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1 Introduction

Rough set data analysis (RSDA) was introduced to Computer Science in the early 1980s
by Z. Pawlak [Pawlak(1982)] and has since come into focus as an alternative to the more
widely used methods of machine learning and statistical data analysis. A good overview of
the state of the art areFundamenta Informaticae,Vol. 27 (1996), and [Lin & Cercone(1997)].

Just like other new approaches, RSDA needs to show that its methods are as good as
or even superior to commonly used – mainly statistical – data analysis strategies. Even
though singular attempts have been made to compare RSDA to other approaches, e.g.
[Wong et al.(1986)Wong, Ziarko & Ye, Teghem & Benjelloun(1992), Krusi´nska et al.(1992a)Krusi´nska, Babic, Słowi´nski & S
Krusińska et al.(1992b)Krusi´nska, Słowiński & Stefanowski], a systematic comparison is
as yet missing.

In this paper, we use the IRIS data set to compare the ROUGHIAN extension of RSDA
developed by two of the authors [D¨untsch & Gediga(1997c)] with Fisher’s discriminant
analysis method, and exhibit some general principles regarding the power of the two ap-
proaches. This need of further comparison arises, because the methods of [Düntsch & Gediga(1997c)]
enable the researcher to treat quantitative attributes in an “RSDA compatible” way, which
could not be done in the previous comparison studies.

The structure of this paper is as follows: To make the paper self contained, we first
briefly describe Fisher’s discriminant analysis and its application to the IRIS data set, and
then proceed to highlight the main points of the ROUGHIAN method.

Section 4 gives an RSDA analysis of the IRIS data set, and comments on earlier compar-
isons. In Sect. 5 we present the ROUGHIAN analysis of the IRIS data, as well as validation
and testing procedures of prediction.

2 IRIS Data: The Historical Perspective

2.1 Fisher’s Discriminant Analysis

Suppose that we have a situation where we have cases or subjects divided into groups, and
quantitativeattributes which should predict the group membership; it was Fisher [Fisher(1936)]
who discovereddiscriminant analysis(DA), which enables the researcher to find linear
combinations of the predicting attributes – calledcanonical discriminant functions(CDF)
– which best characterize the differences between the groups. Once one has found these
characterizations, one can compute the differences between any object and every centroid
of the group means in terms of the canonical classification functions; one is able to as-
sign every object – and even new objects – to the group whose centroid is nearest to the
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coordinates of the object. Other assignment procedures are also possible: For example, if
we assume that the prediction attributes can be described by the same multivariate normal
density within any class of the decision attribute, the assignment can be done by choosing
the group which maximizes the likelihoodf(object = i|group = j).

Nowadays – more than 60 years later – discriminant analysis has turned into a class
of methods using the same spirit and some ideas of the original Fisherian one. In order to
compare RSDA results with results of “the” discriminant analysis, we have to specify what
kind of discriminant analysis we shall use. Our idea is that we take amodal type analysis,
which uses the following underpinnings:

• The predicting attributes are quantitative variables and no data transformation is done
before entering the discriminant analysis process.

• It is assumed that the within-group covariance matrices of the predicting attributes are
identical. Although this assumption puts severe restrictions on the data, the “modal”
DA is run with this restriction.

• We use the simple centroid classification rule to (re)classify objects to classes.

2.2 Fisher’s IRIS Data

The data used by Fisher to demonstrate his discriminant analysis consists of 50 specimen
of each of the iris speciesSetosa, Versicolor,andVirginica, measured by the features given
in Tab. 1.

Table 1. IRIS Data

No Attribute Range in mmNo Attribute Range in mm
A1 Sepal length43 ≤ x ≤ 79 A3 Petal length10 ≤ x ≤ 69
A2 Sepal width22 ≤ x ≤ 44 A4 Petal width 1 ≤ x ≤ 25

Applying DA to the data, it turns out that there are two canonical discriminant functions
necessary to describe the differences between the groups. It is well known that petal length
is the most prominent variable to constitute the first CDF, which is indicated by the highest
pooled-within-groups correlations between petal length and the first CDF (Tab. 2). Petal
width and sepal width turned out to be equally important, whereas the sepal length has no
remarkable impact on the CDF.

Table 2. Pooled-within-groups Correlations between Discriminating Variables and Canonical Dis-
criminant Functions

CDF 1 CDF 2
Petal length.73 (.91) .19 (-.41)
Petal width .65 (.81) .72 (.58)
Sepal length .24 .34
Sepal width -.13 .87

In order to be compatible with the results of the RSDA, we choose the pair(petal length,
petal width)as attributes for further analysis. Reclassification using these two variables
works very well, as the results of Tab. 3 indicate. A geometrical interpretation of the DA
can be given by plottingeach case as a point in the space built by the axes of the two CDFs.
Figure 1 shows the data projected into the space of the two CDFs based on petal length and
petal width.
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Table 3.Classification Results Using Bayesian Reclassifier

IRIS species
Predicted classesSetosa Versicolor Virginica
Setosa 1.000 0.000 0.000
Versicolor 0.000 0.960 0.080
Virginica 0.000 0.040 0.920

Fig. 1.The Space of Two CDFs

3 ROUGHIAN – Rough Information Analysis

[Düntsch & Gediga(1997c)] have developed arough information analysis(ROUGHIAN)
which enhances traditional rough set data analysis by three additional procedures, namely,

• Significance testing,
• Data filtering
• Uncertainty measuring.

In this section we shall describe these features as well as our notation of RSDA. To make
this chapter more self contained, some of the material of this section was taken from
[Düntsch & Gediga(1996)] and [D¨untsch & Gediga(1997c)]. Further applications of the
ROUGHIAN model can be found in [Browne(1997)] and [D¨untsch et al.(1997)D¨untsch, Gediga & Rogner].
All computations were done using the rough set engine Grobian [D¨untsch & Gediga(1997b)].

3.1 Basics

We assume that the reader is familiar with the philosophy and the basic terms of RSDA, so
that we will just outline our notation and definitions.

An information system
I = 〈U,Ω, Vq, fq〉q∈Ω

consists of

1. A finite setU of objects,
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2. A finite setΩ of attributes,
3. For eachq ∈ Ω

(a) A setVq of attribute values,
(b) An information functionfq : U → Vq ,

We extend the information functionsfq to functionsfQ, Q ⊆ Ω in the canonical way.

The subsetsQ of Ω can be used to define the indiscernibility relationsθQ by

xθQy
def⇐⇒ (∀q ∈ Q)(fq(x) = fq(y)).

If x ∈ X, then the class ofx with respect toθQ is written asQ[x], and the set of classes of
θQ is denoted byKQ.

If P,Q ⊆ Ω we call a classX of θQ P– deterministic(or justdeterministicif P is
understood), if it is contained in a class ofθP . Each such class induces a rule of the form

fQ(x) = t⇒ fP (x) = s,

wheret ands are the feature vectors ofx determined byQ, resp.P .

If X ∈ KQ intersectsY0, . . . , Yk ∈ KP , k > 0, then we obtain an indeterministic rule

fQ(x) = t⇒ fP (x) = s0 ∨ · · · ∨ fP (x) = sk.

We writeQ→ P for the conjunction of all deterministic and indeterministic rules obtained
this way, and – with some abuse of language – callQ→ P a rule as well. Strictly speaking,
we should consider equivalence classes of rules, but we will not do this, as it is clear what
we mean.

3.2 Rough Sets and Statistics

While RSDA is a non–numeric method of data analysis, it implicitly makes statistical as-
sumptions which we want to explore in this section. We first review briefly some properties
of finite general statistics. Aprobability spaceis a triple〈U,B, p〉, whereU is a finite non–
empty set,B a Boolean subalgebra of〈P(U),∩,∪,−, ∅, U〉, andp a probability measure
onB, i.e. a functionp : B → [0, 1] which satisfies the Kolmogorov axioms

1. p(∅) = ∅,
2. p(U) = 1,
3. p

(⋃
i∈I Xi

)
=

∑
i∈I p(Xi), if eachXi ∈ B, and the setsXi are pairwise

disjoint.

If B is a proper subalgebra ofP(U), then the functionp is not defined on all ofP(U); there
are two standard ways to extendp over all ofP(U), see e.g. [Halpern & Fagin(1992)]:

p∗(Y ) = sup {p(X) : X ⊆ Y, X ∈ P}, (Inner measure) (1)

p∗(Y ) = inf {p(X) : X ⊇ Y, X ∈ P}. (Outer measure) (2)

Suppose that〈U, θ〉 is an approximation space (i.e.U is a nonempty set andθ an equi-
valence relation onU ), and thatP is the partition associated withθ. Thelower, resp.upper
approximationof X by θ is defined by

Xθ
def=

⋃
{Y ∈ P : Y ⊆ X},

resp.

X
θ def=

⋃
{Y ∈ P : Y ∩X 6= ∅}.
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The metrics of〈U, θ〉 are the two “approximation functions”

γθ(X)
def
=

|Xθ| + |−Xθ|
|U | , (3)

αθ(X) def=
|Xθ|
|Xθ|

(for X 6= ∅), (4)

see [Pawlak(1991)], p. 16ff. Ifθ is understood, we shall usually omit the subscripts.

Usually, one interpretsγ(X) as the percentage of objects ofU which can be correctly
classified with the knowledge given byθ as being inX or not, whileα(X) expresses the
degree of completeness of our knowledge ofX.

We define two associated statistics for〈U, θ〉 by

µ∗(X)
def
=

|X |
|U | , µ∗(X)

def
=

|X|
|U | .

It is easy to see thatµ∗(X) = 1 − µ∗(−X), and

γ(X) = µ∗(X) + µ∗(−X), α(X) =
µ∗(X)
µ∗(X)

,

so that we can regardµ∗ as the basic measure of RSDA.

For each equivalenceθ on U we letBθ be the subalgebra of〈P(U),∩,∪,−, ∅, U〉
whose atoms are the classes ofθ. Now, the restrictionµ∗ � Bθ is a probability measure on
B whose inner measure is justµ∗, and the measurable sets of〈U,Bθ, µ∗ � B〉 are just the
θ–definable sets. Following [Halpern & Fagin(1992)], we say that a probability measurep
onBθ is compatible withθ, if

µ∗(X) ≤ p(X) ≤ µ∗(X),

for all X ∈ Bθ. It is easy to see that the only probability measure onP(U) which is
compatible to all functionsµ∗ is given by

p(X) =
|X|
|U | , (5)

so thatp(x) = 1
|U | for all x ∈ U . In other words, rough set theory assumes theran-

dom world modeldescribed in [Bacchus et al.(1994)Bacchus, Grove, Halpern & Koller],
also called theprinciple of indifference, where in the absence of further knowledge all
basic events are assumed to be equally likely.

Thus, the statistical interpretation of the rough set approach is quite simple:

• Rough set analysis neglects the underlying joint distributions of the attributes and the
reported statisticsµ∗, resp.γ, are sufficient only if the joint distributions of the attrib-
utes are constant as in(5).

This sounds like a drawback, but one should note that rough set analysis is applied (and
applicable!) in a “few – objects – many – attributes” situation which is very different to
the situations usually encountered in statistical modeling. In the field of applied regression
analysis it was shown that in comparable situations the assumption “simple is better” –
e.g. using 0–1 regression weights – results in more stable estimates than using an approach
with many parameters [Cohen(1990)].
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As a measure of thequality of an approximationof a partitionP by a setQ of attributes
we define the functionγQ : Part(U) → [0, 1] by

γ(Q,P) =

∑
X∈P |XθQ

|
|U | , (6)

thus generalizingγθ of (3) to include partitions with more than two classes. In caseP is
induced byθP for someP ⊆ Ω, we will write γ(Q → P ) instead ofγ(Q,P) to indicate
thatγ measures the approximation quality of the ruleQ→ P . It is not hard to see that

γ(Q → P ) =
|⋃ {M ∈ KQ : M isP - deterministic}|

|U |
If γ(Q → P ) = 1, we callP dependent onQ, and writeQ ⇒ P . This is the case exactly
whenθQ ⊆ θP .

3.3 Significance Testing

We can use the approximation quality defined in (6) as an internal index of a ruleQ → P .
If Q ⇒ P , then the prediction is perfect, otherwise,γ(Q → P ) < 1. However, a perfect
or high approximation quality is not a guarantee that the rule is valid. If, for example, the
rough set method discovers a ruleQ → P which is based on only a few observations –
which one might call acasual rule– the approximation quality of the rule may be due to
chance. Thus, the validity of inference rules for prediction must be validated by statistical
techniques – otherwise, application beyond attribute reduction in the concrete situation
might as well be done by throwing bones into the air and observing their pattern. We are
certainly not the first to observe this phenomenon:

“Consider a dataset in which there is a nominal attribute that uniquely identifies
each example. . . Using this attribute one can build a 1 – rule that classifies a given
training set 100% correctly: needless to say, the rule will not perform well on an
independent test set” [Holte(1993)].

Thus, although rough set theory uses a only few parameters which need simple statist-
ical estimationprocedures (e.g. the cardinalities of equivalence classes and the associated
probability function on its partition), the validity of obtained rules should be controlled
using statistical testingprocedures, in particular, when they are used for modeling and pre-
diction of events.

[Düntsch & Gediga(1997e)] have developed two simple procedures, both based on ran-
domization techniques, which evaluate the validity of a rule based on the approximation
quality of attributes. These procedures seem to be particularly suitable for the soft com-
puting approach of RSDA since they do not require information from outside the data
under consideration; in particular, it is not assumed that the information system under dis-
cussion is a representative sample. The reader is invited to consult [Edgington(1987)] or
[Manly(1991)] for the background and justification of randomization techniques in these
situations.

LetΣ be the set of all permutations ofU , σ ∈ Σ, and suppose that we want to test the
significance ofQ→ P . We define new information functionsfσ(P)

r by

fσ(P)
r (x)

def
=

{
fr(σ(x)), if r ∈ P,

fr(x), otherwise.

The resulting information systemIσ permutes theP–columns according toσ, while leav-
ing theQ–columns constant. We now use the permutation distribution{γ(Q → σ(P )) : σ ∈ Σ}
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to evaluate the strength of the predictionQ → P . The valuep(γ(Q → P )|H0) measures
the extremeness of the observed approximation quality and it is defined by

p(γ(Q → P )|H0) :=
|{σ ∈ Σ : γ(Q → σ(P )) ≥ γ(Q → P )}|

|U |! (7)

If α = p(γ(Q → P )|H0) is low, traditionally below 5%, then the ruleQ → P is deemed
significant, and the (statistical) hypothesis “Q → P is due to chance” can be rejected.

One can see that the procedure is computationally expensive, and that it is not always
feasible (or, indeed, possible) to exactly computeα. However, a randomly chosen set of
permutations will usually be sufficient: It is known [Dwass(1957)] that the significance
level of a randomization test is in a sense exact even when the randomization distribution
is only sampled.

In rough set analysis, the decline of the approximation quality when omitting one at-
tribute is normally used to determine whether an attribute within a reduct is of high value
for the prediction. However, this view does not take into account that the decline of approx-
imation quality may be due to chance. This observation leads to the following definition:
We call an attributeq ∈ Q conditional casual, if there are only a few observations in which
the attributeq is needed to predictP . More precisely, the statistical approach is to compare
the actualγ(Q → P ) with the results of a random system: Foreach permutationσ of U
and eachq ∈ Q we obtain a new information functionfσ,q by setting

fσ,r(x) def=

{
fr(σ(x)), if r = q,

fr(x), otherwise.

The resulting approximation quality ofP by Q is denoted byγ(Q, σ(q) → P ), and we
definep(γ(Q, q → P )|H0) in analogy to (7) and call it therelative significanceof q within
Q.

As above, ifp(γ(Q, q → P )|H0) is below 5%, the assumption of (random) conditional
casualness can be rejected, otherwise we will call the attributeconditional casual withinQ,
or justconditional casual, if Q is understood.

3.4 Data Filtering

As we seen in the previous section, if the granularity of an information system is high, it
may lead to rules which are based on a few observations only, and thus, their validity is
doubtful. In this case, theα value will be high, and the rule may be due to chance. Thus,
rough set analysis as a conditional method needs a preprocessing step in which unnecessary
granularity is removed, but in which no essential (dependency) information is lost. One way
to increase the significance is to reduce the granularity of information by using appropriate
data filters on the setsVq , which may reduce the number of classes ofθQ while at the same
time keeping the dependency information.

[Düntsch & Gediga(1997d)] develop a simple data filtering procedure which is com-
patible with the rough set approach and which may result in an improved significance of
rules.

The main tool are ‘binary information systems’. These are those systems, in which
every attribute has exactly two values. Roughly speaking, we obtain a binary systemIB

from an information systemI by replacing a non–binary attributeq with a set of attributes,
each corresponding to an attribute value ofq; the associated information functions have
value1 if and only ifx has this value underfq. In the process of binarization no information
is lost; indeed, information is shifted from the columns to the rows.

Strictly speaking, we should distinguish between “symmetric” and “asymmetric” bin-
ary attributes, but we shall omit this here for reasons of brevity.
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Let us considerQ → d, and choose somem ∈ Q; suppose thatm leads to the binary
attributesm0, . . . , mr. For eacht ∈ {fd(x) : x ∈ U} do the following:

1. Find the binary attributesmi for which

(∀x ∈ U)(fmi (x) = 1 → fd(x) = t).

If there is no suchmi, go to step 3.
2. Build their union withinm in the followingsense: If, for examplemi0 , . . . , mik

satisfy the condition above, then we define a new binary attributemi0...ik by

fmi0 ...ik
(x) = 1 def⇐⇒ max

j∈{i0,... ,ik}
fmj (x) = 1,

and simultaneously replacemi0 , . . . , mik bymi0...ik .
3. Collect the resulting binary attributes inm to arrive at the filtered attribute.

Step 3 aggregates all classes ofθm (i.e. attribute values) which are totally contained in a
class ofθd.

The main result shows that filtering preserves the dependency structure and may im-
prove the statistical significance of the rule:

Proposition 1. LetQ → P be a rule ofI andQ′ → P its filtered version. Then,

1. γ(Q → P ) = γ(Q′ → P ).
2. p(γ(Q → P )|H0) ≥ p(γ(Q′ → P )|H0).

Details and applications, as well as a proof of Proposition1, can be found in [D¨untsch & Gediga(1997d)].

It may be worth to point out that this type of filtering is applicable to any type of
attribute, and that it does not use any metric information from within the attribute do-
mains. If one is willing to take these intoaccount and also use e.g. genetic algorithms,
there are more sophisticated methods available, for example, [Skowron & Nguyen(1996)],
[Nguyen et al.(1996)Nguyen, Nguyen & Skowron], [Skowron & Polkowski(1996)], or [D¨untsch & Gediga(1997a)]
for a purely data driven approach.

3.5 Uncertainty Measures

To compare different rules and/or compare different measures of uncertainty one needs a
general framework in which to perform the comparisons. To define an unconditional meas-
ure of prediction success one can use the idea of combining program complexity (i.e. to
find a deterministic rule) and statistical uncertainty (i.e. a measure of uncertainty within
the indeterministic rules) to a global measure of prediction success. The broad idea behind
this is the well known approach ofconstructive probabilityor Kolmogorov complexity; we
invite the reader to consult [Li & Vit´anyi(1993)] for a detailed exposition of the theory.

The tool which we use is (information theoretic) entropy: If{pi : i ≤ n} is a probability
distribution, then its entropy is given by

H(p0, . . . , pn) =
∑
i≤n

pi · log2

1
pi
.

The entropy measures three things [McEliece(1977)]:

• The amount of information provided by an observation E,
• The uncertainty about E,
• The randomness of E.
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The appeal of this approach is that information of uncertainty described by a probability
distribution is mapped into a dimension which has its own meaning in terms of size of a
computer program, and which has the consequence that

• Effort of the coding the “knowledge” in terms of optimal coding of given rules and
• Consequences of “guessing” in terms of optimal number of decisions to classify a

random chosen observation

can be aggregated in the same dimension.

There are several possibilities to describe what is meant by “quality of non–deterministic
prediction” in RSDA, and [D¨untsch & Gediga(1997f)] present three different approaches
to handle uncertainty of a ruleQ → P . Within each approach it has to be made explicit
how deterministic rules and guessing should work together to predict a class ofθP ; differ-
ent modelsM how to predict such a class, givenθQ, are then mapped to an entropy value
HM(Q → P ).

Entropy has been discussed in the RSDA context before, e.g. by [Wong et al.(1986)Wong, Ziarko & Ye]
or [Teghem & Benjelloun(1992)]. However, the class of models studied there is very nar-
row, which prohibits its use as a general method; furthermore, [D¨untsch & Gediga(1997e)]
have shown that the main theoretical result of [Wong et al.(1986)Wong, Ziarko & Ye] is
incorrect.

In this paper we shall concentrate on the approach closest to the philosophy of RSDA.
Let us suppose thatU is our set of objects with cardinalityn, and letP be a partition of
U with classesXi, i ≤ k, each having cardinality ri. In compliance with the statistical
assumption of the rough set model (see Sect. 3.2) we assume that the elements ofU are
uniformly distributed within the classes ofP , so that the probability of an elementx being
in classXi is just ri

n . We now define theentropyof P by

H(P)
def
=

k∑
i=0

ri

n
· log2(

n

ri
).

If θ is an equivalence relation onU andP its induced partition, we will also writeH(θ)
instead ofH(P).

The entropy estimates the mean number of comparisons minimally necessary to retrieve
the equivalence class information of a randomly chosen elementx ∈ U ; we can also think
of the entropy ofP as a measure of granularity of the partition.

Suppose that the classes ofθQ areX0, . . . , Xm, and that the probability distribution of

the classes is given bŷπi = |Xi|
n ; letX0, . . .Xc be the deterministic classes with respect to

P , andV be their union.
The approach is based on the pure rough set assumption that we know the world only up

to the equivalence classes ofθQ, and that we admit complete ignorance about what happens
“inside” these classes.

Consequently, given a classY of θP , any observationy in the setY \ V is the result
of a random process whose characteristics are totally unknown to the researcher;according
to the principle of indifference, any element ofU \ V must be viewed as a realization of a
probability distribution with uncertainty1

n
log2(n). Hence, we use only those classes ofθQ

which are contained inV , and put eachx ∈ U \ V is in its own class. In other words, we
assume the maximum entropy principle, and look at the equivalence relationθ+Q defined by

x ≡θ+
Q
y

def⇐⇒ x = y or there exists somei ≤ c such thatx, y ∈ Xi.

Its associated probability distribution is given by{ψ̂i : i ≤ c+ |U \ V |} with

ψ̂i
def=

{
π̂i, if i ≤ c,
1
n , otherwise.

(8)
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We now define theentropy of rough prediction(with respect toQ → P ) as

Hrough(Q→ P )
def
= H(θ+Q) =

∑
i

ψ̂i · log2(
1
ψ̂i

).

We choose this type of entropy because of our basic aim to use as few assumptions
outside the data as possible:

“Although there may be many measuresµ that are consistent with what we know,
theprinciple of maximum entropysuggests that we adopt thatµ∗ which has the
largest entropy among all the possibilities. Using the appropriate definitions, it can
be shown that there is a sense in which thisµ∗ incorporates the ‘least’ additional
information [Jaynes(1957)]”.

We invite the reader to consult [Grove et al.(1994)Grove, Halpern & Koller] (from which
the quote above is taken) for more details of the interplay of the principle of indifference
and the maximum entropy principle.

There are other possibilities, for example, taking intoaccount the distribution of ele-
ments inY \ V . It would be outside the scope of this paper to discuss these approaches in
detail, and we refer the interested reader to [D¨untsch & Gediga(1997f)].

The entropy of the combined informationQ ∪ P

Htotal(Q → P ) def= H(Q ∪ P ).

– more traditionally written asH(Q, P ) – measures the uncertainty of the overall system.
The boundary of both entropy measures is given by

H(P ) ≤ Hrough(Q → P ), Htotal(Q→ P ) ≤ log2(|U |).

A measureHrough(Q→ P ) nearH(P ) is favourable, since little or no additional informa-
tion is needed to code the prediction attributesQ. If Hrough(Q → P ) is close tolog2(|U |),
the worst case in terms of entropy is met.

In order to normalize the outcome of the uncertainty estimation we transform the meas-
ures tonormalized overall information(NOI) andnormalized rough information(NRI) by
the functions

NOI(Q→ P ) def= 1 − Htotal(Q→ P ) −H(P )
log2(|U |) −H(P )

,

NRI(Q→ P )
def
= 1 − Hrough(Q→ P ) −H(P )

log2(|U |) −H(P )
.

If both normalized measures have a value near 1, the chosen attribute combination is fa-
vourable, whereas a value near 0 indicates casualness. Note, that the normalization does not
use moving standards as long as we do not change the decision attributeP . Therefore, any
comparison of NOI or NRI values between different predicting attribute sets given a fixed
set of decision attributes is feasible. The normalized rough information is always smaller
than the normalized overall information. Big differences between both indicate that the
local structure withinQ determines indeterministically much of the local structure within
P .

A discussion of where the approximation qualityγ can be located within this context
can be found in [D¨untsch & Gediga(1997f)].
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4 Rough Set Analysis of IRIS Data

Several earlier studies compare statistical techniques such as discriminant analysis with
RSDA [Krusińska et al.(1992a)Krusi´nska, Babic, Słowi´nski & Stefanowski, Krusi´nska et al.(1992b)Krusi´nska, Słowiński & S
Teghem & Benjelloun(1992)]. Their result can be summarized to the claim that RSDA and
statistical techniques offer similar approaches. If so, RSDA would be the method of choice,
because RSDA is a “soft” data analysis method, which does not assume structural inform-
ation outside the data.

One may have reservations about this claim:

• An attribute with continuous values usually cannot be used by RSDA in its pure ori-
ginal form, whereas discriminant analysis is based on the interpretation of metric in-
formation within the data. Therefore, discriminant analysis uses more details within the
data for the price of using a “hard” dimensional data representation as an underpinning.

• RSDA needs a fixed number of equivalence classes within any attribute. If we use data
with continuous metric information, the number of equivalence classes of the raw data
may be as high as the number of objects under study. Hence, if we like to result in stat-
istically stable rules, a preprocessing stage (which we callfiltering) has to be performed
before data can be analysed. Although a filter procedure is a precondition to perform a
reliable RSDA using continuous metric attributes, a “dependency preserving” filtering
procedure was not included in the previous studies.

In the next subsections we will show how the IRIS data are processed by the traditional
RSDA approach, and discuss the filtering of the IRIS data used in [Teghem & Benjelloun(1992)].

4.1 Pure RSDA Description of IRIS Data

RSDA starts by finding (global) dependency information, i.e. computation of reducts and
core, as well as the rules of the information system under review. The ranges and the num-
ber of classes of each attribute are given in Tab. 4

Table 4. IRIS - Unfiltered Data

Attribute Interval No of classes
Sepal length: [43,79] 35
Sepal width: [20,44] 23
Petal length: [10,69] 43
Petal width: [1,25] 22

The full IRIS data set has each three element set of attributes as a reduct, and thus, it
has an empty core. This indicates a high substitution rate among the attributes. The ap-
proximation qualities of the nonempty attribute sets are given in Tab. 5. We see that petal
length (A3) has a high classification quality, followed by petal width (A4). Together, they
can account for 98% of all cases.

Using all four dependent attributes, Grobian has found a total of 243 rules. We give the
58 deterministic rules for single petal attributes in Tab. 6.

4.2 A Previous RSDA Analysis of IRIS Data

In the rough set context, the IRIS data have been explored by [Teghem & Benjelloun(1992)]
with a data filtering displayed in Tab. 7. The resulting system does not explain the data,
sinceγ({A1, A2, A3, A4} → D) = 0.77. If we compare this result with the 96% reclassi-
fication success of discriminant analysis using two attributes only (Tab. 3), the result does
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Table 5.Approximation Qualities

Attributes γ Attributes γ

A1, A2, A3 1.00A2, A3 0.97
A1, A2, A4 1.00A2, A4 0.94
A1, A3, A4 1.00A3, A4 0.98
A2, A3, A4 1.00A1 0.21
A1, A2 0.85A2 0.13
A1, A3 0.97A3 0.82
A1, A4 0.94A4 0.73

Table 6. IRIS Rules, Petal Attributes (Unfiltered Full Set)

Rule Instances Rule Instances Rule Instances
A3=14 ⇒ D=1 13 A3=37⇒ D=2 1 A3=69⇒ D=3 1
A3=10 ⇒ D=1 1 A3=43⇒ D=2 2 A3=63⇒ D=3 1
A3=17 ⇒ D=1 4 A3=30⇒ D=2 1 A4=2 ⇒ D=1 29
A3=13 ⇒ D=1 7 A3=36⇒ D=2 1 A4=3 ⇒ D=1 7
A3=16 ⇒ D=1 7 A3=50⇒ D=3 4 A4=5 ⇒ D=1 1
A3=19 ⇒ D=1 2 A3=56⇒ D=3 6 A4=1 ⇒ D=1 5
A3=12 ⇒ D=1 2 A3=52⇒ D=3 2 A4=6 ⇒ D=1 1
A3=11 ⇒ D=1 1 A3=55⇒ D=3 3 A4=4 ⇒ D=1 7
A3=15 ⇒ D=1 13 A3=59⇒ D=3 2 A4=11⇒ D=2 3
A3=46 ⇒ D=2 3 A3=54⇒ D=3 2 A4=13⇒ D=2 13
A3=48 ⇒ D=2 2 A3=67⇒ D=3 2 A4=12⇒ D=2 5
A3=39 ⇒ D=2 3 A3=57⇒ D=3 3 A4=10⇒ D=2 7
A3=47 ⇒ D=2 5 A3=66⇒ D=3 1 A4=17⇒ D=3 2
A3=40 ⇒ D=2 5 A3=53⇒ D=3 1 A4=22⇒ D=3 3
A3=38 ⇒ D=2 1 A3=64⇒ D=3 1 A4=24⇒ D=3 3
A3=44 ⇒ D=2 4 A3=60⇒ D=3 2 A4=23⇒ D=3 8
A3=33 ⇒ D=2 2 A3=48⇒ D=3 2 A4=20⇒ D=3 6
A3=41 ⇒ D=2 3 A3=61⇒ D=3 3 A4=25⇒ D=3 3
A3=35 ⇒ D=2 2 A3=58⇒ D=3 3 A4=21⇒ D=3 6
A3=42 ⇒ D=2 4

not look favorable for RSDA, if this is the best such data analysis can offer. The original
unfiltered data show thatγ({A3, A4} → D) = 0.98, so that the low approximation quality
is only due to the filtering.

The attribute sets{A3, A4} and{A1, A2, A4} have an approximation quality ofγ =
0.75, resp.γ = 0.72; thus, it seems that these sets should have been considered in the data
analysis as well. If one is prepared to accept an approximation quality of γ = 0.77 with
four features, it is surely acceptable to eliminate two of these in return for a drop in the
approximation quality of only0.02.

In order to show that the attribute set{A3, A4} is the optimal combination, we can

Table 7.Data Filtering of [Teghem & Benjelloun(1992)]

Very small (1) Small (2) Large (3) Very large (4)
Sepal length x < 50 50 ≤ x < 60 60 ≤ x < 70 70 ≤ x
Sepal width x < 24 24 ≤ x < 31 31 ≤ x < 38 38 ≤ x
Petal length x < 30 30 ≤ x < 40 40 ≤ x < 55 55 ≤ x
Petal width x < 10 10 ≤ x < 14 14 ≤ x < 21 21 ≤ x
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compare the uncertainty measures of the attribute sets

{A1, A2, A3, A4}, {A1, A2, A4}, {A3, A4},
see Tab. 8. The results show that the petal attributes are by far preferred, and that in terms
of uncertainty measure the complete set of attributes is the worst.

Table 8.Entropy Values

Q H(Q) H(Q, D) NOI NRI
{A1, A2, A3, A4} 4.416 4.621 0.462 0.362
{A1, A2, A4} 4.023 4.290 0.520 0.392
{A3, A4} 2.520 2.763 0.791 0.607

[Teghem & Benjelloun(1992)] offer, among others, the following conclusions to their
work:

“The three main advantages of rough sets theory are
• its very clear interpretation for the user,
• its independence to any statistical assumptions,
• its efficiency and its rapidity.”

We are somewhat more skeptical. Even though the basis of RSDA consists of a very
simple mathematical model which is clearly understandable, the interpretation of results is
not always all that clear; we believe that e.g. the considerations of Sect. 3.3 regarding the
statistical validation of rough set rules show that care has to be taken when interpreting the
results of a rough set data analysis, and that the results are by no means always clear and
straightforward.

The rough set model is not independent of any statistical assumptions. Even though it
requires no (exterior) prior probabilities it has an underlying statistical model as shown in
Sect. 3.2.

In view of the fact that for example minimal reduct search is NP hard, it seems hardly
justified to claim efficiency and rapidity for RSDA except for very small databases. Having
said this, one should mention that heuristic tools for reduct finding have been developed,
for example [Wroblewski(1995)] or [Bjorvand & Komorowski(1997)]. On the other hand,
these methods need assumptions outside the data at hand, which we are trying to avoid.

5 Rough Information Analysis of IRIS Data

5.1 Data Filtering

We have used the procedure outlined in Sect. 3.4 to obtain the data conversions given in
Tab. 9; there, the choice of a value is irrelevant. We also list the resulting number of classes,
and in brackets as a reminder the number of classes of the unfiltered data. Observe the
dramatic fall in the number of classes of the petal attributes. We shall use this filtering for
all subsequent computations, unless indicated otherwise.

5.2 Significance

We found that no attribute set∅ 6= Q ⊆ {A1, A2, A3, A4} was casual with respect toD.
The values of relative significances is given in Tab. 10. The results clearly indicate that the
combination (A3, A4) is the best choice to describe the IRIS data in terms of rules. Whereas
any other combination of attributes contains at most one attribute which is not conditional
casual, A3 and A4 show significant (0.004), resp. marginally significant (0.063) test results
of the hypothesis of conditional casualness.
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Table 9.Rough Filtering

Attribute Filter No of classes
Sepal length: 43–48, 53→ 46 22 (35)

66,70→ 70
71–79→ 77

Sepal width: 35, 37, 39–44→ 35 16 (23)
20, 24→ 24

Petal length: 10–19→ 14 8 (43)
30–44,46,47→ 46

50, 52, 54–69→ 50
Petal width: 1–6→ 2 8 (22)

10–13→ 11
17, 20–25→ 17

Table 10.Relative Significance

Attributes A1 A2 A3 A4
A1, A2, A3, A4 1.00 1.00 1.00 1.00
A1, A2, A3 0.901 0.862 0.604
A1, A2, A4 0.843 0.710 0.336
A1, A3, A4 0.944 0.857 0.857
A2, A3, A4 0.860 0.843 0.790
A1, A2 0.127 0.213
A1, A3 0.874 0.001
A1, A4 0.727 0.213
A2,A3 0.814 0.001
A2,A4 0.884 0.001
A3, A4 0.004 0.063

5.3 Uncertainty Measures

The entropy values are given in Tab. 11. Observe that in caseQ ⇒ D, we have of course
H(Q) = H(Q,D), since there is no unexplained information, and alsoNOI = NRI.

The remarks above concerning significance are reflected in the results of the entropy
values of Tab. 11. Large values for NOI and NRI are recorded for attribute sets{A3},
{A4}, and{A3, A4}, with corresponding low values for H(Q) and H(Q,D).

Attribute A2 records a high value for NOI, with corresponding values for H(Q) and
H(Q,D) being about average. Perhaps this indicates A2’s rank in ability to distinguish
between the species, i.e., not as good as A3 or A4 but better than A1. It is interesting to
note that the reducts of the full information system perform badly on both entropy results
and relative significance.

To summarize the NOI/NRI analysis, both unconditional measures vote forA3 – and
if we want to predict more objects for the price of a small decrease in information – the
prediction set{A3, A4}. Any other combination of two or more attributes is by far too
crude in terms of NOI/NRI.

5.4 Rules

Rough filtering not only reduces the number of classes and increases the significance of
rules, it also reduces the number of rules. Using all four independent attributes, Grobian
has found 118 deterministic rules. The 6 deterministic rules for the petal attributes alone
are given in Tab. 12, as well as some other rules which make make up the whole data set.
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Table 11.Entropy Values (Filtered)

Q H(Q) H(Q, D) NOI NRI
Reducts

{A2, A3, A4} 5.683 5.683 0.274 0.274
{A1, A3, A4} 5.657 5.657 0.279 0.279
{A1, A2, A3} 6.683 6.683 0.097 0.097
{A1, A2, A4} 6.724 6.724 0.090 0.090

Non – reducts
{A1, A2} 6.500 6.644 0.104 0.094
{A1, A3} 5.310 5.337 0.335 0.335
{A1, A4} 5.492 5.550 0.297 0.294
{A2, A3} 5.340 5.371 0.329 0.326
{A2, A4} 5.400 5.459 0.314 0.311
{A3, A4} 3.285 3.303 0.696 0.693
{A1} 4.314 5.020 0.391 0.139
{A2} 3.759 4.818 0.427 0.694
{A3} 2.358 2.488 0.840 0.780
{A4} 2.562 2.722 0.799 0.674

Table 12.Some IRIS Rules (Filtered Full Set)

Rule Instances
A3=14 ⇒ D=1 50
A4=2 ⇒ D=1 50

A3=46 ⇒ D=2 37
A4=11 ⇒ D=2 28

A3=45, A4=15⇒ D=2 5
A1=60, A4=16⇒ D=2 2
A2=32, A3=48⇒ D=2 1
A3=49, A4=15⇒ D=2 2
A3=53, A4=19⇒ D=2 1
A1=68, A4=14⇒ D=2 1

A3=50 ⇒ D=3 36
A4=17 ⇒ D=3 31

A3=51, A4=15⇒ D=3 1
A3=51, A4=19⇒ D=3 2
A2=30, A4=18⇒ D=3 4
A3=49, A4=18⇒ D=3 2
A1=62, A4=18⇒ D=3 2

The classSetosaneeds only one prediction rule (A3 = 14 or A4 = 2), and it is obvious
that it is rather different from the other two. The classVirginica is fairly well explained: The
(filtered) values A3 = 50 or A4 = 17 explain 42 instances ofVirginica. There is only one
object which needs an A1-based rule, and there are only four objects that need an A2-based
rule.

The classVersicolorcauses difficulties. The rules “(A3 = 53, A4 = 19)⇒ D = 2”, and
“(A3 = 51, A4 = 19)⇒ D = 3” have no frame of interpretation because of their “closeness”.
Observe that none of the occurring values is filtered.

5.5 ROUGHIAN Prediction of IRIS Data

In machine learning, a common procedure to test the accuracy of the prediction value of a
rule set is done in the following way:

1. Split the data into a training set and a testing set.
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2. Learn a rule set in the training set.
3. Measure the accuracy of the rule set (in the given the-

oretical system) in the testing set.
Repeat this procedure about twenty times and find the mean
and standard deviation of the obtained values.

We have followed this procedure to find out the prediction quality of the filtered data
set for certain attribute sets. To this end, we have generated twenty random partitions of the
whole data set into two equally sized classes of 75 specimen each. We then have filtered
the training set and, with this filtering, computed the approximation quality of the attribute
sets

{A3, A4}, {A1, A3, A4}, {A2, A3, A4}
on the testing set, and theα–value of (4) for each species. We have also tested on the
whole data set whether the random partition is conditional casual for the attribute set under
consideration, i.e. whether we can assume that the partition isreally random. The mean and
the standard deviation of the resulting sequences of values can be found in Tab. 13. The

Table 13.Means and Standard Deviations of the 20 IRIS Files forγ, α for Each Species, and the
Relative Significance of the Random Variable

γ α, Setosa α, Versicolor α, Virginica Rel. signif.
Attributes MeanStd.dev.MeanStd.dev.MeanStd.dev.MeanStd.dev.MeanStd.dev.
A1,A3,A4 0.972 0.028 1 0 0.791 0.130 0.797 0.157 0.685 0.347
A2,A3,A4 0.992 0.014 1 0 0.818 0.119 0.780 0.151 0.863 0.275

A3,A4 0.896 0.088 1 0 0.613 0.138 0.602 0.167 0.329 0.358

results show that the filter derived from the first half of the data can be used in principle
in the second half of the data set. The prediction quality is about as high as in the overall
data analysis (see Table 5). A further check of the admissibility of the filter procedure is
presented in the last two columns of Table 13: The training set / testing set coding should
have no influence on the prediction in the overall system given the filter of the training
set; hence, the random variable should be conditional casual. As the last two columns of
Table 13 indicate, we cannot observe a significant influence of the random variable to the
overall prediction success.

RSDA faces a problem which is common to every structural data analysis: There may
be observations within the testing set which cannot be expressed by a rule extracted from
the training set, simply because this rule does not occur in the training situation. To solve
this problem, [Słowi´nski & Stefanowski(1992)] adopt metric information about the data in
their ’ROUGHCLASS’ approach to compute the best ‘nearby’ rule(s) which can be used
for prediction. Although this approach is not in line with the original soft computing aims
of the RSDA (since one has to enter external assumptions about the data), we are forced to
use a similar approach, because – up to now – nonon–invasive data analysis counterpart
for the classification problem is at hand.

Our validation using the “training - testing - set” paradigm runs as follows:

• Initialize 9 countersN(P |D), whereD is true value of the specimen in the testing set,
andP is the predicted value of the specimen from rules of the training set.

• For each of the 20 training sets do
• Compute the filter rules based on the 4 predicting attributes and the specimen de-

cision attribute.
• Compute the rules based on petal length and petal width within the training set

based on the respective filter.
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• Apply the filter derived from the training set to the testing set objects.
• For every object of the testing set do

∗ Compute those rules which have the sameminimalEuclidian distance to the
current (petal length, petal width) combination.

∗ Choose one of these rules with minimal distance randomly, and use the value
of the decision attribute of the chosen rule as the predictionP for the testing
object under study.

∗ Increase the counterN(P |D) by 1.
• Normalize each counterN(P |D) byN(.|D) = N(1|D)+N(2|D)+N(3|D) resulting

in p̂(P |D) = N(P |D)
N(.|D)

.

Table 14 shows the result of the RSDA validation procedure. Whereas Setosa is captured
perfectly, the error rates of the classification of Versicolor and Virginica in the testing set
are between are 8% and 9%.

Table 14.Mean Prediction Quality Using Rough Analysis (Half Sample Prediction)

Classes in the testing setPredicted class
Setosa Versicolor Virginica

Setosa 1.000 0.000 0.000
Versicolor 0.000 0.914 0.080
Virginica 0.000 0.086 0.920

With the same simulation procedure, but using discriminant analysis instead, we see
in Table 15 that discriminant analysis outperforms RSDA by about additional 2% correct
predictions.

Table 15.Mean Prediction Quality Using Discriminant Analysis

Classes in the testing setPredicted class
Setosa Versicolor Virginica

Setosa 1.000 0.000 0.000
Versicolor 0.000 0.940 0.069
Virginica 0.000 0.060 0.931

It should be noted that the jack–knife (”leave-one-out”) validation results in more op-
timistic estimations of prediction success (Tab. 16), and these probabilities are comparable
to those of the discriminant analysis. [Krusi´nska et al.(1992a)Krusi´nska, Babic, Słowi´nski & Stefanowski]

Table 16.Mean Prediction Quality Using Rough Analysis (Jack-knife Validation)

Classes given in dataPredicted class
Setosa Versicolor Virginica

Setosa 1.000 0.000 0.000
Versicolor 0.000 0.939 0.071
Virginica 0.000 0.061 0.929

use a jack–knife procedure for validation, and thus, the goodness of the RSDA classifica-
tion compared to DA may be overestimated and should be taken with care. Furthermore, all
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their attributes are conditional casual, which indicates a large inhomogeneity of the data,
and one could conclude that the sample size is too small to allow a reliable prediction.

The dependency of the prediction success on the chosen validation method seems to be
a disadvantage of the RSDA. If we compare the jack-knife approach with the half sample
prediction, we observe that the number of rules generated by RSDA tends to be smaller in
case of the half sample prediction. Because sometimes essential rules may be missing, a
misclassification will occur, and the prediction quality will decrease. In case of discriminant
analysis, a smaller number of subjects will only decrease the precision of estimators, and
will not decrease the number of structural parameters as in case of RSDA.

6 Conclusion

We have performed a traditional RSDA analysis of Fisher’s IRIS data, and supplemen-
ted it with the ROUGHIAN proceduresdata filtering, significance testing, and uncertainty
measures.

Given a measurement situation like in the case of the IRIS data, which is a standard
one for performing discriminant analysis, there is a need for reducing the granularity of the
predicting attributes. Categorization by researchers may be suboptimal in terms of approx-
imation quality of the filtered attributes, as e.g. the results of [Teghem & Benjelloun(1992)]
indicate. The data filtering procedure offers a method to reduce the granularity of the data,
which does not change the prediction success of the attributeunder study.

Significance testing is necessary for a decision whether the rules derived from an in-
formation system are more than just rules generated by a random process (casualness) or
whether part of the rules can be explained by chance (conditional casualness) respectively.
Classical approaches of RSDA usually overfit the data by using either casual systems or an
abundance of conditional casual attributes. It turns out that the increase in rule significance
obtained by our filtering procedure makes ROUGHIAN a viable data description method
even in those cases where DA seems to be the method of choice. We argue that this result
could not have been obtained by RSDA alone since theγ statistics as a measure of “de-
terminacy” does not generally suffice to evaluate the quality of rules. For example, in the
unfiltered system, the relative significance ofA3 andA4 in {A3, A4} with 1000 simula-
tions is 0.621, resp. 0.516 – thus, both attributes are conditional casual – , but in the filtered
system only 0.004, resp. 0.063.

We have shown that the combination of filtering and significance testing achieved the
same combination of variables in which the DA resulted, with about the same coverage in
terms of posterior probabilities.

Using the significance and entropy procedures as additional information providers sig-
nificantly simplifies model selection within RSDA, and justifies the appropriate choice.

Using the IRIS data set, we have shown that prediction using the ROUGHIAN model is
nearly as good as that of discriminant analysis, even though

• ROUGHIAN does not use the metric information of the data set, except that rules
“nearby” have to be evaluated,

• ROUGHIAN does not assume an underlying linear model within the data,
• ROUGHIAN does not make any homogeneity or spatial distributional assumption,

in contrast to the discriminant analysis.

However, the problem of the dependency of the prediction success on the choice of
the validation method is a problem which should not be underestimated, and should be
investigated further.
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