
A Lattice Machine Approach to Automated Casebase Design:
Marrying Lazy and Eager Learning

Hui Wang, Werner Dubitzky, Ivo Düntsch, David Bell
School of Information and Software Engineering, University of Ulster

Newtownabbey, BT 37 0QB, N.Ireland

{H.Wang,W.Dubitzky,I.Duentsch,DA.Bell}@ulst.ac.uk

Abstract

Case-based reasoning (CBR) is concerned with
solving new problems by adapting solutions
that worked for similar problems in the past.
Years of experience in building and fielding
CBR systems have shown that the “case ap-
proach” is not free from problems. It has been
realized that the knowledge engineering effort
required for designing many real-world case-
bases can be prohibitively high. Based on the
wide-spread use of databases and powerful ma-
chine learning methods, some CBR research-
ers have been investigating the possibility of
designing casebases automatically. This paper
proposes a flexible model for the automatic dis-
covery of abstract cases from databases based
on the Lattice Machine. It also proposes an
efficient and effective algorithm for retrieving
such cases. Besides the known benefits associ-
ated with abstract cases, the main advantages
of this approach are that the discovery process
is fully automated (no knowledge engineering
costs).

Keywords: case-based reasoning, machine learning,
knowledge acquisition, automated modeling

1 Introduction
Case-based reasoning (CBR) is concerned with solving
new problems by adapting solutions that worked for sim-
ilar problems in the past. CBR research is motivated by
the desire to establish cognitive models to understand
human thinking and behavior (psychology, cognitive sci-
ence), and to build more effective, efficient, and robust
computer systems that solve real-world problems (artifi-
cial intelligence). Since the early nineties, CBR has been
successfully applied in a wide variety of areas. However,
with almost ten years of both theoretical and applied
experience in building and fielding case-based systems,
it has been realized that the “case approach” is not free
from problems [Leake, 1996]. Two of the more important
issues that need to be addressed are outlined below:

• the implementation of casebase maintenance

policies for revising the organization of casebases
in order to facilitate effective and efficient future
reasoning [Leake and Wilson, 1998]; and

• the automation of the case engineering process, that
is, the automatic generation of case-knowledge com-
ponents from existing information (i.e., databases)
[Patterson et al., 1998]; the work presented in this
paper will focus on this issue.

The term case engineering refers to task of designing a
casebase, that is, the processes of generating those com-
ponents that represent the application-specific know-
ledge contained in a CBR system. In general, such know-
ledge structures describe the content structure of cases,
criteria for organizing cases within and retrieving cases
from the case library (indexing scheme, similarity meas-
ures), rules for adapting case solutions, and case revision
and retention schemes [Lenz et al., 1998]. In addition to
determining the fundamental knowledge elements, the
generation process also entails the selection or extraction
of those cases that will be used to populate the initial
casebase.

The work presented in this paper proposes Lattice
Machine – a formal framework for learning from re-
lations, and its application to automatically construct
(case content description) and extract (case selection)
abstract cases from databases. Furthermore, an efficient
algorithm for the retrieval of such abstract cases is also
proposed.

The remainder of the paper is organized as follows.
Section 2 briefly discusses the role of abstract cases in
CBR. Section 3 introduces the definitions and notational
conventions, followed in Section 4 by a formal description
of Lattice Machine, the pivotal part of the work in this
paper. Sections 5 and 6 present efficient algorithms for
extracting abstract cases and retrieving cases, based on
the theoretical results in Lattice Machine. Experimental
results are reported in Section 7. Section 8 concludes the
paper.

2 Abstract Cases in CBR

Traditional CBR systems retrieve, reuse, and retain
cases in a representation reflecting concrete problem-
solving episodes. Recently, researchers have investigated

the role and use of abstract cases, e.g., [Bergmann and
Wilke, 1996]. Abstract cases represent cases at a higher
level of abstraction. Through abstract cases, the CBR
process can be supported in several ways [Bergmann and
Wilke, 1996]; those ways pertinent to the discussion in
this paper are outlined below:

• Abstract cases can reduce the complexity of a case-
base by substituting sets of concrete cases and
thereby significantly reducing the size of the case-
base. A drastically reduced casebase can improve
retrieval efficiency, reduce maintenance costs, and
eliminate or alleviate the notorious swamping prob-
lem [Smyth and Keane, 1995].

• Cases at higher levels of abstraction can serve as
prototypes for indexing larger sets of more detailed
cases. This can have profound effects on reducing
retrieval times, maintenance costs, and it can pro-
mote a better user understanding of the casebase
content, and facilitate explanations for the system’s
reasoning process.

In most situations, abstract cases are not readily avail-
able, they must be generated – manually or automatic-
ally – from concrete cases. To manually construct ab-
stract cases will require a very high knowledge engineer-
ing effort for most applications. Whereas an automatic
generation procedure requires general domain knowledge
about ways of mapping concrete cases onto higher levels
of abstraction.

The abstract case construct proposed in this paper is
based on the concept of hypertuples. Hypertuples, i.e.,
abstract cases, are automatically generated through a
so-called domain lattice, which is implied in a problem
domain. The extraction and retrieval of abstract cases
are achieved in domain lattice using the Lattice Machine.

3 Definitions and notation

To present our findings concisely and within the given
page limit, we briefly introduce some notational conven-
tions and definitions that are used throughout the paper.

3.1 Decision systems
An information system is a tuple I = 〈U, Ω, Vx〉x∈Ω,
where U = {a0, . . . , aN} is a nonempty finite set and
Ω = {x0, . . . , xT } is a nonempty finite set of mappings
xi : U → Vxi

1.
We interpret U as a set of objects and Ω as a set

of attributes or features, each of which assigns to an
object a its value under the respective attribute. Let
V def=

∏
x∈Ω Vx. For a ∈ U , we let Ω(a) def= 〈x(a)〉x∈Ω ∈

V. Each Ω(a) is called a tuple, and the collection of all
tuples is denoted by D. Thus, for each t ∈ D, there is
at least one a ∈ U such that Ω(a) = t.

1Note Vxi can be finite or infinite. For the latter case the
domain lattice is infinite. However we are only interested in
the finite sublattice generated from a finite casebase.

A decision system D is a pair 〈I, d〉, where I is an
information system as above, and d : D ³ Vd =
{d0, . . . , dK} is an onto mapping, called a labeling of D;
the value d(t) is called the label of t.

The mapping d induces a partition Pd of D with the
classes {D0, . . . ,DK}, where t ∈ Di ⇐⇒ d(t) = di.

In this paper we consider a dataset represented as a
decision system D, which can be regarded as an initial
casebase consisting of concrete cases. Then D is the set
of (descriptions of) concrete cases, d is the case solution,
and V is the set of all possible concrete cases in a prob-
lem domain. Therefore each t ∈ D is associated with a
solution in the form of a class label d(t).

3.2 Order and lattices
Let P = 〈P,≤〉 be a partially ordered set and T ⊆ P . We
let ↓ T

def= {y ∈ P : (∃x ∈ T) y ≤ x}. If no confusion can
arise, we shall identify singleton sets with the element
they contain.

Let L be a lattice, partially ordered by≤. For x, y ∈ L,
the least upper bound (or sum) is written by x + y and
the greatest lower bound (or product) by x×y. For A ⊆
L, its least upper bound and greatest lower bound are
denoted by lub(A) and glb(A) respectively. An element
a ∈ A is called maximal in A, if for all x ∈ A, a ≤ x
implies x = a.

For A, B ⊆ L, we say that B covers A or A is covered
by B, written as A 4 B if for each s ∈ A there is some
t ∈ B such that s ≤ t.

The sublattice of L generated from M ⊆ L, written by
[M], is [M] = {t ∈ L : ∃X ⊆ M such that t = lub(X)}.
The greatest element in [M] is lub(M). If M is finite,
[M] is also finite.

A comprehensive discussion on lattice theory can be
found in [Grätzer, 1978].

4 The Lattice Machine

This section introduces the Lattice Machine, a construct
which facilitates the discovery of abstract cases from a
given dataset. The discussion should also make apparent
how the Lattice Machine is linked to machine learning
concepts.

4.1 Domain lattice
We have found that, given a dataset expressed as a de-
cision system, an elegant mathematical structure (lat-
tice) is implied. This structure makes it possible to in-
vestigate CBR, machine learning, as well the relationship
between the two from an algebraic perspective. In the
sequel, we shall use D as described above as a generic
decision system representing a dataset.

Let L def=
∏

x∈Ω 2Vx . Then t ∈ L is a vector 〈t(x)〉x∈Ω,
where t(x) ⊆ Vx are sets of values 2. The elements of L
are called hypertuples; the elements t of L with |t(x)| =
1 for all x ∈ Ω are called simple tuples. Any set of

2Note that if t ∈ L and x ∈ Ω, then t(x) is the projection
of t to its x–th component.

hypertuples is called a hyperrelation 3. Note that V is a
set of all simple tuples for a given problem domain, and
D is the set of simple tuples described in the dataset D.
L is a lattice under the ordering

t ≤ s ⇐⇒ t(x) ⊆ s(x)(1)

with the sum and product operations, and the maximal
element (i.e., 1) given by

t + s = 〈t(x) ∪ s(x)〉x∈Ω.(2)
t× s = 〈t(x) ∩ s(x)〉x∈Ω,(3)

1 = 〈Vx〉x∈Ω.(4)

L is called domain lattice for D.
There is a natural embedding of D into L by assigning

Ω(a) 7→ 〈{x0(a)}, {x1(a)}, . . . , {xT (a)}〉.
and we shall identify D with the image of this embed-
ding. Then D ⊆ V ⊆ L.

In the context of CBR, simple tuples are concrete cases
whereas hypertuples are abstract cases since hypertuples
cover multiple simple tuples hence they are “abstrac-
tions” of simple tuples.

Table 1(a) is a dataset (decision system) consisting
of three simple tuples, where VX1 = {a, b} and VX2 =
{0, 1}, and d is the labeling. Table 1(b) and (c) are sets
of hypertuples, which are the least and greatest E-sets
respectively for the dataset, to be defined later.

D = {〈a, 0〉, 〈a, 1〉, 〈b, 0〉};
V = {〈a, 0〉, 〈a, 1〉, 〈b, 0〉, 〈b, 1〉};
L = {〈∅, ∅〉, 〈∅, {0}〉, 〈∅, {1}〉, 〈∅, {0, 1}〉,

〈{a}, ∅〉, 〈{a}, {0}〉, 〈{a}, {1}〉, 〈{a}, {0, 1}〉,
〈{b}, ∅〉, 〈{b}, {0}〉, 〈{b}, {1}〉, 〈{b}, {0, 1}〉,
〈{a, b}, ∅〉, 〈{a, b}, {0}〉, 〈{a, b}, {1}〉, 〈{a, b}, {0, 1}〉}.

U X1 X2 d

u0 a 0 α
u1 a 1 α
u2 b 0 β

(a)

U 2X1 2X2 d

u′0 {a} {0, 1} α
u′1 {b} {0} β

(b)

U 2X1 2X2 d

u′0 {a} VX2 α
u′1 {b} VX2 β

(c)

Table 1: (a) A set of simple tuples in a decision system.
(b) A set of hypertuples as the least E-set. (c) A set of
hypertuples as the greatest E-set.

3The concept of hyperrelation has been used before in e.g.
[Orlowska, 1985; Wang et al., 1998].

4.2 Equilabelledness and generalization
A dataset imposes a labeling d of D on the domain lat-
tice L. Thus all elements in D are labeled, and those
in V \ D are unlabeled. This labeling can be gener-
alized to elements in the lattice which cover D. This
generalization must be consistent with d in the sense
that the generalized labeling must be the same as d for
t ∈ D. This renders only those generalizations accept-
able which generalize d to equilabeled elements. Intu-
itively, an equilabeled element is t ∈ L which covers
at least one labeled element and all labeled elements
covered by t have the same label.

Figure 1: A running example.

For an illustrative example, consider the diagram in
Figure 1, which depicts a small part of a domain lattice.
The bottom elements (thin-lined circles) in the diagram
represent simple tuples. All other elements (bold-lined
circles) represent hypertuples. The original labeling d is
defined only for the elements {H, I, J,K, M}. Here, B
is equilabeled as H and I are all labeled positive by d
while G is unlabelled. In fact, all elements in Figure 1
are equilabeled except A,G and L: A covers elements
with different labels whereas G and L cover no labeled
element.

Formally, we call an element r ∈ L equilabeled with
respect to Dq, if ∅ 6=↓ r ∩ D, ↓ r ∩ D ⊆ Dq. In other
words, r is equilabeled if ↓ r intersects D, and every
element in this intersection is labeled dq for some q ≤ K.
Recall that K is the number of classes. In this case, we
say that r G-belongs to Dq. We denote the set of all
equilabeled elements G-belonging to Dq by Eq, and let E
be the set of all equilabeled elements. Note that D ⊆ E ,
and that q, r ≤ K, q 6= r implies Eq ∩ Er = ∅.

We will now extend d over all of L by setting

d(r) =
{

dq, if r ∈ Eq,

unknown, otherwise.

Now E , along with the extended labeling, can be re-
garded as a casebase of abstract cases (hypertuples).
This is clearly too large. Since the elements in E are
partially ordered – some are covered by some others –

we need only look at those which are not covered by any;
they are maximal. Our wish to find maximal elements
in some context leads to the following notions.
Def. 4.1. A (generalization) context (for learning) is a
set P such that D ⊆ P ⊆ V. We let

M(P) def= {h ∈ E : ∃X ⊆ P, h = lub(X)}
E(P) def= {t : t is maximal in M(P)}.

E(P) is called the E–set for P , and t ∈ L is said to be
in context P if t ∈ M(P).

We observe the following lemma 4:
Lemma 4.2. A ⊆ B ⊆ L implies M(A) 4 M(B) and
E(A) 4 E(B).

This lemma implies E(D) 4 E(P) 4 E(V) for D ⊆
P ⊆ V. We then call E(D) least E-set and E(V) greatest
E-set, which are denoted by E and E respectively. It is
not hard to see that E is the set of all maximal elements
in E .

Consider Figure 1 again. E({H, · · · ,K, M}) =
{C, M}, and E({G, · · · ,M}) = {B, C,D, M}.
4.3 Interpretation of a domain lattice
Given a hypertuple t in a context P (i.e., t ∈ M(P)),
we need a calculus to get the remaining hypertuples in
the same context (see Theorem 4.1 below). We therefore
need to interpret the domain lattice in a suitable way.

Formally, let t = 〈e0, . . . , eT 〉 be a hypertuple, with
ei = {ei0 , . . . , eit(i)}. We think of t as an (undetermin-
istic) description of some object a in the following way:

(x0(a) = e00 ∨ . . . ∨ x0(a) = e0t(0)) ∧ . . .

. . . ∧ (xT (a) = eT0 ∨ . . . ∨ xT (a) = eTt(T)).

In short we have t = e0 ∧ · · · ∧ eT .
Each ei stands as a hypertuple on its own, which is

interpreted as 〈V0, · · · , Vi−1, ei, Vi+1, · · · , VT 〉; and ej∧ek

is interpreted as glb(ej , ek).
Consider a hypertuple t = 〈e0, · · · , eT 〉. The relative

complement or, simply, R-complement of t with respect
to the greatest element in L (i.e., 1) is t = e0 ∨ · · · ∨ eT ,
and ej is interpreted as Vj \ ej .

Given a hyperrelation R = {t0, · · · , tn}, where ti =
〈ei0, · · · , eiT 〉, we wish to calculate its R-complement R
in such a way that R∪R < V and ↓ R∩ ↓ R = ∅. For this
purpose we interpret R as t0∨· · ·∨tn. Using the propos-
itional calculus we can calculate the R-complement of R
as follows. Let X = {∧n

i=0 eiji : for ji ∈ {0, · · · , T}}.
R =

∧n
i=0 ti =

∨
x∈X x. If follows |X| = (T + 1)(n+1).

Clearly the calculation of R-complement is exponential,
which makes this not practical for large R.

The above R-complement calculus can be generalized
as follows. Let t = 〈et0, · · · , etT 〉 and h = 〈eh0, · · · , ehT 〉.
If t ≤ h then the R-complement of t with respect to
h, denoted by t|h, is calculated similarly except that
etj = ehj \ etj .

4Due to lack of space, we omit all proofs throughout the
paper.

Lemma 4.3. For R ⊆ L,
1. R ∪R < V.
2. ↓ R∩ ↓ R = ∅.
3. Let W

def= {w ∈ L :↓ w∩ ↓ R = ∅}. Then R is the
set of all maximal elements in W .

The first two properties guarantee that R is exclus-
ively complementary to R with respect to the maximal
element of the domain lattice. For an example, consider
Table 1(a). The table is interpreted as u0 ∨ u1 ∨ u2. u0

is interpreted as (X1 = a) ∧ (X2 = 0). u0 = 〈a, 0〉 =
ā∨ 0̄ = 〈ā, V2〉∨ 〈V1, 0̄〉. Let V1 = {a, b} and V2 = {0, 1}.
Then u0 = 〈b, {0, 1}〉 ∨ 〈{a, b}, 1〉, which clearly covers
u1 and u2, as well as an unseen tuple 〈b, 1〉.

The third property says that R is the set of maximal
elements not covered by R. Consider Figure 1. Let R =
{E}. Then R = {G,D,M}.
4.4 Hypothesis space and casebase
Given a dataset we wish to have a hypothesis to replace
the entire dataset. The hypothesis should not only cover
the dataset but also generalize it. As discussed earlier, a
dataset D imposes a labeling on the underlying domain
lattice. The labeling can then be generalized to elements
in M(P) for a given context P . However we do not
need to use the whole M(P) as the hypothesis; a proper
subset of it will suffice. Then a hypothesis is just a set
of hypertuples, each of which is more informative than
the simple tuples in the original dataset. Therefore, it
is possible to consider a casebase as a hypothesis for a
dataset. In this section we will introduce and justify
some concepts through which we can precisely describe
what kind of hypothesis we are aiming for.

Note that, by Lemma 4.2, M(D) 4 M(P) 4 M(V)
for D ⊆ P ⊆ V. Therefore H ⊆ M(P) ⇒ H ⊆ M(V).
Then we have
Def. 4.4. A hypothesis for D is a H ⊆ M(V) such that
D 4 H. We use Gen(D) to denote the set of all hypo-
theses for D.

Similarly, we define a hypothesis for Dq. Note that for
a hypothesis H for D, H ∩ Eq is a hypothesis for Dq.
Conversely, if Hq is a hypothesis for Dq for each q ≤ K,

then H
def=

⋃
q≤K Hq is a hypothesis for D.

Since M(P) contains only equilabeled elements, H is
consistent with the dataset. Since D 4 H, H covers all
simple tuples in the dataset.
Def. 4.5. Let Hj and Hk be two hypotheses for D.
Then Hj is more general than Hk if and only if Hk 4
Hj . Hj is (strictly) more general than Hk, written
(Hk ≺ Hj), if and only if (Hk 4 Hj) ∧ (Hj 64 Hk).

A hypothesis H for D is maximally general if and only
if H ∈ Gen(D) and there is no H ′ ∈ Gen(D) such that
H ≺ H ′. We denote by G the set of all maximally
general hypotheses for D. In [Mitchell, 1997] G is called
the general boundary for D.

The following lemma establishes the equivalence
between G and the greatest E-set (E).

Lemma 4.6. G = {E}.
This lemma says that, although there are many pos-

sible hypotheses for a given dataset, there is only one
maximally general hypothesis – the greatest E-set. This
hypothesis is consistent with the dataset but has the
maximal coverage of unseen simple tuples (because it
has the maximal context V). General boundary is a
well established concept in the field of concept learn-
ing, and it has been used as an inductive bias in some
concept learning algorithms [Mitchell, 1997]. The equi-
valence of the greatest E-set and the general boundary
enables us to use the same inductive bias in automatic
casebase design. Therefore our objective is to find the
greatest E-set for a dataset. Our casebase design and
retrieval are both associated with the greatest E-set.

However, as shown in [Haussler, 1988], the size of the
general boundary can grow exponentially in the number
of training examples. In the context of domain lattice,
calculating the greatest E-set needs V, which is not ex-
plicitly available; instead it has to be calculated from D
using the R-complement calculus discussed above. This
involves calculating D, which has been shown exponen-
tial in |D|. It is then not practical to directly use the
greatest E-set as the casebase. The following theorem
guarantees that we can use a much smaller hypothesis
as the casebase, but we can still use the general boundary
as inductive bias. In effect it establishes the relationship
between the casebase and the greatest E-set.
Theorem 4.1. Let H be hypothesis for D, as
defined in Def. 4.4. Let VE =↓ E ∩ V, and
VH = {t ∈ V : ∃h ∈ H, ∃g ∈ (h|h + t) ∪
h, such that t ≤ g, and g is equilabeled or unknown}.
Then VE ⊆ VH .

This theorem says that if a case (simple tuple) t is
covered by E, then there must be h such that t ≤ h or
t ≤ g for g ∈ h|h + t with g being either equilabeled or
unknown. Note that h|h + t is the R-complement of h
with respect to h + t, which is the set of all elements
covered by h + t but not covered by h. The CaseRe-
trieve algorithm in Section 6 exploits this theorem to
retrieve cases to classify new cases.

Theorem 4.1 says that any hypothesis can be used
as a casebase that serves as an intermediary between
a new case and the greatest E-set. Classification of a
new case can then be made based on its relationship to
the greatest E-set, which employs the general boundary
inductive bias.

5 Case extraction

As indicated in Theorem 4.1, an expected casebase
can be any hypothesis as defined in Def. 4.4. The
simplest one is the dataset itself. However, checking
whether the conditions are satisfied requires computing
R-complements of the tuples. It is usually the case that
datasets are large hence the computation cost is high.
Therefore we need an algorithm to efficiently find a hy-
pothesis, other than the dataset itself, satisfying the con-

ditions. The least E-set seems ideal since it is the E-set
in the minimal context (D). However calculating the
least E-set is computationally expensive. The following
algorithm, CaseExtract, finds, given the minimal con-
text D, the set of elements in M(D) which have disjoint
coverage of D.

Given Dq and Eq as defined above.

• Initialization: let X = Dq,H = ∅.
• Repeat until X is empty:

1. Let h ∈ X and X = X \ {h}.
2. For g ∈ X, let X = X \g. If h+g is equilabeled

then h = h + g.
3. Let H = H ∪ {h}.

This algorithm bi-partitions X into a set of elements the
sum of which is an equilabeled element, and a new X
consisting of the rest of the elements. The new X is
similarly bi-partitioned until X becomes empty. This
process leads to a binary tree, the depth of which is a
measure of the time complexity of the algorithm. In the
worst case the time complexity for building the casebase
for class Dq is in the order of O(|Dq|). Therefore the
worst case complexity for building the whole casebase is
O(K× |Dq|), where K is the number of classes.

Consider Figure 1. CaseExtract gives the hy-
pothesis {E,F, M} which has disjoint coverage of the
labeled elements.

6 Case retrieval

The retrieval of relevant cases from the casebase is argu-
ably the most important process in CBR. In this section
we discuss how to retrieve cases from a casebase to clas-
sify new instances. Having a casebase H as discovered
by the CaseExtract algorithm, we can associate a new
instance t ∈ V with a case h ∈ H by checking whether t
is covered by E through h. Then t is regarded as being
in the same class as h. The CaseRetrieve algorithm
is as follows.

• Sort the elements in H in decreasing order of |X|
for h ∈ H and h = lub(X), which results in H =
{h0, · · · , hn} with h0 having the largest coverage of
D elements.

• t is classified by the first hi in the sorted H such
that the conditions in Theorem 4.1 are satisfied.

• If there is no such hi, label t by d(h0).

The time complexity of this algorithm is dominated by
calculating the R-complement of h ∈ H, as needed in
Theorem 4.1. This is in the order of O(T), where T is
the number of attributes. In the worst case we need to
do so for all hi in H, i = 0, · · · , n. Therefore the overall
time complexity of the algorithm is O(nT) in the worst
case.

To illustrate the CaseRetrieve algorithm, consider
Figure 1. The casebase is now {E, F, M}, as discovered
by CaseExtract. Consider a new case G. The sum of
G and E is B, which is equilabeled. Then E is retrieved

and G is labeled as positive. Clearly G ≤ B, hence
G 4 E.

7 Experiment

CaseExtract and CaseRetrieve are implemented in
our CBR system, called LM. We compared LM with
C4.5 using public datasets. The datasets are described
in Table 2. Datasets in the upper half are from UC
Irvine Machine Learning Repository; and those in the
lower half are collections of documents which are used
as benchmark for text mining study [Cohen and Hirsh,
1998]. The results are shown in Table 3.

#FeaturesDatasets
#Terms

#Train #Test #Class

Annealing 38 798 5cv 6
Auto 25 205 5cv 6

Diabetes 8 768 5cv 2
Glass 9 214 5cv 6
Iris 4 150 5cv 3

Sonar 60 208 5cv 2
Vote 18 232 5cv 2

Memos 1014 334 10cv 11
CDroms 1133 798 10cv 6
Birdcom 674 914 10cv 22
Birdsci 1738 914 10cv 22

Table 2: Description of the datasets.
Prediction accuracyDataset
C4.5 LM

Annealing 91.8 93.6
Auto 72.2 76.1

Diabetes 72.9 71.7
Glass 81.3 82.7
Iris 94.0 96.0

Sonar 69.4 69.7
Vote 95.1 97.0

memos 57.5 59.8
cdroms 39.2 40.0
birdcom 79.6 90.4
birdsci 83.3 92.3
Average 76.0 79.0

Table 3: Prediction accuracy of C4.5 and LM.

8 Summary and conclusion

The paper proposed a promising model for automating
the design of CBR systems. Revolving around the no-
tion of hypertuples (abstract cases), the proposed model
presents a successful attempt at combining powerful
eager techniques from machine learning with the flex-
ible “defer-processing” philosophy characteristic for lazy
methods [Aha, 1997]. On the basis of concise formal
argument and empirical evaluation, it has been demon-
strated that the Lattice Machine approach constitutes
an effective and efficient mechanism to discover abstract
cases in a given dataset. Abstract cases have been shown
to be an effective alternative to representing the know-
ledge held in CBR systems [Bergmann and Wilke, 1996].

They can provide answers to issues such as casebase
complexity, maintenance costs, retrieval efficiency, and
user acceptance. In addition to the discovery of abstract
cases, an algorithm was presented, which employs the
general boundary inductive bias and ensures that the
retrieval of relevant abstract cases is within the limits of
reasonable time constraints. The main contribution of
this work lies in the Lattice Machine’s ability to discover
abstract cases within a given dataset without requiring
difficult-to-obtain domain knowledge.

References
[Aha, 1997] D. Aha, editor. Lazy Learning. Kluver Aca-

demic Pub., 1997.
[Bergmann and Wilke, 1996] R. Bergmann and

W. Wilke. On the role of abstraction in case-
based reasoning. In Proc. Advances in Case-Based
Reasoning, 3rd EWCBR-96, pages 28–41, 1996.

[Cohen and Hirsh, 1998] William W. Cohen and Haym
Hirsh. Joins that generalize: Text classification using
whirl. In Proc. KDD-98, New York, 1998.

[Grätzer, 1978] George Grätzer. General Lattice Theory.
Birkhäuser, Basel, 1978.

[Haussler, 1988] D. Haussler. Quantifying inductive
bias: Ai learning algorithms and valiant’s learning
framework. Artificial Intelligence, 36:177–221, 1988.

[Leake and Wilson, 1998] D.B. Leake and D.C. Wilson.
Categorizing case base maintenance: Dimensions and
directions. In Proc. Advances in Case-Based Reason-
ing,4th EWCBR-98, pages 196–207, 1998.

[Leake, 1996] D.B. Leake, editor. Case-Based Reason-
ing: Experiences, Lessons & Future Directions. MIT
Press, MA, 1996.

[Lenz et al., 1998] M. Lenz, B. Bartsch-Spörl, H-D.
Burkhard, and S. Wess, editors. Case-Based Reas-
oning Technology: From Foundations to Applications.
Springer-Verlag, 1998.

[Mitchell, 1997] T. M. Mitchell. Machine Learning. The
McGraw-Hill Companies, Inc, 1997.

[Orlowska, 1985] Ewa Orlowska. Logic of nondetermin-
istic information. Studia Logica, 44:93–102, 1985.

[Patterson et al., 1998] D. Patterson, W. Dubitzky, S.S.
Anand, and J.G. Hughes. On the automation of
case base development from large databases. In Proc.
AAAI Workshop: Case-Based Reasoning Integrations,
pages 126–130, 1998.

[Smyth and Keane, 1995] B. Smyth and M.T. Keane.
Remembering to forget: A competence-preserving
case deletion policy for case-based reasoning systems.
In Proc. 14th IJCAI-95, pages 337–382, 1995.

[Wang et al., 1998] Hui Wang, Ivo Düntsch, and David
Bell. Data reduction based on hyper relations. In Pro-
ceedings of KDD98, New York, pages 349–353, 1998.

