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1 Introduction

Let d :
���������

be the divisor function, defined by

d � n 	 : 
��� a � � � : a � n �����
Here, �U � denotes the cardinality of a set U , and a � n means that a divides n.

We say that n � m � ��� are equidivisible, if they have the same number of divisors, i.e. if d � m 	�
 d � n 	 .
In this paper, we use elementary methods to study runs of equidivisible numbers, that is, sequences

of consecutive positive integers which happen to be equidivisible. (Unless explicitly stated otherwise,

numbers in this paper are assumed to be positive integers.) We call a run of equidivisible numbers

maximal, if it is not properly contained in any such longer run.

Evaluation of the divisor function is, in principle, very simple. Let � be the set of primes. For any

integer n � 0,

d � pα 	�
 α � 1 for any p �����
It is well known that d is a multiplicative function, so

d � n 	 ∏
pα � n

d � pα 	�
 ∏
pα � n
� α � 1 	��

where the products are taken over the maximal prime power divisors of n. In particular, it immediately

follows that d � n 	 is odd precisely when n is a square, and d � n 	�� 2 if n � 2.

For each k � ��� , let D � k 	 be the set of positive integers which begin maximal runs of equidivisible

numbers with exactly k divisors. Then, D � 1 	�
  1 � , and

D � k 	 : 
! a � � � : d � a 	�
 k � d � a " 1 	$#
 k �%�
&
This paper was written in 1989, when both authors were at the Department of Mathematics, Universiti Brunei Darus-
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for each k � 2. For example, d � n 	 
 2 precisely when n is prime, so it easily follows that D � 2 	�

� �  3 � . Again, d � n 	 
 3 precisely when n is the square of a prime; no two squares are consecutive in���

, so, D � 3 	 
  p2 : p ��� � .
Theorem 1.1. For each integer k � 2, the set D � k 	 is infinite.

Proof. Since d � pk � 1 	 
 k for any p � � and k � � � , if k � 2, there are infinitely many positive integers

with exactly k divisors. The Theorem easily follows.

2 The sets D � k � m �
We can partition D � k 	 into disjoint subsets according to the length of the run of equidivisible numbers

starting at each member of D � k 	 . More precisely, for each k � m � � � , let

D � k � m 	 : 
  a � D � k 	 : d � a � i 	�
 k for 0 � i � m � d � a � m 	 #
 k �%�

Then,

D � k 	 
	�
m 
 1

D � m � k 	��

Lemma 2.1. For each k � � � , every run of 2k positive integers includes at least one member with

more than k divisors.

Proof. Every run of 2k integers includes a multiple of 2k. Every such number has moe than k divisors,

since d � 2kr � d � 2k 	 
 k � 1 for every r � � � .
As an immediate consequence we have

Theorem 2.2. D � k � m 	 
 /0 for each m � 2k � k � � � .
Thus, D � k 	 is the union of only finitely many nonempty sets of the form D � k � m 	 . In particular,

D � 2 	 
 D � 2 � 1 	�� D � 2 � 2 	 , and D � 3 	�
 D � 3 � 1 	 . For each k � � � , let

M � k 	 : 
 max  m � � � : D � k � m 	$#
 /0 �%�

Then, M � k 	 is the greatest length achieved by runs of equidivisible numbers with exactly k divisors.

By Theorem 2.2, M � k 	� 2k for each k � ��� .
Theorem 2.3. If k � � � is odd, then

1. D � k 	 
 D � k � 1 	 ,
2. M � k 	�
 1.

Proof. For any odd k � � � , recall that d � n 	�
 k is only possible if n is a square. Since no two squares

are consecutive in
� �

, the claims follow.
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It is easy to explicitly describe D � k � 1 	 for odd k � 3, since it compriese every number with exactly k

divisors. Let "
�
a be any sequence of numbers a1 � � � � � as where a1 ��������� as 
 k, and 3 � a1 � ����� � as;

correspondingly, let "
�
p be any sequence of s distinct primes. Then,

D � k � 1 	 
 � �� a � �� p  ∏
pi

ai � 1

: ai � "
�
a � pi � "

�
p �%�

Recall that each ai is odd, so each number in D � k � 1 	 is a square, and
�  D � k � 1 	 : k odd, k � � � ��


 n2 : n � � � � .
Theorem 1.1 asserts that D � k 	 is infinite when k � 2, so D � k � m 	 must be infinite for at keast one m.

For each k � 2, let

M � � k 	 : 
 max  m � � � : D � k � m 	 is infinite �%�
Clearly, M � � k 	 � M � k 	 , and M � � k 	�
 M � k 	�
 1 for any odd k � � � by Theorem 2.3. However, M � � k 	
is not necessarily equal to k: For example, D � 2 � 1 	�
 � �  2 � 3 � , and D � 2 � 2 	�
  2 � ; so, M � � 2 	�
 1 and

M � 2 	 
 2.

We know that D � k 	 is infinite when k � 2, but we do not know whether D � k � m 	 is infinite for each

m �	� 1 � M � � k 	�
 , though it seems likely that this is so. As a small step in this direction, we shall prove

Theorem 2.4. For each integer k � 2, the set D � k � 1 	 is infinite.

Proof. When k is odd, the claim is immediate from Theorem 1.1. Thus, suppose that k is even. Let b

be the smallest positive integer satisfying

b �
��� 1 mod 2k

" 1 mod 3k

By Dirichlet’s Theorem on primes in arithmetic progression, there are infinitely many primes p which

satisfy

p � b mod 6k �
We shall now show for each such prime that pk � 1 � D � k � 1 from which the claim follows.

Clearly, d � pk � 1 	 
 k. By our choice of p, the predecessor of pk � 1 is a multiple of 2k, since 2k � � p " 1 	 ,
and � p " 1 	 � � pk � 1 � 1, since k is even. Hence,

d � pk � 1 � 1 	 � d � p � 1 	 � d � 3k 	�� k �
As the predecessor and the successor of pk � 1 both have more than k divisors, it follows that pk � 1 �
D � k � 1 	 .
Erdös & Mirsky (1952) studied the asymptotic number of distinct values assumed by the divisor

function d � n 	 in � 1 � x 
 . They remarked that their methods could not estimate the length of the longest

run of equidivisible numbers in � 1 � x 
 , and, indeed, could not show that there are infinitely many pairs
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of consecutive numbers which are equidivisible. Subsequently, Spiro (1981) made significant progress

on the latter problem, and it was eventually fully proved by Heath-Brown (1984). In view of Theorem

2.3, this implies that the set

�! D � 2k � m 	 : k � � � � m �	� 2 � M � 2k 	�
 �
is infinite. But this is unfortunately not strong enough to imply the infinitude of a single set D � 2k � m
with m � � 2 � M � 2k 	�
 .
3 The function M � k �
Let us now turn to the question of determining M � k 	 when k is even. It is convenient here to use some

terminology which, though natural, might confuse the reader if we did not explain: For r � � � , by an

odd multiple of 2r we shall mean a number of the form 2r � s, where s is odd.

Lemma 3.1. For any k � ��� , let r � ��� be the smallest non–divisor of k. Then, no odd multiple of

2r � 1 has exactly k divisors.

Proof. For any odd s � � � , we have d � 2r � 1 � s 	 
 r � d � s 	 , so r is a factor of the number of divisors

of every odd multiple of 2r � 1 in
���

. Since r
�

k, it follows that no odd multiple of 2r � 1 has exactly k

divisors.

Theorem 3.2. For any k � � � , let r � � � be the smallest non–divisor of k. Then, M � k 	� 2r � 1.

Proof. Every run of 2r consecutive numbers includes an odd multiple of 2r � 1, and thus, it includes a

numbers which does not have exactly k divisors by Lemma 3.1. Hence, M � k 	� 2r " 1.

This result implies that long runs of equidivisible consecutive integers can only occur when the num-

ber of divisors is a multiple of all intgers in some initial interval of
� �

. Put Ln : 
 lcm � 1 � n 
 . Then,

Corollary. M � k 	 � 2n is only possible if Ln � k for any n � � � .
Proof. If r

�
k for some positive integer r � n, then M � k 	� 2n " 1 whence the claim follows.

Theorem 3.3. For any k � � � , if M � k 	 � 8 then 12 � k.

Proof. If M � k 	 � 8, the Corollary to Theorem 3.2 shows that 6 � k. To demonstrate the Theorem, it

therefore suffices to show that 4 � k also holds. If r � � � is odd, then d � 2r 	 
 2 � d � r 	 , so 4 � d � 2r 	 holds

unless r is a perfect square. No two squares in
� �

differ by 2, so any two consecutive odd multiples

of 2 in
���

include at least one with a multiple of 4 divisors. But in any run of 8 positive integers there

are two consecutive odd multiples 2. Thus, if all are equidivisible with exactly k divisors, then 4 � k.

Hence, M � k 	 � 8 implies 4 � k as required.

Theorem 3.4. For any k � � � , if M � k 	 � 32 then 120 � k.
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Proof. The Corollary to Theorem 3.2 shows that M � k 	 � 32 implies that 60 � k, so for the present

Theorem it suffices to show that M � k 	 � 32 implies that 8 � k. If r is odd and not a perfect square, then

d � 8r 	�
 4 � d � r 	 , and thus, d � 8r 	 � 0 mod 8.

No two consecutive odd integers are both squares, so any two consective odd multiples of 8 include

one with a multiple of 8 divisors. It follows that, if they are all equidivisible with exactly k divisors,

then 8 � k.

Ideed, numerical evidence suggests that runs of much shorter length than 32 can only occur if 8 � k,

but we have no proof of this. Perhaps it is even true that M � k 	 � 8 is only possible if 8 � k.

4 Numbers with exactly 4 divisors

Now, let us look at numbers with exactly 4 divisors, the first case not fully resolved so far. The

following result is relevant:

Lemma 4.1. Every multiple 4 greater than 16 has at least 6 divisors.

Proof. For any k � � � ,

d � 32k 	�� d � 32 	�
 6 �

If k � 3 is odd, then

d � 4k 	 
 3 � d � k 	 � 6 �
d � 8k 	 
 4 � d � k 	 � 8 �

d � 16k 	 
 5 � d � k 	�� 10 �

Every multiple of 4 greater than 16 is covered by one of these cases.

Theorem 4.2. M � 4 	 
 3 �
Proof. By Lemma 4.1, then only multiple of 4 with exactly 4 divisors is 8. But 8 � D � 4 � 1 	 , so no

multiple of 4 can occur in a run of two or more equidivisible integers with exactly 4 divisors. Hence,

M � 4 	 � 3.

Finally, 33 � D � 4 � 3 	 shows that M � 4 	 
 3.

It is relevant to report that 213 and 217 both belong to D � 4 � 3 	 : Six of the seven numbers in � 213 � 219 

have exactly 4 divisors, and d � 216 	 
 16.

The composition of the sets D � 4 � m 	 is somewhat elucidated by the following result:

Theorem 4.3. p3 � D � 4 � 1 	 for any prime #
 3.
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Proof. By direct calculation, 8 � D � 4 � 1 	 and 27 #� D � 4 � 1 	 , since 26 � D � 4 � 2 	 .
Suppose that p � 5; clearly, d � p3 	 
 4. Let r : 
 p2 � p � 1, so the predecessor of p3 is � p " 1 	 � r. If

g : 
 gcd  p " 1 � r � , then g is a factor of � p " 1 	%� r 
 p � � p � 2 	 . But gcd  p " 1 � p �$
 1, which shows

that g � � p � 2 	 . Hence, g divides the difference

� p � 2 	 " � p " 1 	 
 3 �

and thus, g �  1 � 3 � . It follows that g 
 3 precisely when p � 1 mod 3.

If p #� 1 mod 3, then p " 1 and r are coprime and p " 1 is composite. Thus,

d � p3 " 1 	 
 d � p " 1 	 � d � r 	 � 3 � 2 
 6 �

If p � 1 mod 3, then r � 3 mod 9. Hence, 3p " 3 and r
3 are coprime, and 3p " 3 
 9s for some s � 2.

It follows that

d � p3 " 1 	�
 d � 3p " 3 	 � d � r3 	 
 d � 9s 	 � d � r3 	�� 4 � 2 
 8 �

By an entirely analoguous argument, p3 � 1 has at least 6 divisors when p � 5, and it follows that

p3 � D � 4 � 1 	 .
Corollary. Except for 27, any positive integer in a run of two or more equidivisible numbers with

exactly 4 divisors is a product of two distinct primes.

Proof. This is immediate from Theorem 4.3, since d � n 	�
 4 is only possible when n 
 p3 or n 
 p � q,

where p � q ����� p #
 q.

5 Numbers with exactly 6 divisors

Let us now look at runs of equidivisible integers with exactly 6 divisors. By the same method used to

prove Lemma 4.1 it can be shown that

Lemma 5.1. Every multiple of 8 greater than 32 has at least 7 divisors.

Another relevant result is

Lemma 5.2. For any odd prime p, at most one of any two consecutive odd multiples of 2 has exactly

2p divisors.

Proof. For any odd k � � � , d � 2k 	�
 2p can only hold when d � k 	 
 p, that is, k 
 qp � 1 for some

q � 3. However, two consecutive odd numbers cannot be of this form, since perfect � p " 1 	 st powers

in
���

must differ by at least 2p � 1 " 1 � 2.

Theorem 5.3. M � 6 	 
 5.
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Proof. By Lemma 5.1, it easily follows that 32 is the only positive multiple of 8 with exactly 6 divi-

sors. But 32 � D � 6 � 1 	 , so no multiple of 8 occurs in any run of two or more equidivisible consecutive

numbers with exactly 6 divisors.

Between any two consecitive multiples of 8 there are two odd multiples of 2, at most one of which

has exactly 6 divisors by Lemma 5.2. Hence, M � 6 	� 5.

The other direction follows from 10 � 093 � 613 � 546 � 512 � 121 � D � 6 � 5 	 .
The starting numbers of D � 6 � 1 	 – D � 6 � 4 	 can be found in Table 2. It is of interest to note that the first

member of D � 6 � 4 	 is smaller than the first member of D � 6 � 3 	 .
A companion result to Theorem 4.3 is

Theorem 5.4. For any prime p #
 3, p5 � D � 6 � 1 	 .
Proof. By direct calculation we obtain 25 
 32 � D � 6 � 1 	�� 55 
 3125 � D � 6 � 1 	 , and 35 
 243 #� D � 6 � 1 	 ,
since 242 � D � 6 � 4 	 ; thus, let p � 7.

Since d � p5 	�
 6, it only remains to show that d � p5 " 1 	 #
 6 and d � p5 � 1 	 #
 6. Let

r : 
 p4 � p3 � p2 � p � 1 �

so that p5 " 1 
 � p " 1 	 � r and gcd  p " 1 � r � �  1 � 5 � . If p #� 1 mod 5, then p " 1 and r are coprime,

also, d � p " 1 	 � 4 since p " 1 is even and greater than 4. Hence,

d � p5 " 1 	 
 d � p " 1 	 � d � r 	 � 4 � 2 
 8 �

If p � 1 mod 5, then r � 5 mod 25, and 5p " 5 
 25s for some s � 2. It follows that

d � p5 " 1 	 
 d � 5p " 5 	 � d � r5 	�
 d � 25s 	 � d � r5 	 � 4 � 2 
 8 �

Similarly it is shown that d � p5 � 1 	�� 8.

Corollary 5.5. Except for 243, any positive integer in a run of two or more equidivisible numbers

with exactly 6 divisors has the form p2 � q, where p and q are distinct primes.

Proof. This follows because d � n 	 
 6 exactly when n 
 p5 or p2 � q with p � q ��� .

6 Numbers with exactly 2p divisors, p � 5

It is easy to generalise ideas used in the proof of Theorem 5.3 to show that M � 2p 	 � 5 for any p � � .

However, we shall establish a stronger result:

Lemma 6.1. Suppose that p � ��� p � 5. If three consecutive numbers are equidivisible with exactly

2p divisors, then only one can be even.
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Proof. If d � n 	�
 2p, then n 
 q2p � 1 or n 
 qp � 1 � r, where q � r ��� . Consequently, if two consecutive

even numbers both have exactly 2p divisors, the one which is divisible by 4 must be 22p � 1 or 2p � 1r.

But the former is not possible, since

d � 22p � 1 � 2 	�
 2d � � 22p � 2 � 1 	 
 2p

implies

d � 4p � 1 � 1 	�
 1 �

It follows that 4p � 1 � 1 
 sp � 1 for some s � � . However, this cannot occur since any two � p " 1 	 st

powers in
���

differ by at least 2p � 1 " 1 � 1.

Hence, if d � a " 1 	 
 d � a 	 
 d � a � 1 	�
 2p and 2
�
a, then we must have  a " 1 � a � 1 � 
  2qp � 1 � 2p � 1 �

r � , where q � r � � �  2 � .
Let 2t : 
 p " 1; then, t � 2 by our assumption on p. Since 2q2t � 2 mod 8 and 22t � r � 0 mod 8, it

follows that

a " 1 
 22t � r� a � 1 
 2q2t �

Let us identify which of a " 1 � a � a � 1 is a multiple of 3.

1. If r 
 3, then a � 1 
 3 � 22t � 2 
 2q2t , and therefore 22t � 22t � 1 � 1 
 q2t . But the left side of

this equation is less than 32t , so it cannot equal q2t .

2. If q 
 3, then a " 1 
 2 � 32t " 2 
 22t � r, and therefore

22t � 1 � r 
 32t " 1 
 � 3t " 1 	 � � 3t � 1 	��

This requires one of 3t � 1 to be a power of 2. As t � 2, the only possibility is t 
 2, since 8 � 9 are

the largest consecutive integers with no prime factor greater than 3. (This is a consequence of

Størmer’s Theorem, see for example Ecklund & Eggleton (1972).) Then, d � a � 1 	�
 d � 162 	 

10, but d � a " 1 	�
 d � 160 	 
 12, a “near miss”.

It now follows that 3 � a. If 9 � a, then a � 1 
 2q2t would imply 2q2t � 1 mod 9. Consideration of

quadratic residues mod 9 shows that this is impossible. Hence, a 
 3s p � 1, and q � r� s ��� �  2 � 3 � .
Now, a " 1 
 22t � r implies 3s2t � 1 mod 8; again considering quadratic residues, we see that is not

possible. It now follows by contradiction that 2 � a if d � a " 1 	 
 d � a 	�
 d � a � 1 	 
 2p.

The restriction to primes #
 3 is necessary, since 7442 � D � 6 � 3 	 .
Theorem 6.2. M � 2p 	 � 3 for any prime p #
 3.

Proof. When p 
 2, the claim follows from Theorem 4.2; when p � 5 it follows from Lemma 6.1.

Corollary 6.3. For any prime p #
 3, if D � 2p � 3 	 is not empty it contains only odd numbers.
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Proof. Lemma 4.1 implies that no multiple of 4 can occur in a run of two or more equidivisible

integers with exactly 4 divisors; thus, only one even number can occur in any run of three such

numbers. This settles the case p 
 2. For p � 5, the claim is explicit in Lemma 6.1.

Theorem 6.4. M � 10 	 
 M � 14 	 
 3.

Proof. We have checked that 7 � 939 � 375 
 minD � 10 � 3 	 , and 76 � 571 � 890 � 623 � D � 14 � 3 	 .
We have not been able to show D � 2p � 3 	 #
 /0 for any p � 11.

7 Numbers with exactly 2n divisors, n � 3

Next, we consider numbers with exactly 8 divisors. With the publication of tables of d � n 	 for n � 104

by Glashier (1940), it was known that M � 8 	 � 4 and �D � 8 � 4 	�� � 1 � 104 
 � 
 7. Later, Mycielski showed

that M � 8 	 � 5 and �D � 8 � 5 	�� � 1 � 105 
 � 
 2, see Sierpinski (1988), p. 169. It appears from the accounts

given in Guy (1981), B18, and Sierpinski (1988) that the corresponding runs of length 5 may be the

longest known runs of equidivisible numbers known to date.

We can now show

Theorem 7.1. 1. M � 8 	�
 7,

2. M � 16 	 
 7,

3. 5 � M � 32 	 � 7.

Proof. By Theorem 3.2, M � k 	� 7 for k �  8 � 16 � 32 � . The rest follows from

171 � 893 � D � 8 � 7 	��
17 � 476 � 613 � D � 16 � 7 	��
57 � 645 � 182 � D � 32 � 5 	��

The values are the smallest possible.

8 Values of M � k � � k �
32 in other cases

Let us briefly look at those even k � 32 which have not yet been covered. Theorems 3.3 and 3.4

immediately give us

Theorem 8.1. 1. M � 20 	�� M � 28 	�� M � 30 	 � 7.

2. M � 24 	 � 31.

For k 
 12 and k 
 18 we can somewhat improve the bounds.

Lemma 8.2. If d � 8n 	�
 12, then d � 8 � n � 1 	 	 #
 12 or d � 8 � n � 2 	 	�#
 12.
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Proof. If d � 8m 	 
 12, then m has one of the following forms:

m 
 28 �
m 
 p2 �
m 
 4p

for some prime p.

Assume that for some n � � � , d � 8n 	 
 d � 8 � n � 1 	 	�
 d � 8 � n � 2 	 	�
 12. Inspection rules out that 28

is one of these numbers, and at most one of them can have the form 8p2. Therefore, n � n � 1 � n � 2 are

three consecutive numbers, at least two of which are divisible by 4, a contradiction.

Corollary 8.3. M � 12 	 � 23.

Proof. 24 consecutive numbers contain 3 consecutive multiples of 8.

Now, let us look at k 
 18.

Theorem 8.4. M � 18 	 � 5

Proof. If d � n 	 
 18, then n has one of the following forms:

p17 � p � q8 � p � q2 � r2 � p2 � q5 �

for some primes p � q � r. Since we need only consider even n, inspection rules out the case 217.

Suppose that for 0 � i � 5, d � n � i 	�
 18, and let m � N : 
  n � n � 1 � � � � � n � 5 � . First, assume that

m � 6 mod 8. Then, m 
 2 � p8 or m 
 2 � p2 � q2 for some odd primes p � q. However, if r is odd, then

r2 � 1 mod 8, which shows that 2 � r2 #� 6 mod 8.

Next, assume that m � 0 mod 8, and that m � 2 � N. There are two cases:

1. m 
 32 � p2 for some odd prime p. Then, m
2 is a perfect square, and m � 2 
 2 � q8 or m 
 2 � q2 � r2

for odd primes q � r. In either case, m � 2
2 
 m

2 � 1 is a perfect square as well, a contradiction.

2. m 
 28 � p for some odd prime p. As above, m � 2 
 2 � t2 for some t � 2, so that

27 � p 
 t2 " 1 
 � t � 1 	 � � t " 1 	��

This is only possible for p 
 31, but 28 � 31 � 1 is prime.

Thus, N does not contain a number m � 6 mod 8, and cannot contain two numbers � 0 mod 8 and� 2 mod 8. It follows that N has at most 5 elements.

The lower bounds we have been able to obtain are shown in Table 2.

10



9 Long runs of equidivisible numbers

We have already seen runs of 7 equidivisible numbers with exactly 8 or 16 divisors, and noted that

apparently the longest previously known runs of equidivisible numbers are of length 5. Now, let us

investigate how long such runs can be.

For any prime p and any n � � � we call ε the exponent of p in n, if pε � n and pε � 1 �
n. Let pn be the

n–th prime, and let  an : n � ��� � be a sequence of positive integers defined by

an : 
 ∏
i � n

pε
�
n � i

i �

where ε � n � i 	 is th exponent of pi in n " i. Thus, for example,

a1 
 1 � a2 
 1 � a3 
 2 � a4 
 1 � a5 
 12 � a6 
 1 � a7 
 2 � � � �
For m � � � we define

L � m 	 : 
 lcmd � an 	 : n � � 1 � m 
 �
λ � m � n 	 : 
 m � L � m 	

d � an 	 �
M � m 	 : 
 ∏

n � m
pλ

�
m � n �

n �

M � m � n 	 : 
 M � m 	
an � pλ

�
m � n � � 1

n

�

Observe that λ � m � n 	 is a positive multiple of m, and therefore, λ � m � n 	 � m, and pλ
�
m � n � � 1

n � m. If

1 � i � n � m, then

pλ
�
m � i � � 1

i � m � n " i � pε
�
n � i �

i �
and thus, λ � m � i 	 " 1 � ε � n � i 	 . It follows that M � m � n 	 is an integer, and it is divisible by each prime

pi with i �	� 1 � m 
 , and no others.

By the Chinese Remainder Theorem, there is a smallest positive integer xm such that x � xm mod M � m 	
is the general solution to the system of simultaneous congruences

x � n � pλ
�
m � n � � 1

n mod pλ
�
m � n �

n � n � � 1 � m 
 �
Then, xm � n 
 bm � n � pλ

�
m � n � � 1

n for some bm � n � � � , and pn
�

bm � n.

We shall now show that bm � n 
 an � q � m � n 	 , where q � m � n 	�� ��� , and prime factors of q � m � n 	 are

greater than pm. If 1 � i � n � m, then ε � n � i 	 is th eexponent of pi in xm � n 
 � xm � i 	 � � n " i 	 , since

λ � m � i 	 " 1 � ε � n � i 	 ; hence, the factor of bm � n composed of primes less than pn is precisely an.

If 1 � n � i � m, then xm � n 
 � xm � i 	 " � i " n 	 , and

pi � � xm � i 	�� but pi
� � i " n 	��
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since pi � i " n � 0 and therefore pi
�

bm � n. It follows that bm � n 
 an � q � m � n 	 , where pi
�

q � m � n 	 for all

i �	� 1 � m 
 .
Since M � m � n 	 is only divisible by primes pi with i � m, while none of thes eis a factor of q � m � n 	 , it

follows that every prime factor of r � M � mm � n 	�� q � m � n 	 is greater than pm. Hence,

d � r � M � m 	�� xm � n 	�
 d � an 	 � λ � m � n 	 � d � r � M � m � n 	�� q � m � n 	 	��

 m � L � m 	 � d � r � M � m � n 	�� q � m � n 	 	��

Let

Q � m � r 	 : 
! r � M � m � n 	�� q � m � n 	 : n �	� 1 � m 
 �%�
R � m � r 	 : 
! r � M � m 	�� xm � n : n � � 1 � m 
 �%�

If there is an r such that all m numbers in Q � m � r 	 are equidivisible, then R � m � r 	 is a run of equidivis-

ible numbers. We have proved

Lemma 9.1. Let m � � � . If there is an integer r � 0 such that all m numbers in Q � m � n 	 are equidi-

visible, then there is a run of m equidivisible numebrs.

Because M � m � n 	 and q � m � n 	 are coprime, Dirichlet’s Theorem guarantees that r � M � m � n 	 � q � m � n 	
is prime for infinitely many values of r, but it is not strong enough to ensure that there is a value of r

for which even two members of Q � m � r 	 are prime.

We shall prove that Schinzel’s Conjecture H (see Sierpinski (1988), p. 133) implies the existence of

infinitely many values of r for which all members of Q � m � r 	 are prime. To shop this, it suffices to

prove that there is no prime p which devides the product of numbers in Q � m � r 	 for every r � 0.

First, note that all members of Q � m � 0 	 are coprime, because any factor common to xm � i and xm � n

with i � n �	� 1 � m 
 must be less than m, and hence, less than pm. Now, assume there is a prime p which

divides some number in each Q � m � r 	�� r � � 0 � m 
 . Then, by the Pigeonhole Principle, there is some

n � � 1 � m 
 such that p divides r1 � M � m � n 	 � q � m � n 	 and r2 � M � m � n 	%� q � m � n 	 , where 0 � r1 � r2 � m.

Then, p divides � r2 " r1 	 � M � m � n 	 , and therefore, p � pm. This contradicts the fact that no member

of any Q � m � r 	 is divisible by such a prime, hence, Conjecture H applies.

When all members of Q � m � r 	 are prime, they are certainly equidivisible, and each member of R � m � r 	
has 2m � L � m 	 divisors. It follows that M � � 2m � L � m 	 	 � m. We have shown

Theorem 9.2. Conjecture H implies that  M � � k 	 : k � � � � is unbounded.

The construction used for Lemma 9.1 can be made the basis for a computer search for long runs of

equidivisible numbers. In practice, it is convenient to modify the construction to reduce the size of the

search modulus M � m 	 to more manageable proportions; however, the details would only have added

extra complications to the proof of Lemma 9.1. As a result of such calculations, we have found that

4 � 751 � 909 � 738 � 598 � 652 � 780 � 445 
 5 � 172 � 3319 � 5 � 299 � 069 � 186 � 979 � 291 � D � 48 � 7 	��
6 � 213 � 958 � 594 � 795 � 772 � 370 � 845 
 5 � 172 � 1733 � 5737 � 432 � 530 � 856 � 701 � D � 48 � 8 	��

and, as our most exciting numerical discovery,
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Theorem 9.3. M � 48 	�� 9.

Proof. N 
 17 � 796 � 126 � 877 � 482 � 329 � 126 � 044 � D � 48 � 9 	 as witnessed by

N 
 22 � 7 � 4327 � 456 � 293 � 321911699243 �
N � 1 
 5 � 172 � 47 � 53 � 4 � 944 � 062 � 119 � 125 � 691 �
N � 2 
 2 � 32 � 179 � 5171 � 1 � 068 � 133 � 213 � 285 � 138 �
N � 3 
 115 � 23 � 107 � 44 � 900 � 425 � 217 � 777 �
N � 4 
 25 � 19 � 4 � 590 � 338 � 339 � 6 � 376 � 424 � 429 �
N � 5 
 3 � 132 � 241 � 557 � 261 � 484 � 106 � 225 � 711 �
N � 6 
 2 � 52 � 11831 � 189043 � 159 � 137 � 830 � 837 �
N � 7 
 75 � 29 � 351 � 121 � 103 � 987 � 345 � 177 �
N � 8 
 22 � 3 � 149 � 991 � 723 � 10 � 036 � 160 � 394 � 373 �

Furthermore,

N " 1 
 3 � 73 � 2381 � 63 � 678 � 479 � 535 � 956 � 203 �
N � 9 
 449 � 11 � 618 � 801 � 3 � 411 � 283 � 698 � 997 �

which proves our claim.

10 Tables

Here, we give lower and upper bounds for M � k 	�� 2 � k � 32 � k even, which we have been able to

obtain.

Table 1: Values of M � k 	

k 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M � k 	 2 3 5 7 3 � 23 3 7 � 5 � 7 � 3 � 31 � 3 � 7 � 7 � 31

Lower bounds can be obtained from Table 2
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Table 2: Values of D � k � m 	
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18 180 6075 959 � 075 ? ? �
20 240 5264 249 � 750 ? ? ? ?

22 3072 ? ? �
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