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Abstract

The formalization of the “part – of” relationship goes back to the mereology of S. Le´sniewski,
subsequently taken up by Leonard & Goodman (1940), and Clarke (1981). In this paper we

investigate relation algebras obtained from different notions of “part–of”, respectively, “connect-
edness” in various domains. We obtain minimal models for the relational part of mereology in a
general setting, and when the underlying set is an atomless Boolean algebra.

1 Introduction

Qualitative reasoning

“ . . . is reasoning about physical systems without pursuing quantitative descriptions of

system states.” (Cunningham & Brady, 1987)

Qualitative spatial reasoning (QSR) aims to express non–numerical relationships among spatial ob-

jects; for an introduction to QSR and further references we invite the reader to consult Cohn (1997).

The basis of QSR are “part – of” and “contact” relations. The formalization of the “part – of” rela-

tionship, together with the notion of “fusion”, goes back to the mereological systems of Le´sniewski

(1886 – 1939), developed from 1915 onwards (see Le´sniewski, 1927 – 1931, 1983, Luschei, 1962,

Surma et al., 1992). One of Le´sniewski’s main concerns was to build a paradox–free foundation of

Mathematics, one pillar of which was mereology1or, as it was originally called, the general theory of

manifolds or collective sets; the axioms of mereology were simplified by Tarski (1937, 1929). Mere-

ology was later taken up by Leonard & Goodman (1940); formally, Le´sniewski’s mereology and the

calculus of Leonard & Goodman – the classical mereology (CM) – are the same.

Based on classical mereology, and the work of Whitehead (1929) on the relation “x is extensionally

connected withy”, Clarke (1981) presents an axiom system for a “Calculus of individuals” whose
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Table 1: Interval relations

before:{〈[q, r], [q′, r′]〉 : q < r < q′ < r′, q, r, q′, r′ ∈ R}
meets:{〈[q, r′], [q′, r]〉 : q < r = q′ < r′, q, r, q′, r′ ∈ R}

overlaps:{〈[q, r], [q′, r′]〉 : q < q′ < r < r′, q, r, q′, r′ ∈ R}
starts:{〈[q, r], [q′, r′]〉 : q = q′ < r < r′, q, r, q′, r′ ∈ R}
ends:{〈[q, r], [q′, r′]〉 : q′ < q < r = r′, q, r, q′, r′ ∈ R}

contains:{〈[q, r], [q′, r′]〉 : q < q′ < r′ < r, q, r, q′, r′ ∈ R}

single primitive notion is an “in contact with” relation. Nowadays, “mereology” has almost become

synonymous in the QSR community with the study of relations such as “part of”, or “contact” in

appropriate domains. If topological aspects such as “connected” or “convex” are also considered, one

speaks of “mereotopology” (see e.g. Asher & Vieu, 1995, Pratt & Schoop, 1998, 1999).

Most authors considerregionas a primitive notion of QSR; thus, the object domain of an ontology

for QSR does not consists of points which make up space. A similar stand is taken by the well

known calculus based on time intervals (instead of time points) which was given independently by van

Benthem (1983) and Allen (1983); its basic relations are defined in Table 1, and pictured in Figure 1

on page 7. Standard domains of regions are collections of regular sets of a suitable topological space.

For a discussion of the ontological issues we refer the reader to Cohn et al. (1997) and to the special

edition on ontology of theInternational Journal of Human–Computer Studies43 (1995).

In this paper, we shall investigate relational structures obtained from the notions of “part of” and

“contact” in various domains. It may be of interest to note that Tarski, who pioneered the study

of relation algebras, was Le´sniewski’s only doctoral student, and worked closely with him on the

foundations of Mathematics.

2 Relations and their algebras

Relations and their algebras have been studied since the latter half of the last century, e.g. by de Mor-

gan (1864), Peirce (1870) and Schröder (1890 - 1905). Tarski (1941) gave a first formal introduction

to the algebra of relations; his aim was to give an algebraic semantics to first order logic – just as

Boolean algebras were an adequate algebraization of classical propositional logic.

Besides the Boolean set–theoretic connectives, natural operations on binary relations on a setU are

compositionandconverse, defined, respectively, as

R ◦ S = {〈x, y〉 ∈ U × U : (∃z ∈ U)xRzSy},(2.1)

R˘ = {〈y, x〉 : xRy}.(2.2)

We also setRx = {y ∈ U : xRy}.
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The full algebra of relations onU is the structureRel(U) = 〈2V ,∪,∩,−, ∅, V, ◦,˘, 1′〉, whereV =
U × U , and1′ is the identity relation. A subset ofRel(U) which is closed under the distinguished

operations and contains the constants∅, V, 1′ is called analgebra of binary relations(BRA). If {Ri :
i ∈ I} ⊆ Rel(U), then〈Ri〉i∈I is the subalgebra ofRel(U) generated by{Ri : i ∈ I}.

An (abstract) relation algebra (RA) is a structure

〈A, +, ·,−, 0, 1, ◦, ,̆ 1′〉
of type〈2, 2, 1, 0, 0, 2, 1, 0〉which satisfies for alla, b, c ∈ A,

1. 〈A, +, ·,−, 0, 1〉 is a Boolean algebra (BA).

2. 〈A, ◦, ˘, 1′〉 is an involuted monoid, i.e.

(a) 〈A, ◦, 1′〉 is a semigroup with identity1′,

(b) a˘˘ = a, (a ◦ b)˘ = b˘ ◦ a˘.

3. The following conditions are equivalent:

(a ◦ b) · c = 0, (a˘ ◦ c) · b = 0, (c ◦ b˘) · a = 0.(2.3)

Each BRA is an RA, but not vice versa (Lyndon, 1950). We will usually use lower case letters for

elements of an abstract RA, and capital letters for concrete relations. Where binary relations are the

motivation for a construction which also can be done in RA, we will usually use upper case letters and

the RA operators instead of the set operators. For example, a contact relation will always be denoted

by C, and the relations derived from it by abstract RA operations will also be denoted by upper case

letters such as in (3.6) – (3.11).

In the sequel, we will usually identify algebras with their base set.A is calledintegral if the identity

1′ is an atom ofA. If A ≤ Rel(U) is a BRA generated by〈Ri〉i∈I, thenA is integral if and only if no

proper nonempty subset ofU is definable in the first order structure〈U, Ri〉i∈I by a formula with at

most three variables (see Andréka et al., 1995).

A finite RA is completely determined by the action of composition◦ on its atoms. Observe that the

converse can be recovered as follows: the conversea˘ of each atoma is an atom, and an atomb is

the converse ofa, if and only if (a ◦ b) · 1′ 6= 0 (see Jónsson, 1984). We describe such algebras by

exhibiting their composition as a matrix such as in Table 2 on page 7. There, for example, the entry

in cell 〈EC, TPP 〉 means that

EC ◦ TPP = PP ∪ PO ∪ EC.

If the algebra is integral, we omit row and column1′.

The interval relations of Table 1 on the preceding page generate an integral RAI with 13 atoms on

the set of all closed intervals of the real line, namely, the six relations in the table, their converses, and

the identity; its composition table can be found in Allen (1983).
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The logic of RAs is a fragment of first order logic, and the following fundamental result is due to A.

Tarski (see Tarski & Givant, 1987):

Proposition 2.1. If R0, . . . , Rk ∈ Rel(U), then〈R0, . . . , Rk〉 is the set of all binary relations on

U which are definable in the (language of the) relational structure〈U, R0, . . . , Rk〉 by first order

formulas using at most three variables, two of which are free.

In certain BRAs, RA logic may be more expressive. LetA ≤ Rel(U), ΣU be the symmetric group

of U , andϕ ∈ ΣU ; we will write ϕ〈x, y〉 instead of〈ϕ(x), ϕ(y)〉. The image ofR ∈ A underϕ is

denoted byRϕ, i.e.

Rϕ = {ϕ〈x, y〉 : 〈x, y〉 ∈ R}.(2.4)

If Rϕ = R, we callR invariant underϕ. The permutationϕ is called abase automorphism ofA, if

everyR ∈ A is invariant underϕ. The set of all base automorphisms ofA is denoted byAρ; it is easy

to see thatAρ is a subgroup ofΣU .

Conversely, ifG is a subgroup ofΣU andx, y ∈ U , we set

Gx,y = {ϕ(x, y) : ϕ ∈ G},

and letGσ be the BRA onU generated by{Gx,y : x, y ∈ U}. Observe that the setsGx,y are the

orbits of the action ofG onU2 (see e.g. Wielandt, 1964, for the definitions), and hence a partition of

U2. Indeed, eachGx,y is an atom ofGσ, and every atom ofGσ has this form (see Jónsson, 1984).

The assignmentsρ andσ form a Galois connection, andA is calledGalois closedif Aρσ = A. It is

well known that Galois closure implies closure under every permutation invariant operation on binary

relations; in particular, every first order definable relation in the language ofA is an element ofA (see

e.g. Jónsson, 1991).

Let A be an RA, and suppose thata, b ∈ A. Even though the equationa ◦ x = b does not always have

a solution, there is an elementa \ b, called theresidual2 of b by a, such that

a ◦ x ≤ b ⇐⇒ x ≤ a \ b.

The residual can be expressed as an RA term ina andb by

a \ b = −(a˘ ◦ −b).(2.5)

If R, S ∈ Rel(U), then the residual is given by the condition

x(R \ S)y ⇐⇒ R˘x ⊆ S˘y.(2.6)

The proof of the following lemma is straightforward and left to the reader:

2What we call “residual” is called “left residual” in Birkhoff (1948) and “right residual” in Jónsson (1982).
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Lemma 2.2. Suppose thatA is an RA anda ∈ A.

1. a \ a is reflexive and transitive, i.e.

(a) 1′ ≤ a.

(b) a ◦ a ≤ a.

2. If a is reflexive and symmetric, then(a \ a)˘ ◦ (a \ a) ≤ a.

We will also need the following lemma:

Lemma 2.3. Suppose thatR, S ∈ Rel(U), and thatxTy
def⇐⇒ Rx = Sy. Then,

T = −(R ◦ −S˘) ∩−(−R ◦ S˘).(2.7)

Proof. Using the hypothesis and the fact that in any RA we have(−a)˘ = −(a˘) (Chin & Tarski,

1951, Theorem 1.10), we have

xTy ⇐⇒ Rx = Sy,

⇐⇒ Rx ⊆ Sy andSy ⊆ Rx,

⇐⇒ x(R˘ \ S˘)y andy(S˘ \ R˘)x, by (2.6)

⇐⇒ x[−(R ◦ −S˘)]y andy[−(S ◦ −R˘)]x, by (2.5)

⇐⇒ x[−(R ◦ −S˘) ∩−(−R ◦ S˘)]y,

which proves the claim.

In our construction of RAs we have been aided by the RA Scratchpad, designed and written by Peter

Jipsen (1992). For other properties of relations and their algebras see Chin & Tarski (1951), Jónsson

(1982, 1991), and Andréka et al. (1998).

3 Contact relations

To avoid trivialities, we always assume that the structures under consideration have at least two el-

ements. Suppose thatU is a nonempty set of regions, and thatC is a binary relation onU which

satisfies

C is reflexive and symmetric,(3.1)

Cx = Cy impliesx = y.(3.2)

These are the axioms A0.1 and A0.2 given by Clarke (1981) for the mereological part of his calculus

of individuals. (3.2) is an extensionality axiom, which says thateach region is completely determined

by those regions to which it is C – related. We call a binary relationC which satisfies (3.1) and (3.2)

a contact relation; an RA generated by a contact relation will be called acontact RA(CRA).
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Proposition 3.1. C is a contact relation iffC is reflexive and symmetric, and

C \ C is antisymmetric.(3.3)

Proof. “⇒”: Let xC \Cy andyC \Cx. Then, by the symmetry ofC and (2.6), we haveCx = Cy,

and hence,x = y by (3.2).

“⇐”: Suppose thatCx = Cy, i.e. Cx ⊆ Cy andCy ⊆ Cx. By (2.6), we havexC\Cy andyC\Cx,

and the antisymmetry ofC \ C impliesx = y.

Since antisymmetry is RA – expressible by

b · b˘ ≤ 1′,

we can speak of abstract CRAs, i.e. those RAs generated by an element which satisfies (3.1) and (3.3).

We now set

P = C \ C, part of(3.4)

PP = P · −1′. proper part of(3.5)

Lemma 2.2 and (3.3) tell us thatP is a partial order. Two elementsx, y are calledcomparable, if xPy

or xP˘y, otherwise,incomparable.

We follow Clarke (1981) in defining other relations as follows:

O = P˘ ◦ P overlap(3.6)

PO = O · −(P + P˘) partially overlap(3.7)

EC = C · −O external contact(3.8)

TPP = PP · (EC ◦ EC) tangential proper part(3.9)

NTPP = PP · −TPP non–tangential proper part(3.10)

DC = −C disconnected(3.11)

Note thatPO, TPP, TPP˘, NTPP, NTPP˘, EC, DC, 1′ are pairwise disjoint, and their sum is1.

Given a contact relationC, we will use the definitions of the relations (3.4) – (3.11) throughout the

remainder of the paper. Observe that the relations (3.7) – (3.11) arise from the time interval relations

by “forgetting the direction”, e.g. the union of “before” and its converse becomesDC, and the union

of “starts”, “ends” becomesTPP , see Figure 1.

If we think of the closed circles of the Euclidean plane as a domain of regions, andxCy ⇐⇒ x∩y 6= ∅,

we can picture these relations as shown in Figure 2. The CRA generated byC on this domain, the

closed circle algebra, is given in Table 2; the relationP is just set inclusion. Considered as an abstract

RA, the closed circle algebra is isomorphic to the subalgebra of the interval algebraI generated by

the union of the “before” relation and its converse. However, the representation ofCc on the domain of
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Figure 1: Interval relations Figure 2: Circle relations

DC

EC

PO

NTPP

TPP

closed circles cannot be embedded into any representation ofI: Consider the square and its diagonals

in Figure 3 on the next page, and label the square withPO and the diagonals withDC. This network

cannot be satisfied in any representation ofI (Ladkin & Maddux, 1994), but it can be satisfied in the

closed circle algebra.

Table 2: Closed circle algebraCc

◦ TPP TPP˘ NTPP NTPP˘ PO EC DC

TPP PP −(NTPP ∪ NTPP˘) NTPP −P −P˘ EC, DC DC

TPP˘ 1′ , TPP, TPP˘, PO PP˘ PP˘, PO NTPP˘ PP˘, PO PP˘, PO, EC −P

NTPP NTPP −P˘ NTPP 1 −P˘ DC DC

NTPP˘ PP˘, PO NTPP˘ −(EC ∪ DC) NTPP˘ PP˘, PO PP˘, PO −P

PO PP, PO −P PP, PO −P 1 −P −P

EC PP, PO, EC EC ∪ DC PP, PO DC −P˘ −(NTPP ∪ NTPP˘) −P

DC −P˘ DC −P˘ DC −P˘ −P˘ 1

The subalgebraCo of Cc generated byP has five atoms, and its composition is given in Table 3; this

algebra is also called thecontainment algebra(Ladkin & Maddux, 1994). It is also aCRA, since

C′ = P ∪ P˘ ∪ PO is a contact relation withC′ \C′ = P . Another representation ofCo arises from

the set of all open circles in the Euclidean plane, andxCy ⇐⇒ x∩ y 6= ∅. Note that in both algebras

Cc andCo, contact is defined by nonempty intersection.
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Figure 3: Circle network Table 3: Open circle algebra

◦ PP PP ˘ PO DC

PP PP 1 −P ˘ DC

PP ˘ −DC PP ˘ PP ,̆ PO −P

PO PP, PO −P 1 −P

DC −P ˘ DC −P ˘ 1

3.1 Small models of CRAs

The smallest CRA withC 6= 1′ is the algebra known asN1 (Comer, 1983); it has four atoms, and its

composition is given in Table 4. Clearly,C = P˘ ◦ P = P + P˘ is symmetric and reflexive, andP

Figure 4: An ordering forN1 Table 4: The algebraN1

◦ PP PP ˘ DC

PP PP 1 DC

PP ˘ −DC PP ˘ PP ˘, DC

DC PP, DC DC 1

is a partial order. Finally,

C \ C = −(C ◦ DC) = −((P + PP˘) ◦ DC) = −(DC + P˘) = P.

A representation ofN1 is obtained as follows (Düntsch, 1991): Suppose thatω is the set of natural

numbers, andQ the set of rational numbers with their usual ordering≤. Let U be the set of all

functions

f : dom(f) ⊆ ω → Q,

wheredom(f) is a finite nonempty initial segment ofω. For eachf ∈ U , let mf
def
= maxdom(f).

We define a strict partial orderingPP
def
= ≺ onU as follows: Iff, g ∈ U , thenf ≺ g if and only if
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1. dom(g) ⊆ dom(f) andf(k) = g(k) for all k < mg.

2. mg ≤ mf , and

(a) If mg < mf , thenf(mg) ≤ g(mg),

(b) If mg = mf , thenf(mg) < g(mg).

The relation≺ is a strict dense partial order without endpoints and densely branching. It induces a∨ –

semilattice, and is linearly ordered to the right, i.e. for eachf ∈ U , the set{g ∈ U : f � g} is linearly

ordered. These two properties can be interpreted in the sense that two events have a common point in

the past, and that the past is uniquely determined. Two points are connected iff they are comparable,

andN1 satisfiesC = O.

It can be shown that this representation is Galois closed (Hirsch, 1997), and hence, it has the property

that every relation which is first order definable from the base relationP is one of the relations in the

algebra. Thus, according to Proposition 2.1, everything that can be said in first order logic about these

relations can be said with three variables.

A picture of the order derived from a slightly different representation ofN1, given in Andréka et al.

(1994), is shown in Figure 4.

For subsequent use, we introduce the algebrasR andS, whose composition is given in Tables 5 and

6. It is shown in Düntsch (1991) that in any representation ofR, P is the disjoint union of two dense

Table 5: The algebraR

◦ PP PP˘ R

PP PP −R R

PP˘ −R PP˘ R

R R R −R

Table 6: The algebraS

◦ PP PP˘ R

PP PP −R R

PP˘ −R PP˘ R

R R R 1

linear orders, while in any representation ofS, P is the disjoint union of three or more dense linear

orders; note that neitherR norS is a CRA.

As a next step, we look for a CRA whereO 6= C, and hence,EC 6= 0; thus, our algebra should have

the five atoms1′, PP, PP ˘, EC, andDC. The RA scratchpad tell us that there are 14 isomorphism

types of such algebras. As an example, we presentS0 in Table 7.

We note thatR ≤ S0, and therefore,P must be the disjoint union of two dense chains. A representa-

tion of S0 is as follows: Let

S = { a

3k
: a � 3k, a odd,k = 1, 2, 3, . . .},

T = { a

3k
: 0 � a � 3k, a even,k = 1, 2, 3, . . .}.
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Figure 5: An ordering forS0

PP

PP

(

DC

EC

1-x

x

Table 7: The algebraS0

◦ PP PP˘ EC DC

PP PP PP, PP˘, 1′ EC, DC DC

PP˘ PP, PP˘, 1′ PP˘ EC EC, DC

EC EC EC, DC PP, PP˘, 1′ PP˘

DC EC, DC DC PP PP, PP˘,1′

It is not hard to see that

S ∩ T = ∅, S, T ∼= Q,(3.12)

S andT are dense in each other,(3.13)

x ∈ S ⇒ x = inf{y ∈ T : x � y} = sup{y ∈ T : y � x},(3.14)

x ∈ T ⇒ x = inf{y ∈ S : x � y} = sup{y ∈ S : y � x}, ,(3.15)

x ∈ S ⇐⇒ 1 − x ∈ T.(3.16)

Now, we let〈S0,≤〉, 〈S1,≤〉 be two disjoint copies of〈S,≤〉, U = S0 ∪ S1, and letP be extension

of the orders on theSi to U . Furthermore,

xECy ⇐⇒ x ∈ Si, y ∈ Si+1 and1 − m(x) � y,

xDCy ⇐⇒ x ∈ Si, y ∈ Si+1 and1 − m(x) 
 y.

Here, i ∈ {0, 1}, addition is mod 2, and forx ∈ Si, m(x) is the “twin” of x in Si+1. The RA

generated byC = P ∪ P˘ ∪ EC is justS0.

The non–identity atoms of this representation example forP are shown in Figure 5. The lines rep-

resent the two copies ofS, and, for anx, the labels on the various section of the lines indicate the

relation which a point in this section has tox. Note that the white circle labeled1 − x is the “border

point” betweenEC andDC, but it is not an element ofS.

4 Models of mereology

If X is a collection of objects andC a contact relation, then

x =
∑

X
def⇐⇒ (∀y)[xCy ⇐⇒ (∃z ∈ X)yCz].(4.1)

This is read asx is the sum (or fusion) ofX . The following axiom guarantees the existence of the

fusion:

For each nonemptyX ⊆ U the fusion exists.(4.2)
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Assuming (4.2), we follow Clarke (1981) in defining

1 =
∑

{x : xCx} Universal element(4.3)

x∗ =
∑

{y : y(−C)x} Complement(4.4)
∏

X =
∑

{z : zPx for all x ∈ X} Product(4.5)

Observe that∗ and
∏

are partial operations. Amodel of mereologyis a structure〈U, C,
∑〉 which

satisfies (3.1), (3.2), and (4.2). The models of mereology have been characterized algebraically by

Biacino & Gerla (1991):

Proposition 4.1. If 〈L, +, ·,−〉 is a complete orthocomplemented lattice, then

xCy ⇐⇒ x 6≤ −y(4.6)

defines a contact relation, and the fusion is just the lattice join. Conversely, if〈U, C,
∑〉 is a model of

mereology, we letU ′ = U ∪ {0}, where0 6∈ U . Then,〈U ′, C,
∑〉 is a complete orthocomplemented

lattice with the lattice join being the fusion, and the other operations given by(4.4)and(4.5), extended

by
∏

X = 0 whenever
∏

X does not exist inU , and0∗ = 1, 1∗ = 0.

Each model〈L, +, ·,−〉 of mereology defines a CRA in a natural way, namely, the BRA generated by

C as defined in (4.6) onL.

Since extreme elements are RA definable, we assume from now on that the CRAs from models of

mereology are defined on the base set of the model with the extreme elements0, 1 removed. This

does not mean, however, that we may disregard these elements altogether: If

R
def
= −(P ◦ P˘),(4.7)

then,R has the property that

xRy ⇐⇒ x + y = 1.(4.8)

Indeed,xRy if and only if there is no element inL \ {1} above bothx andy. Sincex + y exists, we

must havex+ y = 1. Conversely, ifx + y = 1, then the smallest element above bothx andy is 1, and

it follows thatxRy.

Complement will always be an element of a CRA which comes from a model of mereology:

Proposition 4.2. In a model of mereology, complement as defined in(4.4) is RA expressible fromC,

i.e. there is a relationDD which is RA – definable fromC such thatxDDy ⇐⇒ y = x∗.

Proof. We have

y = x∗ ⇐⇒ y =
∑

{z : zDCx} by (4.4)

⇐⇒ (∀t)[yCt ⇐⇒ (∃z)(zDCx andtCz)], by (4.1)

⇐⇒ (∀t)[yCt ⇐⇒ xDC ◦ Ct],

⇐⇒ Cy = (DC ◦C)x.
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SettingR = (DC ◦C), S = C and using Lemma 2.3, we now have

y = x∗ ⇐⇒ 〈x, y〉 ∈ −[(DC ◦ C ◦ DC) ∪ (−(DC ◦C) ◦ C)],(4.9)

which proves our claim.

SinceP = −(C ◦ DC), we haveDC ◦ C = −P˘, and(P ◦ DC) ∩ C = ∅ implies(P˘ ◦ C) ⊆ C.

Clearly,C ⊆ P˘ ◦ C, and thus we can simplify (4.9) to

xDDy ⇐⇒ 〈x, y〉 6∈ [(−P˘ ◦ DC) ∪ C](4.10)

In the sequel, we will writeDN for DC ∩−DD. A CRA arising from a model〈L, +, ·, ∗〉 of mereol-

ogy satisfies the conditions listed below; there, the right hand side is the property ofL corresponding

to the relational property:

DD ◦ DD = 1′, (a∗∗ = a)(4.11)

DD = −(P ◦ P˘) · −(P˘ ◦ P ), (a + a∗ = 1, a · a∗ = 0)(4.12)

DD ◦ PP = (DD ◦ PP )˘ (a ≤ b ⇐⇒ b∗ ≤ a∗)(4.13)

Any CRA for mereology must splitDC into DD andDN . If M is a model of classical mereology,

i.e. whenC = O, then the underlying set is a quasi – Boolean algebra, i.e. a Boolean algebra with the

smallest element removed; we will look at this case in Section 5. OtherwiseEC = C ∩−O 6= ∅, and

a model, similar to the previous one, is as follows: LetE0, E1 be two copies of the real interval(0, 1)
ordered as usual by≤, and setE = E0 ∪ E1, E+ = E ∪ {1}. OrderE+ by

xPy ⇐⇒ x, y ∈ Ei and x ≤ y, or y = 1.

In the following, addition is modulo2. We letm : E → E be defined in such a way that, ifx ∈ Ei,

thenm(x) is the value ofx in Ei+1. Now, the relationC defined onE by

〈x, y〉 ∈ C ⇐⇒ y 6≤ m(1 − x)(4.14)

defines a contact relation, and

PP =�

O = P˘ ◦ P = P + P˘ + 1′,

EC = C \ O = {〈x, y〉 : y 
 m(1− x)},
DD = −[(−P˘ ◦ DC) ∪ (P˘ ◦ C)] = {〈x, y〉 : y = m(1− x)},
DN = DC ∩−DD = {〈x, y〉 : y � m(1 − x)}

The composition of the RAS1 generated byC is given in Table 8. We callS1 a scale algebra, since

x is related to its complement like a scale, as indicated in Figure 6. The algebraS1 shows that in a

model of mereology,P andEC do not necessarily split.
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Figure 6: An ordering forS1

PP

PP

( 1-x

x

= x*

EC

DD

DN

Table 8: The scale algebraS1

◦ PP PP˘ EC DN DD

PP PP CP −CP DN DN

PP˘ CP PP˘ EC EC, DC EC

EC EC −CP CP PP˘ PP˘

DN EC, DC DN PP CP PP

DD EC DN PP PP˘ 1′

Table 9: AlgebraS2 with complement and split EC

◦ PP PP ˘ EN ED DN DD

PP PP PP, PP ,̆ 1′ EN, DC ED DN DN

PP ˘ PP, PP ,̆ 1′ PP ˘ EN ED EN, DC EN

EN EN EN, DC PP, PP ,̆ 1′ ED P ˘ P ˘
ED ED ED ED −ED ED ED

DN EN, DC DN PP ED PP, PP ,̆ 1′ PP

DD EN DN PP ED PP ˘ 1′

An algebra whereEC splits into two atomsEN andED, andDC splits intoDN andDD is given

in Table 9. We see that the algebraS with R = EC ∪ DC whose composition is given in Table 6

is a subalgebra ofS2. Now, sinceDD is a one-one function disjoint fromP ∪ P˘, there must be an

even number of components ofP . Furthermore, the Table tells us that, ifxENy or xDCy, theny is

in the same component asDD(x), and, ifxEDy, theny is in a component different from those ofx

or DD(x). Let Si, i < 4 be disjoint copies of the rational interval(0, 1). The mappingm is defined

from

m :




S0 → S1,

S1 → S0,

S2 → S3,

S3 → S2.

andm putsx ∈ (0, 1) onto its twin in the other component. We now define

xPPy ⇐⇒ x, y ∈ Si andx � y,

xDDy ⇐⇒ y = m(1 − x),

xENy ⇐⇒ m(1− x) � y,

xDNy ⇐⇒ m(1− x) 
 y,

xEDy ⇐⇒ y is in a component different from that ofx or DD(x).
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Figure 7: An ordering forS2

x
PP

PP

(

ED
EC

ED

1-x
DD

DN

If C = −(DN ∪ DD), thenS2 is isomorphic to the algebra generated byC. We have not been able

to find an intuitive spatial explanation of this situation. An indication of the atoms ofS2 is given in

Fig. 7.

We can also haveED ◦ ED = 1; in this case, we need (at least) six components, and, otherwise, use

the same definitions as forS2.

5 Classical mereology

The classical mereology of Lesniew´ski is based on a “part of relation”P which is a partial order.

Two individualsx, y are calleddiscrete, written asxDRy, if they have no common part; in relational

terminology,

xDRy ⇐⇒ ¬ xP˘ ◦ Py.

x is thefusionof a collectionX of individuals, if every element ofX is a part ofx, and if no part of

x is discrete from all elements ofX . To capture classical mereology, we need an additional axiom for

our contact structures, namely

P˘ ◦ P = C.(5.1)

Then,O = C, and the notion of fusion is equivalent to that of (4.1) on page 10. This has been

mentioned in the literature; a proof of this follows from the following

Proposition 5.1. Let 〈L, +, ·,−〉 be a model of mereology for whichC = P ˘ ◦ P ; furthermore let

∅ 6= X ⊆ L \ {1}, andx1, x2 ∈ L \ {1} such that for ally, z ∈ L \ {1},

x1Cy ⇐⇒ (∃t)(t ∈ X ∧ tCy),(5.2)

y ∈ X ⇒ yPx2,(5.3)

zPx2 ⇒ (∃s)(s ∈ X ∧ zCs).(5.4)

Then,x1 = x2.
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Proof. First, we show thatP˘ ◦ C ⊆ C: Let xP˘zCy, and assume thatxDCy. then,x(DC ◦ C)z;

sinceP˘ = −(DC ◦ C), this contradictsxP˘z.

To showx1 = x2, it is sufficient to show thatx1Cy ⇐⇒ x2Cy for all y ∈ L \ {1}. Let x1Cy; then,

by (5.2), there is somez ∈ X with zCy. By (5.3) we havezPx2, and therefore,x2(P ˘ ◦ C)y; it

follows thatx2Cy. Conversely, suppose thatx2Cy; then, there is somet such thatx2P ˘tPy. By

(5.4), there is somez ∈ X with tCz, and therefore,yP˘tCz. This implieszCy, and hence,x1Cy by

(5.2).

C = P ˘ ◦ P implies that the relationsEC andTPP are empty. If〈U, C,
∑〉 satisfies (3.1), (3.2),

(4.2), and (5.1), we call it amodel of classical mereology(CM).

Models of classical mereology arise from complete Boolean algebrasB with the0 element removed

(see Tarski, 1935, p. 190f, footnote 5), whereP is the Boolean order; it is not hard to see that

xCy ⇐⇒ x · y 6= 0.(5.5)

Let B be a (complete) atomless Boolean algebra; completeness does not play a role in our consider-

ations. We shall assume that our base set isU
def
= B \ {0, 1}, and the relations are restricted toU .

SinceP is the basic relation of classical mereology, there is only one RA associated to CM, when the

Boolean algebra is atomless.

In addition to the relations defined in Section 3, we define the following relations:

# = −(P ∪ P˘) = {〈x, z〉 : x andz are incomparable w.r.t.≤}
T = −(P ◦ P˘) = {〈x, z〉 : x + z = 1}

PON = O ∩ # ∩ −T = {〈x, z〉 : x#z, x · z 6= 0, x + z 6= 1}
POD = O ∩ # ∩ T = {〈x, z〉 : x#z, x · z 6= 0, x + z = 1}

wherex, z ∈ U . SinceC = O, there is no external connection. We now have

Proposition 5.2. LetB be an atomless Boolean algebra. Then, the relations

1′, PP, PP˘, PON, POD, DN, DD

as defined above are the atoms of the algebraG on B \ {0, 1} generated by the Boolean orderP

whose composition is given in Table 10.

Proof. Clearly, these relations partitionU × U . The computations are straightforward, if somewhat

tedious, and are left to the reader.
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Table 10: The algebraG
O D◦

PP PP˘ PON POD DN DD

PP PP −(POD ∪ DD) PP, PON,DN PP, PO, D DN DN

PP˘ 1′, O PP˘ PP˘, PO POD PP˘, PO, D POD

PON PP, PO PP˘, PON,DN 1 PP, PO PP˘, PON,DN PON

POD POD PP˘, PO, D PP˘, PO 1′, O PP˘ PP˘

DN PP, PO, D DN PP, PON,DN PP −(POD ∪ DD) PP

DD POD DN PON PP PP˘ 1′

In the algebraG, there are two possibilities to define a contact relation: We can take eitherC = O

or C = O ∪ DD. In both cases,P = C \ C. In the first case, (5.1) is also fulfilled, so that we

obtain a model of classical mereology. IfA is a CRA andC 6= O, then, becauseA is integral and

DD is a function, it is not hard to see thatDD ⊆ C. It follows that in the realm of atomless Boolean

algebras withP = ≤, the algebraG is the smallest CRA coming from a model of classical mereology

if C = O. If C = O ∪ DD, then we do not obtain a model of mereology, since in such models, a

region is never in contact with its complement.

At any rate, whenever a CRA assumes an underlying atomless Boolean algebra with the Boolean

ordering as the “part – of” relation (such as the RCC mentioned below), then the relations ofG must

be present. Indeed, every relationC on an atomless Boolean algebra which satisfies (3.1) and (3.2)

with ≤ = P , must satisfyO ⊆ C, sinceP˘ ◦ P ⊆ C by Lemma 2.2(2).

Another calculus for spatial reasoning, theRegion Connection Calculus(RCC) of Randell et al.

(1992), also has as a foundation a quasi–Boolean structure, and hence, the algebraG is a subalge-

bra of RAs obtained from the RCC. We describe some of the relational properties of the RCC in

Düntsch et al. (1999a).

The situation when (a representation of)G is Galois closed is understood. Recall that a Boolean

algebraB is calledhomogeneousif every nontrivial relative algebraB � x is isomorphic toB. In case

B has more than four elements, it is known that this is equivalent to the fact that the stabilizerH of

{0, 1} in the automorphism group ofB is transitive (see e.g. Koppelberg, 1989, p.135). Furthermore,

H is just the group of base automorphisms ofG. Now,

Proposition 5.3. Düntsch et al. (1999a)

G is Galois closed if and only ifB is homogeneous. In particular,G is Galois closed over the BA of

regular open sets of a Euclidean space.

6 Conclusion and outlook

We have introduced contact relations and their algebras (CRAs) which are based on the relations aris-

ing in mereology as defined by Le´sniewski and extended by Clarke; these relations play a prominent
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role in contemporary qualitative spatial reasoning.

We have given natural spatial models of CRAs using circles in the Euclidean plane; these have made

clear the conceptual relationship of CRAs to the interval algebra. We have also given minimal CRAs

as well as the (unique) CRA associated with models of classical mereology.

In this introductory article, many important problems have not been discussed, and there is much room

for further research. The CRAs for standard ontologies of mereotopology and their expressiveness are

currently being investigated by Düntsch et al. (1999b). These include the standard model of the RCC

as the collection of all nonempty regular closed sets on a regular connected spaces, as well as the

polygonal algebras of Pratt & Schoop (1998, 1999).

A logic for CRAs with a complete proof system has been presented by Düntsch & Orłowska (1999a),

and modal logics for frames with a contact relation are being developed in Düntsch & Orłowska

(1999b).

Finally, we should like to draw the reader’s attention to the following open questions:

• For which partial ordersP is there a contact relationC such thatP = C \ C? When canC be

chosen asP˘ ◦ P?

• Investigate the complexity of CRAs. This is an important question, relating to the feasibility

of relational reasoning in QSR (Bennett et al., 1997). There have been investigations for the

algebra of time intervals and its relatives (Nebel & Bürckert, 1993, Ladkin & Maddux, 1994,

Hirsch, 1997), as well as for RA-like structures related to the RCC (Renz & Nebel, 1997, 1998,

Jonsson & Drakengren, 1997). In connection with the different representations of subalgebras

of the interval algebra, it is also of interest to investigate the network satisfaction problem for

the given algebras and their representations (Hirsch, 1997).

• Look at vagueness of spatial regions. This seems especially important for applications such as

geographical information systems (Worboys, 1998). The rough relations of Comer (1993) and

Düntsch (1994), or the uncertainty approach of Düntsch & Gediga (1997) may come in useful.

It should also be worthwhile to investigate the connections of rough mereology (Polkowski &

Skowron, 1994) to this problem.
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