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Abstract

The formalization of the “part — of” relationship goes back to the mereology of $hike/ski,
subsequently taken up by Leonard & Goodman (1940), and Clarke (1981). In this paper we
investigate relation algebras obtained from different notions of “part—of”, respectively, “connect-
edness” in various domains. We obtain minimal models for the relational part of mereology in a
general setting, and when the underlying set is an atomless Boolean algebra.

1 Introduction

Qualitative reasoning

. Is reasoning about physical systems without pursuing quantitative descriptions of
system states.” (Cunningham & Brady, 1987)

Qualitative spatial reasoning (QSR) aims to express non—numerical relationships among spatial ob-
jects; for an introduction to QSR and further references we invite the reader to consult Cohn (1997).

The basis of QSR are “part — of” and “contact” relations. The formalization of the “part — of” rela-
tionship, together with the notion of “fusion”, goes back to the mereological systemssofdveski
(1886 — 1939), developed from 1915 onwards (seenigiski, 1927 — 1931, 1983, Luschei, 1962,
Surma et al., 1992). One of kriewski’s main concerns was to build a paradox—free foundation of
Mathematics, one pillar of which was mereoldgy as it was originally called, the general theory of
manifolds or collective sets; the axioms of mereology were simplified by Tarski (1937, 1929). Mere-
ology was later taken up by Leonard & Goodman (1940); formallgnievski's mereology and the
calculus of Leonard & Goodman — the classical mereology (CM) — are the same.

Based on classical mereology, and the work of Whitehead (1929) on the relatiseXtensionally
connected withy”, Clarke (1981) presents an axiom system for a “Calculus of individuals” whose
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Table 1: Interval relations

before:{{[q, 7], [, 7]} : q<r < q <7v',q,7r,¢,7" € R}
meets:{([q, 7], [¢,7]) :ga<r=4q¢ <1 qr ¢, r €R}
overlaps:{{[q,r],[¢,7]) :q< ¢ <r <71 q,r,¢,r € R}
starts:{([q, 7], [¢,r]) :qa=¢ <r < qr ¢, r €R}
ends:{{[q,7], [, ")) : ¢ <q<r=1",¢q,7,¢, 7" €R}
contains{([q, 7], [¢,7]) :qa < ¢ <7 <r,q,r ¢, eR}

single primitive notion is an “in contact with” relation. Nowadays, “mereology” has almost become
synonymous in the QSR community with the study of relations such as “part of”, or “contact” in
appropriate domains. If topological aspects such as “connected” or “convex” are also considered, one
speaks of “mereotopology” (see e.g. Asher & Vieu, 1995, Pratt & Schoop, 1998, 1999).

Most authors consideegionas a primitive notion of QSR; thus, the object domain of an ontology

for QSR does not consists of points which make up space. A similar stand is taken by the well
known calculus based on time intervals (instead of time points) which was given independently by van
Benthem (1983) and Allen (1983); its basic relations are defined in Table 1, and pictured in Figure 1
on page 7. Standard domains of regions are collections of regular sets of a suitable topological space.
For a discussion of the ontological issues we refer the reader to Cohn et al. (1997) and to the special
edition on ontology of thénternational Journal of Human—Computer Stud#3(1995).

In this paper, we shall investigate relational structures obtained from the notions of “part of” and
“contact” in various domains. It may be of interest to note that Tarski, who pioneered the study
of relation algebras, was kaiewski’s only doctoral student, and worked closely with him on the
foundations of Mathematics.

2 Relations and their algebras

Relations and their algebras have been studied since the latter half of the last century, e.g. by de Mor-
gan (1864), Peirce (1870) and Schroder (1890 - 1905). Tarski (1941) gave a first formal introduction
to the algebra of relations; his aim was to give an algebraic semantics to first order logic — just as
Boolean algebras were an adequate algebraization of classical propositional logic.

Besides the Boolean set—theoretic connectives, natural operations on binary relations Bnaaeset
compositiorandconversedefined, respectively, as

(2.1) RoS={(z,y) e U xU:(3z€U)xRzSy},
(2.2) R” = {(y,z) : zRy}.

We also sefRx = {y € U : zRy}.



Thefull algebra of relations oV is the structureRel(U) = (2V,U,N, —, 0, V,0,”, 1), whereV =

U x U, and1’ is the identity relation. A subset dtel(U) which is closed under the distinguished
operations and contains the constdhtg, 1’ is called aralgebra of binary relation¢BRA). If {R; :

i €1} C Rel(U), then(R;)cr is the subalgebra dkel(U) generated by R; : i € I}.

An (abstract) relation algebra (RA) is a structure
<A7 +5 07 17 o, vv 1/>
of type(2,2,1,0,0,2, 1,0) which satisfies for alt, b, c € A,

1. (A,+,-,—,0,1)is a Boolean algebra (BA).
2. (A, 0, ", 1) is an involuted monoid, i.e.

(@) (A, o, 1) is a semigroup with identity’,
(b) a”" =a, (aob)"=b"0a”.

3. The following conditions are equivalent:

(2.3) (aob)-¢=0,(a"0c)-b=0, (cob”)-a=0.

Each BRA is an RA, but not vice versa (Lyndon, 1950). We will usually use lower case letters for
elements of an abstract RA, and capital letters for concrete relations. Where binary relations are the
motivation for a construction which also can be done in RA, we will usually use upper case letters and
the RA operators instead of the set operators. For example, a contact relation will always be denoted
by C, and the relations derived from it by abstract RA operations will also be denoted by upper case
letters such as in (3.6) — (3.11).

In the sequel, we will usually identify algebras with their base deis calledintegralif the identity
1"isan atom ofd. If A < Rel(U) is a BRA generated byR;);cr, thenA is integral if and only if no
proper nonempty subset 6f is definable in the first order structu(€, R;);c; by a formula with at
most three variables (see Andréka et al., 1995).

A finite RA is completely determined by the action of compositioon its atoms. Observe that the
converse can be recovered as follows: the conversef each atonu is an atom, and an atomis

the converse of;, if and only if (a o b) - 1’ # 0 (see Jonsson, 1984). We describe such algebras by
exhibiting their compaosition as a matrix such as in Table 2 on page 7. There, for example, the entry
in cell (EC, T PP) means that

ECoTPP=PPUPOUEC.

If the algebra is integral, we omit row and colurtin

The interval relations of Table 1 on the preceding page generate an integfavRiA 13 atoms on
the set of all closed intervals of the real line, namely, the six relations in the table, their converses, and
the identity; its composition table can be found in Allen (1983).
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The logic of RAs is a fragment of first order logic, and the following fundamental result is due to A.
Tarski (see Tarski & Givant, 1987):

Proposition 2.1. If Ry, ..., R, € Rel(U), then(Ry,..., Ry) is the set of all binary relations on
U which are definable in the (language of the) relational struct{ie Ry, . .. , Ry) by first order
formulas using at most three variables, two of which are free.

In certain BRAS, RA logic may be more expressive. UeK Rel(U), ¥y be the symmetric group
of U, andy € Xy ; we will write p(x, y) instead of(p(x), ¢(y)). The image ofR € A undery is
denoted byR?, i.e.

(2.4) R? = {p(z,y) : (z,y) € R}.

If R = R, we call R invariant underp. The permutatiorp is called abase automorphism of, if
everyR € Ais invariant underp. The set of all base automorphismsAfs denoted byd?; it is easy
to see thatd” is a subgroup oE;.

Conversely, ifG is a subgroup oEy andx, y € U, we set

Gac,y = {(p(xvy) NS G}a

and letG? be the BRA onU generated by{G, , : z,y € U}. Observe that the sets, , are the

orbits of the action o5 onU? (see e.g. Wielandt, 1964, for the definitions), and hence a partition of
U?. Indeed, eacl, , is an atom ofG°, and every atom of:° has this form (see Jonsson, 1984).
The assignments ando form a Galois connection, andl is calledGalois closedf A?7 = A. Itis

well known that Galois closure implies closure under every permutation invariant operation on binary
relations; in particular, every first order definable relation in the language®an element ol (see

e.g. Jonsson, 1991).

Let A be an RA, and suppose thath € A. Even though the equatiere = b does not always have
a solution, there is an elememt, b, called theresiduaF of b by a, such that

aoxr<b<=x<a\b
The residual can be expressed as an RA termandb by
(2.5) a\b=—(a"o-b).
If R, S € Rel(U), then the residual is given by the condition
(2.6) z(R\ S)y<= Rz C S"y.

The proof of the following lemma is straightforward and left to the reader:

2What we call “residual” is called “left residual” in Birkhoff (1948) and “right residual” in J6nsson (1982).



Lemma 2.2. Suppose thatl is an RA and: € A.

1. a\ ais reflexive and transitive, i.e.

(@ 1 <a.
(b) aoa < a.

2. If ais reflexive and symmetric, théa\ a)” o (a \ a) < a.

We will also need the following lemma:

Lemma 2.3. Suppose thaR, S € Rel(U), and thatzTy L Ry = Sy. Then,

2.7) T=—(Ro-8")N—(—RoS").

Proof. Using the hypothesis and the fact that in any RA we have) " = —(a”) (Chin & Tarski,
1951, Theorem 1.10), we have

Ty <= Rx = Sy,
<= Rz C Sy andSy C Rz,
< z(R”\ S")yandy(S”\ R")x, by (2.6)
<= z[-(Ro—-S")yandy[—(S o —R")]z, by (2.5)
<= z[-(Ro—-S")N—(—Ro Sy,

which proves the claim. O

In our construction of RAs we have been aided by the RA Scratchpad, designed and written by Peter
Jipsen (1992). For other properties of relations and their algebras see Chin & Tarski (1951), Jonsson
(1982, 1991), and Andréka et al. (1998).

3 Contact relations

To avoid trivialities, we always assume that the structures under consideration have at least two el-
ements. Suppose that is a nonempty set of regions, and thiatis a binary relation ot/ which
satisfies

(3.1) C'is reflexive and symmetric,
(3.2) Cx = Cyimpliesz = y.

These are the axioms A0.1 and A0.2 given by Clarke (1981) for the mereological part of his calculus
of individuals. (3.2) is an extensionality axiom, which says #wath region is completely determined

by those regions to which it is C —related. We call a binary relafionhich satisfies (3.1) and (3.2)
acontact relationan RA generated by a contact relation will be callesbatact RACRA).
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Proposition 3.1. C'is a contact relation ifiC' is reflexive and symmetric, and

(3.3) C'\ C'is antisymmetric.

Proof. “=": Let zC'\ Cy andyC'\ Cz. Then, by the symmetry @ and (2.6), we hav€'z = Cv,
and hencer = y by (3.2).

“«<" Supposethat'z = Cy, i.e.Cx C CyandCy C Cz. By (2.6), we have:C'\ Cy andyC\ Cz,
and the antisymmetry af' \ C impliesz = y. O

Since antisymmetry is RA — expressible by
b-b" <1,

we can speak of abstract CRAs, i.e. those RAs generated by an element which satisfies (3.1) and (3.3).
We now set

(3.4) P=C\C, part of
(3.5) PP=pP. -1 proper part of

Lemma 2.2 and (3.3) tell us th&tis a partial order. Two elementsy are calleccomparableif x Py
or z Py, otherwisejncomparable

We follow Clarke (1981) in defining other relations as follows:

(3.6) O=P oP overlap

(3.7) PO=0-—(P+ P) partially overlap

(3.8) EC=C--0 external contact

(3.9) TPP =PP.-(ECo EC) tangential proper part
(3.10) NTPP =PP. --TPP non—tangential proper part
(3.11) DC =-C disconnected

Note thatPO, TPP,TPP°,NTPP, NTPP", EC, DC, 1’ are pairwise disjoint, and their sumiis

Given a contact relatio®’, we will use the definitions of the relations (3.4) — (3.11) throughout the
remainder of the paper. Observe that the relations (3.7) — (3.11) arise from the time interval relations
by “forgetting the direction”, e.g. the union of “before” and its converse becabi@sand the union

of “starts”, “ends” become¥% PP, see Figure 1.

If we think of the closed circles of the Euclidean plane as a domain of regions(ane—> =Ny # 0,

we can picture these relations as shown in Figure 2. The CRA generatédhythis domain, the
closed circle algebrais given in Table 2; the relatioR is just set inclusion. Considered as an abstract
RA, the closed circle algebra is isomorphic to the subalgebra of the interval alfglmaerated by
the union of the “before” relation and its converse. However, the representatippothe domain of
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Figure 1: Interval relations Figure 2: Circle relations

P PR Before
<« s>« 5 Meets bC
< > Overlaps
R —
< > Starts
> EC
S Ends
S
< k Contains @
< > PO
@ o
@ ”

closed circles cannot be embedded into any representatiin@dnsider the square and its diagonals
in Figure 3 on the next page, and label the square Withand the diagonals witbC'. This network
cannot be satisfied in any representatiof ¢f.adkin & Maddux, 1994), but it can be satisfied in the
closed circle algebra.

Table 2: Closed circle algebré,.

° TPP TPP” NTPP NTPP” PO EC DC
TPP PP —(NTPP U NTPP) NTPP —P e EC, DC DC
TPP~ 17, TPP, TPP", PO PP PP, PO NTPP” | PP°, PO PP°, PO, EC -P

NTPP NTPP —p" NTPP 1 —P DC DC

NTPP~ PP°, PO NTPP~ —(ECUDC) | NTPP° | PP", PO PP”, PO -P

PO PP, PO —P PP, PO —P 1 —P —P
EC PP, PO, EC ECUDC PP, PO DC —P° —(NTPP UNTPP") | —P
DC —pP DC —pP DC —P —P 1

The subalgebrg, of C. generated by has five atoms, and its composition is given in Table 3; this
algebra is also called theontainment algebrédLadkin & Maddux, 1994). It is also & RA, since

C’ = PUP” U PO is a contact relation witli” \ C’ = P. Another representation 6§, arises from
the set of all open circles in the Euclidean plane, a6 < = Ny # (. Note that in both algebras
C. andC,, contact is defined by nonempty intersection.



Figure 3: Circle network

Table 3: Open circle algebra

| o | pp |PP|] PO |DC]
PP PP 1 ~-P° | DC
PP || —-DC | PP"| PP",PO| -P
PO || PP,PO| -P 1 —P
pc| -p | pc| -P |1

3.1 Small models of CRAS

The smallest CRA witl’ # 1’ is the algebra known a8; (Comer, 1983); it has four atoms, and its
composition is given in Table 4. Clearly, = P° o P = P + P~ is symmetric and reflexive, and

Figure 4: An ordering for\;

Table 4: The algebraV;

| o | PP |PP DC |
" PP | PP 1 DC
| pP || —DC | PP | PP°,DC
DC || PP, DC | DC 1

is a partial order. Finally,

C\C =—(CoDC)=—((P+PP")oDC)=—(DC + P*) = P.

A representation af\; is obtained as follows (Diintsch, 1991): Suppose that the set of natural
numbers, and) the set of rational numbers with their usual orderiig Let U be the set of all

functions

f:dom(f) Cw — Q,

wheredom( f) is a finite nonempty initial segment af. For eachf € U, letmy 4 max dom(f).

We define a strict partial orderingP 4/~ onU as follows: Iff,g € U, thenf < g if and only if
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1. dom(g) C dom(f) andf(k) = g(k) for all k < m,.
2. myg < my, and

(@) Ifmg < my, thenf(mgy) < g(my),
(b) If mg =my, thenf(mgy) < g(my).

The relation< is a strict dense partial order without endpoints and densely branching. It induces a
semilattice, and is linearly ordered to the right, i.e. for eAch U, the set{g € U : f < g}islinearly

ordered. These two properties can be interpreted in the sense that two events have a common point in
the past, and that the past is uniquely determined. Two points are connected iff they are comparable,
and\; satisfie” = O.

It can be shown that this representation is Galois closed (Hirsch, 1997), and hence, it has the property
that every relation which is first order definable from the base reldti®sone of the relations in the
algebra. Thus, according to Projitacmn 2.1, everything that can be said in first order logic about these
relations can be said with three variables.

A picture of the order derived from a slightly different representation/of given in Andréka et al.
(1994), is shown in Figure 4.

For subsequent use, we introduce the alge@asdS, whose composition is given in Tables 5 and
6. It is shown in Dlntsch (1991) that in any representatioR pP is the disjoint union of two dense

Table 5: The algebrak Table 6: The algebras

| o |pPP|PP | R | | o |[pP| PP |R]
PP |PP| —-R | R PP |PP| —-R | R
PP ||-R| PP | R PP ||-R| PP | R
R R R |—-R R R R |1

linear orders, while in any representation&f P is the disjoint union of three or more dense linear
orders; note that neith& nor S is a CRA.

As a next step, we look for a CRA whete# C, and henceEC # 0; thus, our algebra should have
the five atomd’, PP, PP~, EC,and DC. The RA scratchpad tell us that there are 14 isomorphism
types of such algebras. As an example, we preSgint Table 7.

We note thaiR < Sj, and therefore must be the disjoint union of two dense chains. A representa-
tion of Sy is as follows: Let

S ={z;:as 3" aoddk =123, ..},

-

T={2.0<a<3aevenk=123,...}.
3k >



Figure 5: An ordering forS,

Table 7: The algebras,

| o ] PP | pp’ | EC DC
e PP PP PP, PP .1 | EC,DC DC
PP || PP, PP 1 PP" EC EC,DC
EC EC EC.DC | PP, PP .1 PP"
PP Ol DC || EC,DC DC PP PP, PP 1/

It is not hard to see that

(3.12) SNT=0,5T=>=Q,

(3.13) S andT are dense in each other

(3.14) zreS=rx=inflyeT o<y} =sup{lyeT:y < x},
(3.15) rel=c=inflyeS:2<y} =sup{yeS:y<z},,
(3.16) reES<—=1—-zeT.

Now, we let(Sy, <), (S1, <) be two disjoint copies ofS, <), U = S, U S, and letP be extension
of the orders on thé; to U. Furthermore,

zECy <=z € S;,y € Siy1 andl —m(z) < v,

xDCy <= x € S;,y € Sip1 andl —m(z) > y.
Here,i € {0,1}, addition is mod 2, and forz € S;, m(x) is the “twin” of z in S;1;. The RA
generated by’ = PU P~ U EC is justS.

The non—identity atoms of this representation examplef@re shown in Figure 5. The lines rep-
resent the two copies &, and, for anz, the labels on the various section of the lines indicate the
relation which a point in this section has#o Note that the white circle labeldd— z is the “border
point” betweenE C and DC, but it is not an element of.

4 Models of mereology

If X is a collection of objects and a contact relation, then
(4.2) x = ZX g (Vy)[zCy <= (Fz € X)yCz].

This is read ax is the sum (or fusion) oK. The following axiom guarantees the existence of the
fusion:

4.2) For each nonempty C U the fusion exists.

10



Assuming (4.2), we follow Clarke (1981) in defining

(4.3) 1= {a:2Cx} Universal element
(4.4) = {y:y(-0)z} Complement
(4.5) [[X=> {z:2Pxforallz c X} Product

Observe that and]] are partial operations. fnodel of mereologis a structurgU, C, > ") which
satisfies (3.1), (3.2), and (4.2). The models of mereology have been characterized algebraically by
Biacino & Gerla (1991):

Proposition 4.1. If (L, +, -, —) is a complete orthocomplemented lattice, then
(4.6) xCy <= x £ —y

defines a contact relation, and the fusion s just the lattice join. Conversély, @, > ) is a model of
mereology, we letV’ = U U {0}, where0 ¢ U. Then,(U’, C, ") is a complete orthocomplemented
lattice with the lattice join being the fusion, and the other operations givéd Byand(4.5), extended
by[[ X = 0 whenevel [ X does not exist i/, and0* = 1, 1* = 0.

Each modelL, +, -, —) of mereology defines a CRA in a natural way, namely, the BRA generated by
C as defined in (4.6) oi.

Since extreme elements are RA definable, we assume from now on that the CRAs from models of
mereology are defined on the base set of the model with the extreme eléméeménoved. This
does not mean, however, that we may disregard these elements altogether: If

4.7) RY —(Pop),
then, R has the property that
(4.8) TRy<=z+y=1

Indeedx Ry if and only if there is no element ih \ {1} above bothr andy. Sincex + y exists, we
must haver + y = 1. Conversely, ifc +y = 1, then the smallest element above bot#ndy is 1, and
it follows thatz Ry.

Complement will always be an element of a CRA which comes from a model of mereology:

Proposition 4.2. In a model of mereology, complement as defingd i) is RA expressible frorf,
i.e. there is a relatiorD D which is RA — definable frofi such thatt DDy <— y = z*.

Proof. We have
y=a" <= y= Z{z : 2DCx} by (4.4)
— (Vt)[yCt <= (3z)(zDCx andtC=z)], by (4.1)

< (Vt)[yCt <= x=DC o Ct],
< Cy = (DCoC)x.
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SettingR = (DC o C), S = C and using Lemma 2.3, we now have
(4.9) y=z" <= (z,y) € =[(DCoCoDC)U(—(DCoC)oC),

which proves our claim. O

SinceP = —(C o DC), we haveDC o C = —P~, and(P o DC) N C' = () implies(P~ o C) C C.
Clearly,C C P~ o C, and thus we can simplify (4.9) to

(4.10) xDDy <= (z,y) & [(—P” o DC) U (]

In the sequel, we will writeD N for DCN—DD. A CRA arising from a mode{L, +, -, *) of mereol-
ogy satisfies the conditions listed below; there, the right hand side is the propérigoofesponding
to the relational property:

(4.11) DDoDD =1, (a* = a)
(4.12) DD =—(PoP")-—(P"oP), (a+a* =1, a-a*=0)
(4.13) DD o PP = (DD o PP)* (a <b<b*<a*)

Any CRA for mereology must spliDC' into DD and DN. If M is a model of classical mereology,

i.e. whenC = O, then the underlying set is a quasi — Boolean algebra, i.e. a Boolean algebra with the
smallest element removed; we will look at this case in Section 5. Othef\ise- C' N —O # (), and

a model, similar to the previous one, is as follows: Egt E; be two copies of the real interve), 1)
ordered as usual by, and setF = EyU Eq, ET = FU{1}. OrderE™" by

zPy <= x,y€e F;jandx <y, ory=1

In the following, addition is modul@. We letm : E — E be defined in such a way thatifc E;,
thenm(x) is the value ofc in E;;,. Now, the relatiorC' defined onE by

(4.14) (,y) e C <=y £Lm(l —x)
defines a contact relation, and

PP =<

O=P oP=P+P +1,
EC=C\O={{z,y):y > m(l—2)}
DD =—[(-P o DC)U(P o ()] =/{

)}
z,y) sy =m(l - )},
DN =DCN—-DD = {{(z,y) : y < m(1 —

)}
The composition of the R4S, generated by is given in Table 8. We calf; ascale algebrasince

x is related to its complement like a scale, as indicated in Figure 6. The al§elstzows that in a
model of mereologyP and EC' do not necessarily split.

_ o~
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Figure 6: An ordering forS; Table 8: The scale algebr&;
| o | PP [ PP EC | DN [ DD|
PP PP PP cp |-cp| DN | DN
. S PP~ CcP pp° | EC | EC,DC | EC
5 EC EC | -cpP| cP PP- | PP”
- 1x = xt DN || EC,DC | DN | PP CcP PP
i DDN\& DD EC DN | PP PP~ 1
Table 9: AlgebraS, with complement and split EC
| o | PP PP EN | ED]| DN |DD|
PP PP PP,PP°,1’| EN,DC | ED DN DN
PP || PP, PP, 1 PP” EN ED EN,DC EN
EN EN EN,DC | PP,PP",1'| ED P~ P~
ED ED ED ED —ED ED ED
DN || EN,DC DN PP ED | PP,PP",1' | PP
DD EN DN PP ED PP” 1

An algebra wherdZC' splits into two atomdy N and E D, andDC splitsinto DN and DD is given
in Table 9. We see that the algelawith R = EC U DC whose composition is given in Table 6
is a subalgebra af,. Now, sinceD D is a one-one function disjoint fro® U P, there must be an
even number of components Bf Furthermore, the Table tells us thatzi& Ny or  DC'y, theny is

in the same component &D(z), and, ifxE Dy, theny is in a component different from those of
or DD(x). LetS;, i < 4 be disjoint copies of the rational intervdl, 1). The mappingn is defined

from

So
S1
Sa
S3

- Slv
- SOv
- S?)v

— SQ.

andm putsz € (0, 1) onto its twin in the other component. We now define

PPy <= z,y € S; andx < v,

xDDy <=y =m(1l

— ),

zENy <= m(l—z) < v,

DNy <= m(1—2x) > v,

xE Dy <= yis in a component different from that efor DD(z).
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Figure 7: An ordering forS,

If C = —(DN U DD,), thenS, is isomorphic to the algebra generated®@yWe have not been able
to find an intuitive spatial explanation of this situation. An indication of the atonss,a$ given in
Fig. 7.

We can also hav& D o ED = 1; in this case, we need (at least) six components, and, otherwise, use
the same definitions as f&k.

5 Classical mereology

The classical mereology of Lesnisi’is based on a “part of relation” which is a partial order.
Two individualsz, y are calleddiscrete written asx: D Ry, if they have no common part; in relational
terminology,

tDRy <= —xP” o Py.

x is thefusionof a collectionX of individuals, if every element oX is a part ofz, and if no part of
x is discrete from all elements df. To capture classical mereology, we need an additional axiom for
our contact structures, namely

(5.1) P oP=C.

Then,O = C, and the notion of fusion is equivalent to that of (4.1) on page 10. This has been
mentioned in the literature; a proof of this follows from the following

Proposition 5.1. Let (L, +, -, —) be a model of mereology for whicti = P~ o P; furthermore let
0 #X CL\{1},andzy,22 € L\ {1} suchthatforally,z € L\ {1},

(5.2) x1Cy <= (3t)(t € X AN tCy),
(5.3) y € X = yPuxo,
(5.4) 2zPxy = (3s)(s € X A 2C5s).

Then,z1 = zs.
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Proof. First, we show thaP~ o C C C: Letz P~ 2Cy, and assume thatDCy. then,z(DC o C)z;
sinceP” = —(DC o C), this contradicts: P z.

To showz; = x9, itis sufficient to show that,Cy <= z2Cyforally € L\ {1}. Letz,Cy; then,
by (5.2), there is some € X with zCy. By (5.3) we have:Pz,, and thereforezo (P~ o C)y; it
follows thatzoCy. Conversely, suppose thaiCy; then, there is somesuch thatzy P~ tPy. By
(5.4), there is some € X with tCz, and thereforey P~tCz. This implieszCy, and hencey,Cy by
(5.2). O

C = P~ o P implies that the relation&C andT PP are empty. If{U, C, ") satisfies (3.1), (3.2),
(4.2), and (5.1), we call it model of classical mereolodZM).

Models of classical mereology arise from complete Boolean alggbraih the 0 element removed
(see Tarski, 1935, p. 190f, footnote 5), whétés the Boolean order; it is not hard to see that

(5.5) 2Cy <= x-y#0.

Let B be a (complete) atomless Boolean algebra; completeness does not play a role in our consider-
ations. We shall assume that our base sét i& B \ {0, 1}, and the relations are restrictedio

SinceP is the basic relation of classical mereology, there is only one RA associated to CM, when the
Boolean algebra is atomless.

In addition to the relations defined in Section 3, we define the following relations:

#=—(PUP) = {(z, z) : x andz are incomparable w.r.t<}

T=—(PoP) ={(z,2):x+2=1}
PON=0n#nNn-T ={(z,2) 1 x#z, x-2#0, z+2# 1}
POD=0Nn#nNnT ={(z,2) i x#z, x-2#0, z+2=1}

wherex, z € U. SinceC = O, there is no external connection. We now have

Proposition 5.2. Let B be an atomless Boolean algebra. Then, the relations
1', PP, PP°, PON, POD, DN, DD
as defined above are the atoms of the algebran B \ {0, 1} generated by the Boolean ordét

whose composition is given in Table 10.

Proof. Clearly, these relations partitidii x U. The computations are straightforward, if somewhat
tedious, and are left to the reader. O
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Table 10: The algebra;

9) D
° PP | PP [ PON [ POD DN DD
PP PP —(PODUDD) | PP,PON,DN | PP,PO,D DN DN
PP” 1.0 PP” PP~, PO POD PP°.PO.D | POD
PON || PP,PO | PP, PON,DN 1 PP,PO | PP°,PON,DN | PON
POD POD PP, PO, D PP~, PO 1.0 PP” PP”
DN || PP, PO,D DN PP, PON, DN PP —(PODUDD) | PP
DD POD DN PON PP PP” G

In the algebraj, there are two possibilities to define a contact relation: We can take éitherO

orC = OUDD. Inboth casesP = C \ C. In the first case, (5.1) is also fulfilled, so that we
obtain a model of classical mereology. Afis a CRA andC' # O, then, becausel is integral and

DD is a function, it is not hard to see th&tD C C. It follows that in the realm of atomless Boolean
algebras withP = <, the algebra; is the smallest CRA coming from a model of classical mereology
if C =0.If C =0uUDD,then we do not obtain a model of mereology, since in such models, a
region is never in contact with its complement.

At any rate, whenever a CRA assumes an underlying atomless Boolean algebra with the Boolean
ordering as the “part — of” relation (such as the RCC mentioned below), then the relati@msicdt

be present. Indeed, every relati6hon an atomless Boolean algebra which satisfies (3.1) and (3.2)
with < = P, must satishO C C, sinceP” o P C C' by Lemma 2.2(2).

Another calculus for spatial reasoning, tRegion Connection CalcululRCC) of Randell et al.
(1992), also has as a foundation a quasi—Boolean structure, and hence, the @lgearaubalge-

bra of RAs obtained from the RCC. We describe some of the relational properties of the RCC in
Duntsch et al. (1999a).

The situation when (a representation gf)is Galois closed is understood. Recall that a Boolean
algebraB is calledhomogeneous§every nontrivial relative algebr® | x is isomorphictaB. In case

B has more than four elements, it is known that this is equivalent to the fact that the stalilafer
{0, 1} in the automorphism group @ is transitive (see e.g. Koppelberg, 1989, p.135). Furthermore,
H is just the group of base automorphismgoNow,

Proposition 5.3. Dlntsch et al. (1999a)
G is Galois closed if and only iB is homogeneous. In particulay, is Galois closed over the BA of
regular open sets of a Euclidean space.

6 Conclusion and outlook

We have introduced contact relations and their algebras (CRAs) which are based on the relations aris-
ing in mereology as defined by Eriewski and extended by Clarke; these relations play a prominent
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role in contemporary qualitative spatial reasoning.

We have given natural spatial models of CRAs using circles in the Euclidean plane; these have made
clear the conceptual relationship of CRAs to the interval algebra. We have also given minimal CRAs
as well as the (unique) CRA associated with models of classical mereology.

In this introductory article, many important problems have not been discussed, and there is much room
for further research. The CRAs for standard ontologies of mereotopology and their expressiveness are
currently being investigated by Diintsch et al. (1999b). These include the standard model of the RCC
as the collection of all nonempty regular closed sets on a regular connected spaces, as well as the
polygonal algebras of Pratt & Schoop (1998, 1999).

A logic for CRAs with a complete proof system has been presented by Dintsch & Ortowska (1999a),
and modal logics for frames with a contact relation are being developed in Diintsch & Ortowska
(1999Db).

Finally, we should like to draw the reader’s attention to the following open questions:

e For which partial order$ is there a contact relatiafl such that? = C'\ C? When carC' be
chosen ag®” o P?

¢ Investigate the complexity of CRAs. This is an important question, relating to the feasibility
of relational reasoning in QSR (Bennett et al., 1997). There have been investigations for the
algebra of time intervals and its relatives (Nebel & Birckert, 1993, Ladkin & Maddux, 1994,
Hirsch, 1997), as well as for RA-like structures related to the RCC (Renz & Nebel, 1997, 1998,
Jonsson & Drakengren, 1997). In connection with the different representations of subalgebras
of the interval algebra, it is also of interest to investigate the network satisfaction problem for
the given algebras and their representations (Hirsch, 1997).

e Look at vagueness of spatial regions. This seems especially important for applications such as
geographical information systems (Worboys, 1998). The rough relations of Comer (1993) and
Duntsch (1994), or the uncertainty approach of Diintsch & Gediga (1997) may come in useful.
It should also be worthwhile to investigate the connections of rough mereology (Polkowski &
Skowron, 1994) to this problem.
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