
Data reduction based on hyper relations
Hui Wang∗, Ivo Düntsch∗, David Bell∗
School of Information and Software Engineering,

University of Ulster,

Newtownabbey, BT 37 0QB, N.Ireland, UK

{H.Wang,I.Duentsch,DA.Bell}@ulst.ac.uk

Abstract

Data reduction makes datasets smaller but preserves classi�cation structures of
interest. It is an important area of research in data mining and databases.

In this paper we present a novel approach to data reduction based on hyper
relations. Our method is a generalization of the data �ltering method introduced
by [4] for one attribute to many attributes. Hyper relations are a generalization of
conventional database relations in the sense that we allow sets of values as tuple
entries. The advantage of this is that raw data and reduced data can both be
represented by hyper relations. The collection of hyper relations can be naturally
made into a complete Boolean algebra, and so for any collection of hyper tuples we
can �nd its unique least upper bound (lub) as a reduction of it. However the lub
may not qualify as a reduced version of the given set of tuples. Then we turn to �nd
the interior cover � the subset of internal elements covered by the lub. We establish
the theoretical result that such an interior cover exists, and we present a method by
which we can �nd it. This interior serves as a reduced version of the data.

The proposed method was evaluated using 7 real world datasets with respect
to its test accuracy. The results were quite remarkable in that the cross validated
test accuracies were substantially higher than those obtained by C4.5 in 6 out of 7
datasets. The datasets were reduced with reduction ratios up to 99%.

Keywords: data mining, data reduction, hyper relation, interior cover, lattice.

∗Equal authorship is implied

1

1 Introduction
Data reduction is a process which is used to transform raw data into a more condensed
form without losing signi�cant semantic information [7]. In data mining, data reduction
in a stricter sense refers to feature selection and data sampling [11]. But in a broader
sense, data reduction is regarded as a main task of data mining [5] hence any data mining
technique can be regarded as a method for data reduction.

In [5], a fundamental question was raised: �Are there meaningful general data reduction
techniques that can help people e�ectively visualize and understand massive datasets? �

In this paper we attempt to answer the above question from an algebraic perspective,
with an aim to provide a solution which can potentially be embedded in databases as a
�data mining operation�. We show that data and models can be represented uniformly
by hyper relations � a generalization of database relations in the traditional sense. The
collection of hyper relations can be turned into a complete Boolean algebra in a natural
way; in this algebra a given dataset with known classes can be represented as a partial
labeling of the lattice.

Data reduction is taken to be a process to �nd a set of elements � interior cover � in the
lattice, which is, in a sense, closest to the least upper bound of the labeled elements, and
which is such that all elements in the interior cover are equilabeled. This �equilabeledness�
guarantees that the original labeling of the lattice is fully preserved, and is also generalized
to some other originally unlabeled elements. We prove a theorem showing that the interior
cover exists. We also present a method to �nd the interior cover.

Therefore data reduction in this paper is interpreted as a process to reduce the size of
datasets while preserving classi�cation structure. Now we look at an example.

Example 1.1. To illustrate this sort of data reduction that we are pursuing, let's consider
the dataset in Table 1. Take A3 as the classi�cation attribute, and A1 and A2 as predicting
attributes. Merging the tuples in sets {t0, t3}, {t1, t2, t4, t5}, and {t6, t7} will preserve the
classi�cation labels of the original tuples. This leads to a reduced version shown in Table
2, which clearly agrees with the examples in the original dataset.

The decision trees generated from the original dataset and the reduced dataset are shown
in Figures 1 and 2. We hold that the decision tree in Figure 2 is simpler (in the obvious
connectivity sense) and hence easier for humans to understand than the one in Figure 1.

This type of data reduction is useful in the worlds of very large databases and data
mining for the following reasons. It reduces the storage requirements of data used mainly
for classi�cation; it o�ers better understandability for the knowledge discovered; it allows
feature selection and continuous attribute discretization to be achieved as by-products of
data reduction; and it allows computationally demanding algorithms to become serious
contenders in the search of knowledge discovery methods (e.g., Bayesian networks).

2

R A1 A2 A3

t0 a 1 0
t1 a 2 1
t2 a 3 1
t3 b 1 0
t4 b 2 1
t5 b 3 1
t6 c 2 0
t7 c 3 0

Table 1: A relation on the
scheme {A1, A2, A3} where A3 is
the classi�cation attribute.

R′ A1 A2 A3

t′0 {a, b} {1} 0
t′1 {a, b} {2, 3} 1
t′2 {c} {2, 3} 0

Table 2: A reduced version of
the relation in Table 1.

0 0 01 1 1

a b c

0 1

1 2 3 2 3 2 31

A1

A2 A2 A2

Figure 1: The decision tree generated from
the relation in Table 1 by C4.5 without prun-
ing.

0 1 0

{a,b} {c}

{1} {2,3} {2,3}

A1

A2 A2

Figure 2: The decision tree generated from
the relation in Table 2 by C4.5 without prun-
ing.

2 De�nitions and notation
Lattice
Suppose that P = 〈P,≤〉 is a partially ordered set, and T ⊆ P . We let ↑ T = {y ∈ P :

(∃x ∈ T) x ≤ y}. If T = {a}, we will write ↑ a instead of ↑ {a}; more generally, if no
confusion can arise, we shall usually identify singletons with the element they contain.
Similarly, we de�ne ↓ T .

A lattice L is a partially ordered set such that for each x, y ∈ L the least upper bound
x ∨ y and the greatest lower bound x ∧ y exist, and L has a smallest element 0 and a
largest element 1. An atom of L is an element a > 0 with ↓ a = {a, 0}. For M ⊆ L we
let At(M)

def
= {a ∈↓ M : a is an atom of L}.

For a, b ∈ L, if a ≤ b we usually say that a is below b. Given X,Y ⊆ L, we say X is
covered by Y (or Y covers X), written X 4 Y , if for any x ∈ X there is y ∈ Y such that
x ≤ y; in particular, if X ⊆ Y , then X 4 Y .

Conversely, we say X is dense for Y , written X E Y , if for any y ∈ Y there is x ∈ X

such that x ≤ y.

The reader is invited to consult [6] for unexplained notation and concepts in lattice theory.

3

Hyper relations
Suppose that U is a �nite set of attributes; with each A ∈ U we associate an attribute
domain denoted by DOM(A). Denote the power set (family of all subsets) of DOM(A)

by VA. We denote by T the Cartesian product of all the power sets, i.e.,
∏

A∈U VA. We
call T a universal hyper relation over U . A hyper tuple t over U is an element of T and its
A ∈ U entry is denoted by t(A). A hyper relation is a subset of T , and is usually denoted
by RU .

A hyper tuple is called simple, if all its entries have cardinality of 1; a hyper relation is
called simple, if all its tuples are simple. Simple hyper relations correspond to conventional
database relations [1, 10]. Table 2 is an example of a hyper relation, while Table 1 is an
example of simple hyper relation.

It can be shown that T is a lattice under the following ordering:

t1 ≤ t2
def⇐⇒ t1(A) ⊆ t2(A),

for all A ∈ U . As a product of Boolean algebras, T is a Boolean algebra.

Atoms have entries ∅ in all but one place; the nonempty entry has exactly one element.

Given t1, t2 ∈ T , the hyper similarity of t1 to t2, written S(t1, t2), is the number of A ∈ U

such that t1(A) ≤ t2(A). Clearly, in general, 0 ≤ S(t1, t2) ≤ |U |; if t1 ≤ t2, S(t1, t2) = |U |.

3 Data reduction via interior covers
Data reduction can be achieved with universal hyper relations in the following way. Sup-
pose we have a dataset represented as a simple hyper relation R: some tuples are classi�ed
as 0 and others as 1 and no tuple is classi�ed as both 0 and 1. We want to reduce the
size of it while preserving its classi�cation structure.

Let Ri be the set of all hyper tuples classi�ed as being in class i ∈ {0, 1}, and ri its lub

in T , i.e. for each A ∈ U ,
ri(A) =

⋃
t∈Ri

t(A).

We can try to �nd a set of hyper tuples which, in a sense, is closest to the respective lub

but preserves the classi�cation structure. This closest set of hyper tuples will later be
called the �interior� contained in the lub. To present our results we need to introduce the
following concepts in the context of lattice, not just universal hyper relations.

The classi�cation structure of a dataset in the universal hyper relation can be formally
interpreted in general terms as a partial labeling of a lattice.

De�nition 3.1 (Lattice labeling). Let G ⊆ L. A labeling of L is a partial mapping
l :↓ G → B, where B is a �nite set, such that l(a) = l(b) for any a, b ∈↓ g and g ∈ G.

4

B C D

A

1

0

F G H I J K LE

Figure 3: A labeled lattice.

G above can be interpreted as a dataset, and B as the set of classes. The functional nature
of l guarantees that no element in L is labeled di�erently. This amounts to assuming that
datasets are consistent.
The preservation of a lattice labeling is characterized as follows. Given a labeled lattice,
we are interested in sublattices such that in each sublattice, the elements either have the
same label or are unlabeled. The unlabeled elements can assume the same labeling as
the labeled elements in the sublattice as a generalization. Then the largest elements of
these sublattices can be used to represent the lattice labeling. In the context of universal
hyper relation, this amounts to reducing the dataset while preserving the classi�cation
structure.
Such sublattices and, in particular, the largest elements in them are what we are interested
in and they are characterized through the following concepts.

De�nition 3.2. P(l) is the natural partition of G by the function l, i.e. two elements
are in the same class i� they have the same value under l.

De�nition 3.3. m ∈ L is equilabeled if ↓ m intersects exactly one class of P(l).

Note that every element of G is equilabeled.
In sum, the lattice labeling can be represented by a set of equilabeled elements, accom-
panied by the following simple rule:

Given an equilabeled element, any elements below it will have the same label as
the equilabeled element (if any).

However, for a labeled lattice, there are many equilabeled elements. We certainly cannot
use all of them. Consider the lattice in Figure 3. Elements A and B are both equilabeled
elements. If we don't want to keep both of them, which one should be preferred? Certainly
A has greater coverage of unlabeled elements than B, and thus, we can think of B as being
of lower complexity in the sense that it is simpler to describe than A, given E and G; in
fact B is the lub of E and G. In the spirit of Occam's razor [12], given a set of labeled
elements, we prefer a simple generalization. This leads to the following de�nitions.

De�nition 3.4. An E-cover is a ∈ L such that a is the lub of F ⊆ G and a is equilabeled.
A pair of E-covers, m and n, is said to be mergeable if m∨ n is also an E-cover. An E-set
is a set of E-covers which are pairwise non-mergeable.

5

The set of all E-covers is written E . If two E-covers are comparable, they are certainly
mergeable. Also, each element of G is an E-cover, and an E-cover is a singleton E-set.
Now our focus is on E-covers instead of individual elements in a lattice. Our next question
is: given a collection S of E-covers (e.g., a dataset with known classes), what is the
expected (simpler) representation of the lattice labeling? Clearly the lub of S is ideal if
it is also an E-cover because, if so, the labeling of these E-covers can be represented by
the single lub. Unfortunately this lub may not be an E-cover. But instead we can try
to �nd a set of E-covers which together is, in a sense, closest to the lub of S. Look at
Figure 4. Consider S

def
= {H, I, J,K}. There are two sets of E-covers which are below

lub X and cover X: Y1
def
= {A,C} and Y2

def
= {A,B, C}. We argue that there is no reason

not to include B and hence we prefer Y2 to Y1. In general, we expect a maximal set of
such E-covers: a collection of all E-covers satisfying the above conditions. We call this
expected set of E-covers the interior cover of S.

De�nition 3.5. The interior cover of A ⊆ E , written E(A), is a maximal E-set B ⊆ E
such that A 4 B 4 lub A and A E B.

Lemma 3.1. Let A ⊆ E and B be an interior cover of A. Then X 4 B for any X ⊆ E
such that A 4 X 4 lub A and A E X.

Proof. Consider any x ∈ X. Since A E X, there must be a ∈ A such that a ≤ x. Since
A 4 B, there must be b ∈ B such that a ≤ b. We need to show that there is b′ ∈ B such
that x ≤ b′. Since a ≤ b and a ≤ x, there are only three possible cases:

• x ≤ b: obviously b′ = b.

• b ≤ x: this means that b is mergeable with b′ leading to x, i.e., b ∨ b′ = x. This
contradicts the assumption that B is an E-set. Therefore this case is impossible.

• b and x are incomparable: due to the assumption that B is an E-set, they are non-
mergeable. Since B is the maximal set of E-covers by de�nition of interior cover, it
follows that x ∈ B. Therefore b′ = x.

Then an important question arises: does the interior cover exist? Now we set out to
answer this question.
The following theorem establishes the existence of this interior, and illustrates a way to
construct the interior.

Theorem 3.1. The interior cover of any set of E-covers exists.

De�nition 3.6. Let A,B ⊆ L. Then,

A + B = {a ∨ b : a ∈ A, b ∈ B}

is called the complex sum of A and B. max(A) is the set of maximal elements of A, and
Eq(A) is the set of all equilabeled elements of A.

6

Proof. Apply the following procedure to A ⊆ E :

1. M0
def
= A.

2. C0
def
= max(Eq(M0) ∪ A).

3. Mn+1
def
= Cn + Cn, Cn+1

def
= max(Eq(Mn+1) ∪ Cn).

4. Continue until Cn = Cn+1.

Let C = Cn = Cn+1. Each c ∈ C is equilabeled, and A 4 C. Assume that s, t ∈ Cn

such that s + t is equilabeled. Then, s + t 6∈ Cn, because of maximality, and s + t ∈
Eq(Mn+1) \ Cn, contradicting that Cn = Cn+1. Thus, C is an E�set.

It is clear that A 4 C 4 lub A and A E C, and all E-covers which densely cover A are
included in C hence maximal. Therefore the interior cover exists.

Theorem 3.1 indicates a way to construct the interior of any collection of E-covers. Algo-
rithms based on this theorem can be designed easily.

4 Worked examples
We now illustrate the use of the above theorem and its implied algorithm using some
examples. First we present a simple illustration using an abstract lattice.

Example 4.1. Consider the labeled lattice shown in Figure 4. Let X = {H, I, J,K, M,O}.
Then the partial labeling function is X → {darkblack, lightblack}. The set of E-covers is
{H, I, J,K, M,O, A, B, C, }. Following the algorithm in Theorem 3.1 we get the interior
Y = {A,B, C, M, O}. Clearly X 4 Y . Any other collection Y ′ of E-covers such that
X 4 Y ′ is covered by Y . For example, Y ′ = {A,C,E, M} covers X and, clearly, Y ′ 4 Y .

Now we look at an example in the context of universal hyper relation.

Example 4.2. Consider a relation scheme {X, Y, Z}, where Z is the classi�cation at-
tribute, DOM(X) = {a, b, c, d, e} and DOM(Y) = {1, 2, 3, 4, 5}. Suppose that we have a
dataset as in Table 3(a), which is a hyper relation. Following the algorithm in Theorem
3.1 we get the interior cover shown in Table 3(b). The interior serves as reduced versions
of the original datasets.

Relating these examples with the pattern of usage in Example 1.1, the promise of this
reduction technique (e.g., to get understandable decision trees, or reduce storage space
and execution time) can readily be appreciated.

7

B C D EA F G

H I J K L M N O

0

1

Figure 4: A lattice and its labeling.

X Y Z

t0 {a, b} {1, 2} 0
t1 {b, c} {2, 3} 0
t2 {c, d} {3, 4} 0
t3 {d, e} {4, 5} 0
t4 {d} {1} 1
t5 {a} {5} 1

(a)

A1 A2 A3

t′0 {a, b, c} {1, 2, 3} 0
t′2 {b, c, d, e} {2, 3, 4, 5} 0
t′3 {d} {1} 1
t′4 {a} {5} 1

(b)

Table 3: (a) A relation on the scheme {X, Y } and Z is the labeling (classi�cation) attribute; (b) an
interior cover.

5 Data reduction as an approach to data mining
As mentioned in [5], in a general sense any data mining algorithms can be regarded as
a process of data reduction. What we discussed above is aimed at reducing data while
preserving its classi�cation structure. This method can in turn be used as an approach
to data mining � building models from data.

In this approach, both data and models are represented as hyper relations, though almost
all datasets we use in data mining are usually simple relations � a special case of hyper
relation. Training process is to �nd the interior cover of given data in the context of
universal hyper relations. Recall that an interior cover is a set of pairwise non-mergeable
E-covers, and an E-cover is a hyper tuple which covers a set of (simple or hyper) tuples
equally labeled. The procedure has been given in the proof of Theorem 3.1. Since a hyper
tuple is simply a vector of sets, classi�cation can be done via set inclusion. Speci�cally,
suppose we have a set, M , of hyper tuples with known classes � the result of data reduction
� and a simple tuple, d, the class of which is unknown. The classi�cation of t is done
using the ordering ≤ in the universal hyper relation as follows.

• If d ≤ m for m ∈ M , then the class of d is identi�ed with that of m.

• If there are multiple such m, then select the one which has the greatest coverage of
simple tuples resulting from the data reduction process, and identify the class of d with
that of this hyper tuple.

8

• If there is no such m, then select the one which has the greatest hyper similarity value,
and identify the class of d with that of this hyper tuple.

We have implemented a system, called DR, which can reduce a dataset resulting in a
model of it, and classify unlabeled data using the model. The data reduction part is a
straightforward implementation of the procedure described in the proof of Theorem 3.1
and the classi�cation part is based on the above procedure. DR was evaluated using real
world datasets and is reported in the following section.

6 Experiment and evaluation
Objective of the experiment

The ultimate goal of data reduction is in improving learning performance. So the objective
of the experiment is set to evaluate the proposed data reduction method to see how well
it performs in prediction with real world datasets. This is measured in terms of test
accuracies using cross validation. The results are compared with those by standard data
mining methods.

Datasets description

We chose 7 public datasets: Australian Credit, Diabetes, Heart, Iris, German Credit, Tic-Tac-
Toe, and Vote from the UCI machine learning repository [9, 8]. The tuples with missing
values in Tic-Tac-Toe and Vote are deleted. Some general information about these datasets
is given in Table 4.

Experiment procedure

To achieve our objective, we need a standard data mining algorithm for benchmarking. We
chose C4.5 as it is one of the most extensively used algorithms in independent research
in the literature and it is easily available so that the experiment results can be easily
repeated, if needed. We used the C4.5 module in the Clementine package [2] in our
experiment.

The evaluation method we used is 5-fold cross validation for both C4.5 and DR. We
observed the test accuracies for both methods. We also recorded the reduction ratio by
DR. The reduction ratio we used is de�ned as (the number of tuples in the original datasets
- the number of hyper tuples in the model) / (the number of tuples in the original datasets).
The results are shown in Table 5.

Discussion of the experiment results

From Table 5 we see that our DR algorithm outperforms C4.5 with respect to the cross
validated test accuracy for all datasets but Vote. The reason for this is that the Vote
dataset is binary, i.e., all attributes have only binary values, and there is no reduction

9

Datasets NoA NoN NoO NoB NoE NoC CD
Australian 14 4 6 4 690 2 383 : 307
Diabetes 8 0 8 0 768 2 268 : 500
Heart 13 3 7 3 270 2 120 : 150
Iris 4 0 4 0 150 3 50 : 50 : 50

German 20 11 7 2 1000 2 700 : 300
Tic-Tac-Toe 9 9 0 0 958 2 332 : 626

Vote 18 0 0 18 232 2 108 : 124

Table 4: General information about the datasets. The acronyms above are: NoA � Number of attributes,
NoN � Number of Nominal attributes, NoO � Number of Ordinal attributes, NoB � Number of Binary
attributes, NoE � Number of Examples, NoC � Number of Classes, and CD � Class Distribution

Dataset Test accuracy with C4.5 Test accuracy with DR Reduction Ratio by DR
Australian 85.2 87.0 70.6
Diabetes 72.9 78.6 68.6
Heart 77.1 83.3 74.1
Iris 94.0 96.7 94.0

German 70.5 78.0 73.1
Tic-Tac-Toe 86.2 86.9 81.5

Vote 96.1 87.0 99.1

Average 83.1 85.4 80.1

Table 5: Test accuracies with C4.5 and DR, and the reduction ratios obtained by DR. The evaluation
method we used is 5-fold cross validation. C4.5 we used is implemented in the Clementine package.

possible because the partitions obtained from binary attributes are co�atoms in the par-
tition lattice of the object set , see e.g. [3].

7 Conclusion and future work
In this paper we have presented a novel approach to data reduction based on hyper
relations. We have shown that hyper relations are a generalization of database relations
in the traditional sense, and they can be used to represent both raw data and reduced
data. The reduced data can be regarded as a model of the raw data. We have shown that
data reduction can be regarded as a process to �nd a set of interiors contained in the least
upper bounds of individual classes of tuples in the dataset. In the context of lattice, we
have proved that the interior exists, and have demonstrated a way in which we can �nd
the expected interiors.

We illustrated that the proposed data reduction method can be regarded as a novel
approach to data mining. We also discussed a data mining system, called DR. The training
module of DR is a straightforward implementation of our data reduction procedure, and
the classi�cation module is simply based on set inclusion.

Results from initial experiments with DR are quite remarkable. DR outperformed C4.5

10

substantially in 6 out of 7 datasets with respect to the test accuracies by 5-fold cross
validation. DR underperformed C4.5, again substantially, in one dataset � Vote, since
Vote is binary and hence there is no reduction possible [3]. We hypothesized that data
reduction with all binary attributes should be addressed explicitly beyond the current
version of DR.

Since our method is new in many respects, most of data mining issues should be addressed
with regard to the proposed method, notably, e�ciency, windowing, missing values, in-
cremental and parallel data mining, and so on.

Since data and knowledge can both be represented as hyper relations uniformly and the
process of discovering knowledge can be modeled as �nding the interior cover of the
data, another possible further work can be directed towards generalizing the conventional
relational data model to hyper relational data model so that database systems have a
uniform representation for data and models and can be used for both data archiving and
data modeling incorporating the interior cover operation.

References
[1] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,

3(6):377�387, 1970.

[2] Clementine: A data mining system. Integral Solutions Limited (ISL). http://www.
isl.co.uk/.

[3] Ivo Düntsch and Günther Gediga. Algebraic aspects of attribute dependencies in
information systems. Fundamenta Informaticae, 29:119�133, 1997.

[4] Ivo Düntsch and Günther Gediga. Simple data �ltering in rough set systems. Inter-
national Journal of Approximate Reasoning, 1998. To appear.

[5] Usama M. Fayyad. Editorial. Data Mining and Knowledge Discovery � An Interna-
tional Journal, 1(3), 1997.

[6] George Grätzer. General Lattice Theory. Birkhäuser, Basel, 1978.

[7] Medical Informatics Handbook. http://www.mieur.nl/mihandbook/r_1/
glossary/glossary.htm.

[8] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and
statistical classi�cation. Ellis Horwood, 1994.

[9] P. M. Murphy and D. W. Aha. UCI Repository of Machine Learning Databases and
Domain Theories. Irvin, CA, 1994. ftp://ftp.ics.uci.edu.

[10] J. D. Ullman. Principles of Database Systems. Computer Science Press, 2 edition,
1983.

11

[11] Sholom M. Weiss and Nitin Indurkhya. Predictive Data Mining: A Practical Guide.
Morgan Kaufmann Publishers, Inc., 1997.

[12] D. H. Wolpert. The relationship between Occam's Razor and convergent guessing.
Complex Systems, 4:319�368, 1990.

12

