.10)

i(x � y) = i(x) � i(y);(10.11)

3Technical report version available viahtml://www.infj.ulst.ac.uk/~cccz23/papers/papers.html
4To the best of my knowledge, the notationB[2] has been introduced by [42]
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and

h(0) = 0;(10.12)

x � y ) h(x) � h(y);(10.13)

x � h(x);(10.14)

h(h(x)) = h(x);(10.15)

h(x+ y) = h(x) + h(y);(10.16)

Furthermore, we see that forx; y 2 B[2],

i(x) = i(y) andh(x) = h(y) imply x = y:(10.17)

This expresses the intuition that approximating regions are uniquely determined by their lower and

upper bound. The algebraB[2] may be too large for certain situations. It describes the situation that

for eachx = ha; bi with a � b there are “true” regions which are approximated byha; bi; however,

this may not be always the case. Thus, a less restrictive notion is required, and we generaliseB[2] as

follows:

An approximating algebra(AA) hL;+; �; 0; 1; i; hi is a structure of typeh2; 2; 0; 0; 1; 1i such that for

all x; y 2 L,

hL;+; �; 0; 1i is a bounded distributive lattice.(10.18)

i is a co-normal multiplicative interior operator onL.(10.19)

h is a normal additive closure operator onL.(10.20)

i(h(x)) = h(x); h(i(x)) = i(x):(10.21)

i(x) = i(y) andh(x) = h(y) imply x = y:(10.22)

Each closed element has a complement.(10.23)

It is not hard to see thatB[2] is an AA, and one can show that each AA is a subalgebra of someB[2]

[26]. We will denote byB(L) – or just byB if no confusion can arise – the set of closed elements of

L. By (10.21),B is also the set of interior elements ofL.

It has been shown in [31] that the class AA is term equivalent to the class of regular double Stone

algebras, which, in turn are equipollent to three valued Łukasiewicz algebras.

Thus far, we have operationalised the notion of approximating region, and the question arises, how

we can deal with a contact relation. Our first observation is

Proposition 10.1. On an AAhL;�i which is not a Boolean algebra there is no compatible proper

contact relation.

Since each AA is obtained from its Boolean algebraB of definable elements via the approximation

functions, we suppose that we have a contact relationC onB, which we want to approximate in a
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similar way. It seems natural forx; y 2 L to say that

x andy are certainly connected() i(x)Ci(y);

x andy are possibly connected() h(x)Ch(y):

Thus, givenhB;Ci, we let

xCiy () i(x)Ci(y);(10.24)

xChy () h(x)Ch(y):(10.25)

For formal reasons, however, we do not want to start withC onB, but with the approximation relations

Ci; Ch onL, whose restriction toB is a contact relationC such that (10.24) and (10.25) hold.

An approximating contact algebra(ACA) is a structurehL; i; h; Ci; Chi such thathL; i; hi is an AA

and

Ci = Ci�; Ch = Ch�(10.26)

10 � Ci \ Ch;(10.27)

xCiy () i(x)Cii(y);(10.28)

xChy () h(x)Chh(y);(10.29)

h(x)Cih(y)() h(x)Chh(y);(10.30)

Ch(h(x)) � Ch(h(y))() h(x) � h(y):(10.31)

The following theorem shows that the notion captures our intention:

Proposition 10.2. 1. Let hL; i; h; Ci; Chi be an ACA, and setC = Ch � B2. Then,C is a

compatible contact relation onB, and (10.24)and (10.25)hold. Furthermore,Ch � B2 =

Ci � B2.

2. If hL; i; hi is an AA andC a contact relation onB, then,Ci andCh, defined by(10.24)and

(10.25)satisfy(10.26)– (10.31). Furthermore,C = Ch � B2.

In the sequel, we lethL; i; h; Ci; Chi be a generic ACA, andC = Ch � B2 be the associated contact

relation onB.

Let

x�iy () i(x) = i(y);(10.32)

x�hy () h(x) = h(y)::(10.33)

Then,�i is an hL; �; 0; 1; ii congruence,�h is an hL;+; 0; 1; hi congruence, and�i \ �h = 10 by

(10.17). The following is easy to prove, observing thatC 2 Rel(B):
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Figure 16: Approximate part of
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Proposition 10.3.Ci = �i;C; �i andCh = �h;C; �h. 2

The question arises, how the orderingP belonging toC can be sensibly approximated, in other words,

what does it mean to say that the approximating regionx is (approximately) a part of the approximat-

ing regiony?

We know that the part-of relationP onB generated byC is the Boolean order. Besides the lattice

ordering� onL which extendsP , there are, on first glance, several possibilities to generaliseP toL:

xP0y () h(x) � i(y);(10.34)

xP1y () h(x) � h(y);(10.35)

xP2y () i(x) � i(y);(10.36)

xP3y () i(x) � h(y):(10.37)

A sketch of the� relationships among these part-of relations is given in Figure 16. Note thatP1\P2 =

�.

Following our assumptions (10.1) and (10.2), we think of lower bound as certainty and upper bound

as possibility, where both bounds are best possible. With this in mind, we see that an approximated

part-ofP a relation on an ACA must satisfy

The restriction ofP a toB is equal toP :(10.38)

xP ay ) i(x) � i(y) andh(x) � h(y):(10.39)
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While the first part of condition (10.39) is clear, I should explain the second part: Ifx is approximately

a part ofy, and ifz is certainly part ofx, i.e. part of all regions whichx approximates, thenz should be

certainly part of anything which is approximated byy. If h(x) 6� h(y), then no region approximated

by y has a common part withh(x) � �h(y), but every region approximated byx has. Thus, there can

be no region inm(x) which is part of some region inm(y).

With these observations, there can be only two suitable ordering relations, namely, the lattice ordering

�, and the orderingP0, denoted by�, which is defined by

x � y () h(x) � i(y):(10.40)

The lattice ordering can be interpreted as as “possible part of”, whilex � y says that anything which

x approximates is certainly a part of anything whichy approximates.

Proposition 10.4. For all x; y 2 L,

x � y () Ci(x) � Ci(y) andCh(x) � Ch(y):(10.41)

Work on this topic is still in progress. We have implemented a relational proof system for AA, some

of whose specific rules are shown in Table 23.

Table 23: Interior operator rules of AA

�; x10y;�

�; zIx;�; x10y j �; zHy; x10y
z 2 V I;(10.42)

�; xIy;�

�; xIz;�; xIy
z 2 V I;(10.43)

�; x � y;�

�; yIx;�; x � y
(10.44)

�; x � y;�

�; zIx;�; x� y j �; x � t;�; x � y j �; tIy;�; x � y
z; t 2 V I(10.45)

�; x10y;�

�; xRIz;�; x1
0y j �; zIy;�; x10y

z 2 V I(10.46)

�; (I ÆM )(x; y; z; t);�

�; xIz;� j �; yIt;�
(10.47)

11 Summary

I have given an introduction to the theory of algebras of binary relations, and have shown, how the

relational calculus can aid in obtaining results in spatial reasoning. I have defined contact relation
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algebras, and have given a sound and complete relational proof system for these structures. An in-

vestigation of Boolean contact algebras showed that there is exactly one RA which is obtained from

classical mereology, and that the region connection calculus has at least 25 disjoint base relations

which must be present in any of its models. The standard model for contact structures and any of its

atomless Boolean subalgebras are RCC models with contact inherited from the whole space. Finally,

I have described a class of algebras which models regions which are only known up to a crisp lower

and a crisp upper bound, and have exhibited how contact and part of relations can be sensibly defined

under these model assumptions.
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