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Abstract

Let Q be a finite set of problems. A knowledge state is the set of problems a person is capable
of solving. A family K of knowledge states is called a knowledge structure, if the empty set
and Q are elements of K. When K is closed under union, the structure is called a knowledge
space. There exist effective algorithms to generate a knowledge space by querying an expert

using an entail relation.

In this note we show that more general knowledge structures can be generated using modified
query procedures. The general theory of the Galois connections between entail relations and
knowledge structures is explored. Finally, we present query procedures which can be applied
to generate any knowledge structure.

Key words: knowledge structure, entail relation, Galois connection, ability testing, dichoto-

mous data
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1 Introduction

The aim of modern scaling theory of knowledge representation is a structural description of
knowledge states of subjects, given a test procedure which consists of a finite set @ of posed
problems. For each subject, the result of such a procedure is the set of problems which the
subject has solved. The theoretical counterpart to such a set of solved problems is called a

knowledge state.

A knowledge structure a collection of knowledge states, i.e. an element of 229 A knowledge
structure serves as a model of all possible states which subjects may have, if we test their
knowledge with a procedure based on the problem set Q).

A knowledge structure which is closed under set—theoretic union is called a knowledge space
(Falmagne et al. (1990)).

There exist effective algorithms to generate a knowledge space by querying an expert using an
entail relation as shown in Koppen & Doignon (1990). In this note we show that more general
knowledge structures can be generated using modified query procedures. The general theory of
the Galois connections between entail relations and knowledge structures is explored. Finally,
we present query procedures which can be applied to generate any knowledge structure

We shall suppose that knowledge structures contain (§, (i.e. no problem can be solved), and @
(i.e. all problems can be solved), and denote the set of all knowledge structures on @ by K.

With inclusion as natural order, K is a complete and atomic sublattice of (22Q, N,U) (in fact,
a Boolean algebra) with smallest element {(), @} and largest element 2¢. If R is a binary
relation on X, and z € X, then rangr = {y € X : zRy}. If 0 : X — Y is a mapping and
A € X, we sometimes denote the image of A under o by A°.

In order to uncover the possible knowledge states of a group of subjects one puts to an expert
questions relating one group of problems to another. Among the questions that can be asked

are

1. Is problem p a prerequisite for problem q?

2. If no problem of A can be solved by some subject, can we assume that no problem of B
can be solved by the same subject?

3. If all problems of A can be solved by some subject, can we assume that all problems of
B can also be solved by the same subject?

In this way, binary relations on the powerset 29 of Q can be defined which will lead us to an
approximation of the set of potential knowledge states: The first component A contains the
input of a query, the second component B the outcome, and (A, B) is in the relation iff the
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expert answers Yes. In some cases it will be possible to completely determine the knowledge
structure. Depending on what questions are asked of the expert, the resulting relation will
have some built in properties: Suppose that (A4, B) € R iff solving all problems of A entails
solving all problems of B, in other words, that the answer to question 3 above is Yes. Then,
R clearly contains the converse of set inclusion, i.e. if A D B, then (A4, B) € R. A moment’s
reflection tells us that R is transitive as well. Similarly, if (A, B) € T iff solving no problem
of A entails not being able to solve any problem in B, then T includes D and T is transitive.
Thus, R and T are quasi orders on 2%. It also seems sensible to present the expert only with
non empty sets of problems, and we shall assume that the second components are non empty
as well. This does not restrict the generality of our outlook. We regard each query procedure
as a binary relation on the set (29)* = 29\ {#}, and we denote the set of all these relations
by P. Observe that P is a complete and atomic Boolean set algebra.

If an empirical situation lets us observe a certain set K of knowledge states, free from noise
such as careless errors or lucky guesses, and if we furthermore assume that the questioning of
the expert has led to a set K’ of possible states, then it seems safe to assume that K C K'. In
other words, refining the query procedure — or extending the resulting relation on 29 —, will
produce some K" such that K C K" C K'. Thus, in associating a query procedure with a set
of states by a function ¢ : P — K we shall require that ¢ is antitone, i.e.

Forall R, S € P, R C S implies §¥ C R®.

Conversely, in associating a set of states K with a query relation R by a function 9 : K — P
we shall require that v is antitone as well. Finally, to relate the two connections we shall
suppose that

R C R¥Y and K C K¥¢,

in other words, that the pair (¢, ) forms a Galois connection between the ordered sets (K, C)
and (P,C): If (X, <) and (Y, <) are partially ordered sets, a pair (1, ) is called a Galois
connection between X and Y, if ¢ : X - Y and ¢ : Y — X are antitone (i.e. dually order
preserving) mappings, and z < z%%, y < y?¥ forallz € X,y € Y. z € X is called Galois
closed with respect to (¢, @) if x = z¥®. If the choice of (1, ) is clear from the context, we
just speak of closed sets.

We shall later need the following properties of Galois connections which can be found in Erné
(1982):

Lemma 1.1. Let (X,C) and (Y, C) be complete sublattices of the powerset of some set, and
w: X =Y be a mapping. Then, the following are equivalent:

1. There is a (unique) mapping v : Y — X such that (@, ) is a Galois connection.
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2. ¢ is antitone and for every y € Y there is a largest x € X with y C p(z).

3. For every Z C X, o(UZ) ={elz) :z € Z}. O

The approach to knowledge structures via Galois connections was taken by Monjardet (1970)
and by Koppen & Doignon (1990). They call a relation R € P an entail relation on @ if

1. R is a quasiorder containing 2,

2. For each non empty A C @, rangA has a greatest element.

It may be interesting to note the entail relations are the dependency relations which are used
in theory of rough sets, and also correspond to the keys for a relational system in Garey &
Johnson (1979). In particular, there is an intimate connection between entail relations on @
and congruences on the semilattice (29, U), see Novotny (1997) and the references therein for
details.

In order to capture knowledge spaces by a suitable query procedure, Koppen & Doignon (1990)
define functions ¢ : P — K by

R5{CCQ:(V4,B)eR(ANC=0=BnC =10)}
and 1 : IC — P by
K% {(A,B) € 29)F x 29t : (YC € K)(ANC =0= BNC =0)},
(cf. the relation T on page 1) and show ! that

Proposition 1.2. Koppen & Doignon (1990)

1. The pair (p,v) forms a Galois connection between the ordered sets (P,C) and (K, C).

2. With respect to (p,1), the closed elements of (K, C) are the knowledge spaces, and the
closed elements of (P,C) are the entail relations. O

For unexplained notation and definitions in lattice theory the reader is invited to consult
Birkhoff (1967) or Grétzer (1978).

!We have slightly modified the construction in Koppen & Doignon (1990) in order to better handle the
presence (or absence) of §.
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2 Galois connections which produce entail relations

In this section we shall characterize those Galois connections between (P, C) and (K, C) in
which the Galois closed structures of (P, C) are the entail relations. From this description we
obtain an internal characterization of the Galois closure of knowledge structures.

We denote by & the set of all entail relations on @, and set 1 = (29)T x (29)*,0=D>n1. A
relation R € & is called proper, if R # 1. Also, for D € (29)7, set

Rp={(A,B)€1: ACD= BCDj}.
Note that Rg = 1.

Proposition 2.1. 1. (€,C) is a complete dually atomistic lattice in which the meet oper-
ation 1s intersection.

2. The dual atoms of € are the relations of the form Rp, D € (29)T, D # Q.

Proof. 1. Tt follows from 1.2 that (£, C) is dually isomorphic to the complete lattice of closure
systems on @, i.e. N-closed subsets of 2@, (see Birkhoff (1967), p 111), whence 1. follows.

2. Tt is straightforward to check that Rp is an entail relation. Note that for A € (29)*

D, if ACD

maxrang,A =
Q, otherwise,

a fact we shall use later on. Now, suppose that S € £ and Rp C S, Rp # S. Then, there is
some (A, B) € S such that A C D and B ¢ D. We shall show that S = 1: Let (G, H) € 1.
Then, (G,A) € Rp, since A C D, and (B,H) € Rp, since B € D. Rp C S and the
transitivity of S now imply that (G, H) € S.

To show that every dual atom of £ is of this form, it suffices to show that for each proper
R € & there is some D € (29)* with D # Q and R C Rp. Suppose that R € £ such that for
every D € (29)*, D # Q there is some (4,B) € R with AC D, B Z D. Let C € (29)7, and
set M = mazx rangC. If M # Q, there is some (A4, B) € R such that A C M and B ¢ M.
A C M implies that (C, A) € R, and from the transitivity of R we obtain (C,B) € R. But
then B C M, a contradiction. It follows that M = @, and hence R = 1. O

We now turn to Galois connections. Let
a: (K,C) = (P,C) and B: (P,C) — (K,C)

be antitone mappings such that (a, ) is a Galois connection and ran a = &; such a Galois
connection will be henceforth called an entail connection. Denote the set of all Galois closed
elements of K by K**. For C C Q, C # 0, let K¢ = {0,C,Q}. Note that for C C Q and
C # @, K¢ is an atom of K, and that each atom of K is of this form. If K € K, we set
Kt =K\ {0}.
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Proposition 2.2. 1. Each atom of (K,C) is Galois closed with respect to {«, ).

2. The mapping a is completely determined by its values on the atoms of K.

Proof. 1. Since K8 is dually order isomorphic to &, it is atomic with 29l — 2 atoms. By
Lemma 1.1 and the fact that both P and K are complete set lattices, we obtain that % is
closed under intersections. Thus, if K and K’ are atoms of K, then K N K' = {0, Q}. Since
K2 has 2191 — 2 atoms, it follows that the atoms of K are exactly the atoms of K.

2. Let K e K. If K ={0,Q} or K = |JK, then K* = 1 or K* = 0, irrespective of a.
Otherwise, K = |J{K¢: C € K*}, and

ke = ((J{Kc: Ce k)" =({Kg: C e K}
by Lemma 1.1. O

Remark. Proposition 2.2.1 does not hold in general, even if both structures involved are com-
plete atomistic lattices. A counterexample can be found in Andréka et al. (1995).

We can now describe all Galois connections (P, C) and (K, C) which produce entail relations.
This is an instance of the more general construction of polarities induced by a binary relation
as described in Birkhoff (1967).

Proposition 2.3. Let f be a permutation of 29 with f(0) = 0 and f(Q) = Q, and define
a: (K, C) = (P,C) by
K& ﬂ{Rf(C’) :C € K+}.

Then, a can be uniquely extended to a Galois connection (a, ) such that ran a =&, and
RPF={CCQ:(V(A,B)ER)(AC f(C)=BC f(C)}={C CQ:RC Ryc)} U{0}.

Furthermore, each entail connection between (P, C) and (K, C) can be obtained this way.

Proof. If K¢ is an atom of K then K& = Ry (). The images of the atoms of K are exactly the
dual atoms of £ by Proposition 2.1. Furthermore, 2.1. implies that ran a = £, and Lemma 1.1

tells us that o can be extended to a Galois connection («, 3).

Suppose that R € P, and let

T=1{CCQ: (VA B) € R)(AC f(C) = BC f(O)}.

Since f(0) = 0 and f(Q) = Q, we have §,Q € T, and thus T' € K. By Lemma 1.1 we need
to show that T is the largest K € K for which R C K%. We first prove R C T%: If T® =1,
there is nothing to show. Otherwise, T = {Ryc) : C € T*}. Let C € T™; then, for all
(A,B) € R, A C f(C) implies B C f(C) by definition of T'. Thus, (4, B) € Ry and it
follows that R C T'*.
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Now, let R C K*. If K® =1, then K = {0, @} C T'. Otherwise,

K= ﬂ{Rf(C’) :C € K+}.
Suppose that C € K*. Then, R C K¢ C Ry(c), and the definition of Ry imply C € T.

The other equation is just the definition of Ry(c).

Conversely, suppose that (a, ) is a Galois connection between (K, C) and (P, C) for which
ran a = £. For each atom K¢ of K there is a unique dual atom Rp of K such that K& = Rp
and vice versa. Setting f(C) = D, f(0) =0 and f(Q) = Q gives us the desired result. O

Thus, with each entail connection {(«, 8) we can associate a unique permutation f, of 29 which
leaves () and @ fixed, and vice versa. We have the following generalization of 4.4. of Koppen
& Doignon (1990):

Proposition 2.4. Let (a, ) be an entail connection with associated permutation f, and R €
E. Then,

D e RY iff (VC € (29)%)((f(D),C) € R= C C f(D)).

Proof. “=”: Suppose that D € R? and (f(D),C) € R. Since D € R?, A C f(D) implies
B C f(D) for all (A, B) € R, in particular, (f(D),C) € R implies C C f(D).

"«<": Suppose D satisfies the condition, and let (4, B) € R. If A C f(D), then (f(D), A) € R,
and thus (f(D),B) € R by the transitivity of R. The condition on D now implies B C
f(D). O

To give an internal characterization of K we first prove

Lemma 2.5. Let D = {D; : i < k} be a family of non empty proper subsets of Q, R = [\{Rp :
DeD},and C CQ,C #0. Then, R C Rc iff

1. C=Q or

2. There are Dy, ...,D,, € D such that 9 # DoN...N D, =C.

Proof. “=": Suppose that C # Q, and let J={i <k:C Z D;}, [ ={i <k:C C D;}. If
I =0, then (C,D) € R for all D € (29)%; in particular, we have (C, —C) € R. On the other
hand, (C,—C) ¢ R¢, contradicting that R C R¢. It follows that § # C C N{D; : i € T}.
Assume that ¢ € ([{D; : 4 € I} \ C, and set D = C U {q}. Then, D C ({D; : ¢ € I}, and
(C,D) € R — R, a contradiction.

“«<" Suppose that C # @ and that C fulfills the condition. Let (A,B) € R. Then, in
particular, maz ranrA C (\{Rp, : : <n} = C, and hence (4, B) € Rc¢. O
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Proposition 2.6. Let K € K be a proper knowledge structure and {a, B) be an entail connec-
tion with associated permutation f. Then,

K¥={CCQ:C=0or f(C)= f(Do) N f(D1)N...0 f(Dy) for some Dy, ..., D, € KT}.

Proof. Let R = K* = ({Rpc)y : C € KT}. Then, R ={C C Q : R C Ry} U {0} by
Proposition 2.3. Suppose that C # (), Q. Then, by the previous Lemma,

C € RP iff there are Dy, ..., D,, € KT such that f(C) = N{f(D;) :i < n},

which proves the claim. O

Observe that this generalizes the result of Koppen & Doignon (1990) that their Galois closed
knowledge structures are exactly the knowledge spaces: There, the associated permutation is
defined by f(C) = —C, and, for C # 0,

C € K% < f(C) = f(Do) N f(D1) N ...N f(Dn)
<— -C=-Dyn-D1N..Nn-D,
<— (C=DyuUDyU..UD,

for some Dy, ...,D, € K.

3 A double entail query procedure

It was argued convincingly by Falmagne et al. (1990) that requiring a set K of states to be
closed under intersection is too rigid, since a problem may be solved in different ways and
different prerequisites could have been be used to arrive at a solution for this problem. A
similar argument can be employed to reason that requiring a set of states to be closed under
union is likewise unsatisfactory, though possibly less so: Given that the solution of a problem
depends on certain skills, a combination of skills minimally required to solve, say, two problems
p and q may enable the subject to solve other problems as well. Even worse, using different
strategies (i.e. combinations of skills) may produce different minimal upper bounds for the
states containing both p and g, so that the set of knowledge states need not even be a lattice.
Indeed, we can have the following situations:

1. K is a sublattice of (29,U,N, 0, Q).
2. (K, C) induces a sub-semilattice of (29, U).
3. (K, C) induces a sub-semilattice of (22, N).

4. (K, C) has a lattice structure.
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5. K is arbitrary.

It might be worthy of mention that every finite semilattice with smallest and largest elements
is in fact a lattice, so that we have the implications 2. = 4. and 3. = 4. above.

The question arises, which of these situations can be adequately captured by query procedures.
The result of Koppen & Doignon (1990) takes care of 2. above, and it was noted in Falmagne
et al. (1990) that asking the expert to determine a quasi order on @ by p < ¢ iff the capability
of solving of g enables the subject to solve p as well gives rise to knowledge structures which
are sublattices of (29,U,N,0, Q).

To arrive at a query procedure for 3. we let (o, p) be the entail connection associated with
the identity function on 29, so that

K° = {{(A,B):(VCeK)(ACC= BCO)},
T° = {CCQ:(V(AB)eT)ACC= BCO).

The next result follows immediately from 2.3:

Proposition 3.1. For each K € K, K°? is the closure of K under N. O

It may be argued that this construction does not really help, since Falmagne’s arguments
against closure of K under intersection still apply. However, if we combine this query procedure
with the one by Koppen & Doignon (1990), we can capture knowledge structures which are
lattices with respect to set inclusion:

Proposition 3.2. Let (1, ) be the entail connection of Proposition 1.2, and (o, p) the entail
connection above. If K € K, and (K,V) is a join semilattice whose natural ordering is C,
then, K = K°P N K¥%.

Proof. "C" is clear, since K C K¥? and K C K°°. For the converse, let C € K¥% N K°P.
Then, there are A;,B; € K,i < r,j < s such that UigrAi =C = ﬂjgsBj' Let D =
supig{A; : 1 < r}. Since V is compatible with C, we have AUB C AV B for all A,B € K,
and therefore C' C D. Since (K, V) is a semilattice, we also have D € K. Now, each B; is an
upper bound for all A;, and thus D C B; for all j < s. Hence, C C D C ﬂjss B; = C which
implies C =D € K. O

The assignment K — K% N K¥%¥ - regarded as a combination of query procedures - thus
captures knowledge structures which are lattices whose natural order is set inclusion.

The converse does not hold in general, as the example @ = {1,2,3,4,5} and

K ={0,{1},{2},{1,2,3,4},{1,2,3,5},Q}
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shows. Such an example does not seem unreasonable: A subject may employ different strate-
gies to solve problems 1 and 2 involving different skills, which, in one instance, allow her to
solve 3 and 4 as well, while the skills used in another strategy enable her to solve 3 and 5.

A simple example shall demonstrate the double entail procedure. The true knowledge structure

K is the union of a Guttman scale and its reverse:2

-0 15 {12) {123} @,
B {4}, {3,4}, {2,3,4}

Using the Koppen-Doignon procedure, querying a perfect expert will result in: {1,3}R{2},
{1,4} R{2}, {1,4}R{3}, {2,4}R{3}, and the corresponding knowledge space looks like this:

®’ {]‘}’ {172}7 {1’2’3}’ Q’
Y — {174}7 {1a2a4}a
K = {1,3,4},
{4}, {83,4}, {2,3,4}

Let T the relation based on the question type: "If a subject is able to solve all problems in

A, the subject will solve all problems in B." Given the structure K, the query procedure will
produce the following result: {2,4}7{3}, {1,3}T{2}, {1,4}T{2}, {1,4}T{3}. Therefore,

0, {1}, (L2}, {123}, Q
W) 2 23
K ),

M), (3.4}, (23,4

The structure K is captured, because K = K% N K°P.

It is straightforward to show that not all knowledge structures can be captured by the proposed
procedure: Because the resulting structure is an intersection of a N-stable and a U-stable
structure, we may always find non capturable structures with |Q| > 5, in which all subsets
having k elements are totally missing, while all subsets having £ — 1 or £ + 1 elements are
present.

The question remains which knowledge structures can be captured by combining entail con-

nections. The answer is given by

Proposition 3.3. There is a family (o;,Bi)icr of entail correspondences such that K =
Nicr K% for all knowledge structures K.

2The composed Guttman scale may look somewhat obscure. Nevertheless, the structure can be regarded
as a prototype for the situation where the student population is divided into two groups, one being taught by
a lecturer using a top—down approach, and the other group by a lecturer using a bottom—up approach on the
same material. The problems are chosen from a very specialized context (problem 1) to a very general context
(problem 4). If we assume that the teaching style is directly connected with the skills the students learn, we
can suppose that the resulting knowledge structure is a composed Guttman scale.
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Proof. For each proper non empty subset A of @, choose a dual atom B of 29 above A4, and
let f4 be the permutation of 29 which exchanges A and B, and leaves everything else fixed;
let F be the family of all chosen permutations.

For each f € F, let (ay, Bf) be its associated entail connection. Let K € K and assume that
Ae nfe]—' K°rBs\ K. Then, in particular, A # @, and thus we can choose a dual atom B of
29 such that A C B, and some f € F which exchanges A and B and leaves everything else
fixed. By our assumption, A € K87 so that

B = f(A) = f(Do) N f(D1) N---N f(Dn)
for some Dy, ...,D, € K+ by 2.6. Since B is a dual atom of 29, we must have B = f(D;)

for some 7 < n. But then, B = f(A) = f(D;) implies A = D;, contradicting A ¢ K. O

This shows that, in principle, every knowledge structure can be captured by combining query
procedures. However, the procedure given above is of no practical value, and we should like
to know whether fewer and more intuitive procedures will suffice to obtain the same result.

4 Strategy based query procedures

Building knowledge structures using a query procedure based on entail relations faces two
problems:

1. The double entail procedure cannot capture all possible knowledge structures.

2. The combination of two structural very similar query procedures may be too demanding

on an expert.

In the sequel we shall offer alternative query procedures based on strategy examination. Before
we proceed, we recall a few definitions and results from Diintsch & Gediga (1995)

4.1 Skills and strategies

Let S be a fixed finite non empty sets of skills, and let § : 25 — 2% be a function. Intuitively,
¢ associates with each set of skills X the set of problems which can be solved with the skills
in X. It is reasonable to assume that by acquiring more skills an individual is able to solve at
least the same problems as before. Thus, ¢ should be monotone, i.e. X CY = §(X) C §(Y).
Thus, we call a function 6 : 25 — 29 a problem function if

1. 6(0)=0,69)=Q

2. 0 is monotone with respect to C.
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A function v: Q — 22° with the property that for each ¢ € Q
v(g) is a non empty set of non empty, pairwise incomparable subsets of S

is called a skill function. Intuitively, each element of y(g) is a set of skills minimally sufficient
to solve problem ¢. Following Falmagne et al. (1990), we call a subset A of Q a -y - knowledge
state, if there is some X C S such that A is exactly the set of problems g for which a member
of v(q) is a subset of X. The collection of all such knowledge states is denoted by K,.

An element of 7y(q) is called a strategy for q. More generally, given a non empty set A of
problems, let C'(A) be the set of ranges of all choice functions f : A — (J{v(¢) : ¢ € A}. Each
element of C'(A) is a subset of 2° and intersects each y(q) in at least one element.

For Z € C(A), welet Mz =|JZ C S, and we call Mz a strategy for (solving all problems of)
A.

Each skill function implicitly describes a query procedure: For each problem ¢ € () we ask the
expert which sets of skills are minimally sufficient to solve gq.

In Diintsch & Gediga (1995) we have shown that the concepts of problem function and skill
function are equivalent, and we have described how this query procedure translates into a set
K of knowledge states: If +y is a given skill function with associated collection K, of knowledge
states, and d : 25 — 29 is defined by

6(X)={¢€@Q: (Y €+(9)Y C X}
then ran § = K.

Furthermore, every family of subsets of Q which contains ) and @ can be realized as a set
of states for an appropriate skill function. A similar result was independently established in
Doignon (1994).

Objections may be raised against a skill theoretic foundation of knowledge structures. Even
though this note is not the appropriate place to answer these objections in detail, we will
briefly point out some arguments for and against this approach. For further information we
refer the reader to Doignon (1994) and Diintsch & Gediga (1995).

The “any state combination is possible” argument: The major hypothesis of the knowl-
edge structure project is that not all sets of problems constitute knowledge states by
assuming stability under intersection (“closure systems”) or unions (“knowledge spaces”).
It was shown in Doignon (1994) that — from a skill theoretical point of view — these
systems use the following assumptions: knowledge spaces can be obtained from skill
knowledge structures in which every strategy consists of only one skill, whereas closure
systems can be obtained from skill knowledge structures in which any 7(g) consists of ex-
actly one set. On the other hand, in the knowledge structure project, the formulation of
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a skill function serves as a frame to specify the restrictions of the theory by the user him-
self without using technical restrictions. Statistical techniques such as cross-validation
are necessary in either approach to validate the chosen theoretic assumptions.

The “any skill combination is possible” argument: Skill knowledge structures do not
assume a priori that there is a specified dependency in the set of skills; this is not a new
phenomenon. Besides, posing restrictions on the set of skills (e.g. in terms of a learning
process, like the theory of Falmagne et al. (1990)) is better done in probabilistic terms
and not in algebraic all-or-none restrictions. A skill knowledge structure will set up the
basic events for a probabilistic skill knowledge structure theory.

It may be illuminating to translate the conditions for the query relations above into a scenario
which, in addition to problems, also considers the skills needed to solve these problems. Thus,
suppose that S is a set of skills, v: Q — 22° 4 skill function and 4 : 25 — 29 its associated
problem function.

1. Being able to solve ¢ entails being able to solve p: If this is true, then every strategy for
q produces a strategy for p a fact already observed in Falmagne et al. (1990), which led
to the rejection of this query procedure as an adequate means to construct a knowledge
structure. Thus, we have

(VX €7(9)(FY ev(p))(Y € X).

2. Failing all problems in A entails failing all problems in B: We interpret this as saying
that if a set X of skills is not sufficient to solve any problem in A, then X is not sufficient
to solve any problem in B:

(VX C S)[(Vp € A)(VY €v(p))Y € X = (Vp € B)(YY € v(p))Y £ X].

3. Being able to solve all problems in A entails being able to solve all problems in B, i.e.
any strategy for A contains a strategy for B:

Observe that in all of these statements the strategies for A are universally quantified, i.e. they
do not distinguish among different strategies which could be used to solve A.

4.2 The strategy list query procedure

We now describe a query procedure, which is based on a list of all different strategies to solve
a set of problems:

1. Choose a nonempty A C @ and fix it.



Ivo DUNTSCH & GUNTHER (GEDIGA 13

2. Given A, the expert is asked to list all strategies C;(A),7 < k, which can be used to
solve all problems in A.

3. For each strategy C;(A), the expert names the set of all problems B;, which can be
solved using C;(A). Note that A C B; for all i < k.

This way, a mapping I' : 29 — 22° is defined with I'(A) = {B; : i < k}. Note that each
element of I'(A) is a knowledge state, since it is the image under ¢ of C;(A4) C S, and that A
itself is a state if and only if B; = A for some i < k.

To facilitate the exclusion of non states, let us define

A(A)={C CQ: ACC, and C is a proper non empty

subset of a minimal element of {B; : i < k}}.

We now have

Proposition 4.1. Let K be a knowledge structure and I', A be defined as above. Then,

1 UscopfX CQ: X €T(A)}U{0,Q} = K.

2. B¢ K forall B € A(A).

Proof. 1. "C" follows immediately from the definition of T'.

"D": Let A € K,A # (,Q. Then, there is a set X of skills such that 6(X) = A. X contains
the union C;(A) of a strategy for A, and 6(X) =6(C;(A)) =A .

2. Let B € A(A) and assume that B € K. Then, there is a set of skills X such that §(X) = B,
and, since A C B, X contains some Cj(A4). Now, C;(A4) C X implies that §(C;) C §(X) = B.
Hence, B contains some Bj;, contrary to our definition of B. ]

The result of Proposition 4.1 can be applied to obtain a more efficient query procedure.
Because known states and non states are of no interest for the query, a book keeping algorithm
excludes any already classified subset of ). To illustrate the procedure, we show in Table 1
how this query procedure works with a skill function y for the 2-Guttman-scale example,
which provides different strategies for any problem q and any set A € (29)*:

71) = {{pih{a @2 03,04} {p1, au}}
72) = {{pn,p2} e, 2, @} {p1, @ }}
7(3) {p1,p2,p3}, {a1, a2}, {p1, a1 }}
v4) = {{p1,p2,p3,pa}, {a1}, {pPr, 1 }}

stdes. query procedure terminates, since all elements of 29 are classified into states or non
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Table 1: EXAMPLE OF THE STRATEGY LIST PROCEDURE

Query sets A C @ T'(A) Additional states | Additional non—states
Start: 0,Q -

{1} {{1}, @} {1} -

2) {121 23,4)) | {L21{2.3.4) | {2} {24}, {2,3)
{3} {{1,2,3},{3,4}} | {1,2,3},{3,4} {3} {1,3}

{4} {{4},Q} {4} -

{1,2} (state)

{1,3} (non state)
{174} {QaQ} - {174}5 {172a4}7 {173a4}
Stop!

5 Discussion

We have presented three different methods for the generation of knowledge structures: The skill

function approach, which is based on the mapping v : Q — 225, the strategy list procedure,
which results in a mapping I': 2¢ — 22Q, and the double entail relation approach, which has

the deficit that there are knowledge structures that cannot be captured by this procedure.

If we ask an ideal expert, the first two methods can be used to generate the true knowledge

structure, while the double entail relation approach need only give an approximation.

Because all these procedures are theoretical valid, we should consider some criteria to choose

the best query procedure:

Flexibility: The strategy list procedure seems a very flexible tool: It can be combined with

any other approach at any point of time, since we only need to know the actual states
and non states to start the strategy list procedure.

Psychological complexity: Psychologically, the skill function approach is the most com-

plex procedure. The expert needs a sound theory which serves as background to formu-
late the skill function. Even if there were such a theory, it seems to be hard to formulate
more than one strategy per problem. Raven (1965), for example, formulates a skill the-
ory for his Coloured Progressive Matrices which consists only of one strategy for each
problem. Although on first glance this procedure does not seem to have any advantage
over presenting the expert with sets of problems and asking her/him to answer for each
one of them one of the questions mentioned at the beginning, we feel that the approach
based on sgkills — i.e. asking the expert to produce a skill function — is less demanding
than it seems: In setting the problems in the first place, the expert should already have
in mind the mastering of which sets of skills will be tested by each problem, so that most
of the work can already be done at this stage. Furthermore, the aim of constructing
tests is that the results of the test procedure offer some insight about the skills of the
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tested individuals. Therefore, there ideally should be a skill theory that produces the
knowledge states, a process, which we describe by the mapping ~.

The strategy list procedure uses aggregations of skills, which we have called strategies.
We feel that the term “strategy” is more intuitive than “skill combination” and that the

labeling of a strategy is by far easier than the combination of many skill atoms.

The double entail relation approach uses comparisons of subsets A, B of ). These
comparisons do not take into account different strategies available for solving A and
B. There is no guarantee that the expert really decides this way; there is not even a
hint that she/he should. So, we are doubtful whether the outcome of an entail relation
approach really captures the true structure.

Number of interactions: The last criterion concerns the complexity of one question. A
further criterion is the number of necessary interactions with the expert to get the true
knowledge structure. If the knowledge structure builds the Boolean algebra 29, the skill
function approach dominates the other procedures, because it is easy to construct an
independent skill base, but there is no relation or strategy based procedure that could
shorten the query procedure. Further investigation should be done in comparing the
proposed procedures in case of highly structured knowledge structures.

Our aim in this note was to investigate the Galois connection between knowledge structures
and entail relations, and the generation of query procedures for such weakly structured do-
mains as knowledge structures. A final evaluation of which method is the most suitable query
procedure is outside the scope of the present paper. This has to be done by performing
psychological experiments, which we are currently undertaking.
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Abbreviations and Symbols

2X: Power set of X.

(2X)+:— 2%\ {0}

rangz:={y € X : zRy}.

A?: The image of A € X under the mapping o : X =Y.
Q@Q: Denotes a finite set of problems.

K: Throughout we use K, K', etc. to denote knowledge structures.
K*: K\ {0}.

K: The Boolean algebra of all knowledge structures on Q).
P: The set of all binary relations on (29)7.

&: The set of all entail relations on (29)%.

S: A fixed finite non empty set of skills.

0: The problem function.

~: The skill function.

Mz: The union of all skill sets in Z C 22° (a strategy).

I': The resulting mapping of the strategy list procedure.
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