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Abstract

Boolean contact algebras constitute a convenient approach
to a region based theory of space. In this paper we want
to extend this approach to regions moving in time - called
timed contact structures. We study their canonical mod-
els using topological spaces. As the main contribution we
prove a general representation theorem for this kind of al-
gebras.

1. Introduction

The origins of mereotopology go back to the works of [11]
on mereology and, on the other hand, the works of [9], [12],
and [16] who used regions instead of points as the basic
entity of geometry. In this “pointless geometry”, points
are now second order definable as sets of regions, similar
to the representation of Boolean algebras, where elements
can be recovered as ultrafilters. Whitehead’s addition to the
mereological structures of Leśniewski (which were, basi-
cally, complete Boolean algebras B without a smallest ele-
ment) was a “connection” (or “contact”) relation C among
nonempty regions, which, in its simplest form is a reflexive
and symmetric relation satisfying an additional extension-
ality axiom. Historically, standard (models for) mereotopo-
logical structures were collections of regular closed (or reg-
ular open) sets of topological spaces 〈X, τ〉 with the stan-
dard (Whiteheadian) contact among regions defined by

uCv ⇐⇒ u ∩ v 6= ∅.

The primary example is the collection of all nonempty reg-
ular closed sets of the Euclidean plane.

The most simple algebraic counterpart of mereotopology
are contact algebras, appearing in different papers under
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various names (see for instance [1, 2, 3, 5, 6, 7, 13, 14, 15])
which are Boolean algebras extended with the contact re-
lation C satisfying some axioms. The elements of the
Boolean algebra symbolize regions while the contact rela-
tion C corresponds to the additional topological aspect.

In this paper we want to extend this approach to regions
moving in time. We model those regions by a collection
of snapshots. First, we fix a structure of static regions, i.e.
the static world. Given a set of points in time T a moving
region is just a function from T to the static world. In other
words, a region is described by a collection of static regions
at any point in time t - its (spatial) extent at time t. We want
to illustrate this idea by two examples. Notice that not all
regions may be ’visible’ at any given time; this situation is
modelled by the fact that such a region is not in contact with
anything, including itself, at that point in time.

Example 1. We choose the Euclidean plane as static world
and the set R≥0 of the non-negative real numbers as the
model of time. Now, a moving region is a function from
R≥0 to the regular closed sets of the plane. For example, r is
the region so that r(x) is the closed disc with radius 1 at the
point (x, x). This region starts at the origin and moves along
the diagonal without changing its shape. Another example
is the region s where s(x) is the closed disc at the origin
with radius x. This region starts as the empty region and
grows constantly bigger. It does not move at all.

Example 2. The second example is finite. Consider the set
X = {1, 2, 3, 4, 5, 6} with a contact structure based an the
following picture

a b c
d e f

i.e. a is in contact with b and d, b is in contact with a, c and
e etc. We say that two subsets A,B of X are in contact (in
symbols: ACB) iff there is an a ∈ A and an b ∈ B which
are in contact. This structure - the powerset P(X) of X
together with the relation C - establishes a (finite) Boolean
contact algebra (cf. next section). P(X) serves as the static



world in our example. Time will also be discrete, and we
choose T = {0, 1, 2, 3}. Similar to the previous example a
moving region is a function from T to P(X). For example,
r defined by

r(0) = {b}, r(1) = {a}, r(2) = {d}, r(3) = {e}
is the region that starts at b and moves to e via a and d. Also
in this example it is possible for regions to grow or shrink.
The region s defined by

s(0) = {b}, s(1) = {b, c}, s(2) = {c}, s(3) = ∅
starts at b grows to {b, c} and finally disappears.

2. Boolean Contact Algebras

For any set X and Y ⊆ X we denote by X−Y the comple-
ment of Y in X . If X is clear from the context we simply
write −Y . For a binary relation R on D, and x ∈ D, we let
R(x) = {y : xRy}, the range of x with respect to R.

If ∼ is an equivalence relation on a set A, we will denote
the equivalence class of an element a ∈ A by [a], i.e. [a] =
{x ∈ A | a ∼ x}.

2.1. Contact Relations

Throughout this paper, (B, 0, 1, +, ·, ∗) be a Boolean alge-
bra; if no confusion can arise we sometimes denote algebras
by their base set.

In the remainder we will also use the symmetric difference
a4b := a · b∗ + a∗ · b of two elements a and b.

A binary relation C on a Boolean algebra B is called a con-
tact relation (CR) if it satisfies:

C0. (∀a)0(−C)a;

C1. (∀a)[a 6= 0 ⇒ aCa];

C2. (∀a)(∀b)[aCb ⇒ bCa];

C3. (∀a)(∀b)(∀c)[(aCb and b ≤ c) ⇒ aCc];

C4. (∀a)(∀b)(∀c)[aC(b + c) ⇒ (aCb or aCc)].

The pair 〈B, C〉 is called a Boolean Contact Algebra
(BCA).

Axioms C0 and C1 imply that 0 is the only element with
C(0) = ∅, i.e. that is not connected to any element. We
are interested in a weakening of this property. Therefore,
we call a relation C on a Boolean algebra B a pre-contact
relation if it satisfies C0,C2-4 and

P1. (∀a)[(∃b)aCb ⇒ aCa];

Any contact relation is a pre-contact relation.

Notice that the range of C distributes over + for any (pre-)
contact relation, i.e.

x ∈ C(a + b) ⇐⇒ (a + b)Cx

⇐⇒ aCx or bCx by C2-4
⇐⇒ x ∈ C(a) ∪ C(b).

Lemma 1 Let C be a pre-contact relation on a Boolean
algebra B. Then, the relation ∼ on B defined by

a ∼ b : ⇐⇒ C(a4b) = ∅,

is a congruence relation, and the relation C/∼ on B/∼ de-
fined by

[a](C/∼)[b] : ⇐⇒ aCb,

is a contact relation.

Proof. Clearly,∼ is reflexive and symmetric. Let a ∼ b and
b ∼ c. Then, by definition we have

C(a · b∗) = C(a∗ · b) = C(b · c∗) = C(b∗ · c) = ∅.

We have to show C(a4c) = C(a · c∗) ∪ C(a∗ · c) = ∅.
Now,

C(a · c∗) = C(a · c∗ · b + a · c∗ · b∗)
= C(a · c∗ · b) ∪ C(a · c∗ · b∗) see above
⊆ C(c∗ · b) ∪ C(a · b∗) C3
= ∅.

The second case is analogous.

Since a4b = a∗4b∗, ∼ preserves complementation. If
a ∼ b and a′ ∼ b′, then

C(a · a′ · (b · b′)∗)
= C(a · a′ · (b∗ + b′∗))
= C(a · a′ · b∗ + a · a′ · b′∗))
= C(a · a′ · b∗) ∪ C(a · a′ · b′∗)) see above
⊆ C(a · b∗) ∪ C(a′ · b′∗)) C3
= ∅.

The other follows analogously so that ∼ preserves meet.
Finally, C(0) = ∅ by C0, and, hence, ∼ is a Boolean con-
gruence.

To show that C/∼ is well-defined we assume that a ∼ b
and aCc. We conclude C(a4b) = ∅, which is equivalent
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to C(a · b∗) = ∅ and C(a∗ · b) = ∅. Now,

C(a) = C(a · b + a · b∗)
= C(a · b) ∪ C(a · b∗) see above
= C(a · b) C(a · b∗) = ∅
⊆ C(b) C3

shows that c ∈ C(b), and, hence, bCc.

C0,2-4: These properties follow immediately from the def-
inition of C/∼ and the corresponding property of C.

C1: Let [a] 6= [0], i.e. C(a) 6= ∅. By P1 we conclude aCa,
and, hence [a](C/∼)[a]. ¤

Notice that the congruence relation ∼ is not the same as the
relation given by C(x) = C(y). Even though the ideal of
all elements equivalent to 0 is the same for both relations,
the latter is not necessarily a congruence. In Example 2
∼ is the identity, whereas C({b, e}) = {a, b, c, d, e, f} =
C({a, b, c, d, e, f}). In addition, C({a}) ∩ C({c}) = {b}
but C({a} ∩ {c}) = ∅.

Every BCA 〈B,C〉 corresponds exactly to a relational
structure on the dual space 〈Ult(B), τ, RC〉 of B, where
RC is a closed, reflexive and symmetric relation [8]. We
call RC the dual relation of C, and they are related by the
following property:

aCb ⇐⇒ ∃F,G ∈ Ult(B) : a ∈ F ∧ b ∈ G ∧ FRCG.

2.2. Topological models

First we recall some notions from topology. By a topolog-
ical space (X, τ) we mean a set X provided with a family
τ of subsets, called open sets, which contains the empty set
and the whole set X , and is closed with respect to arbitrary
unions and finite intersections. A subset a ⊆ X is called
closed if it is the complement of an open set.

In every topological space one can define the following op-
erations on subsets a ⊆ X:

1. Int(a) =
⋃{o ∈ τ | o ⊆ a} (the interior of a), i.e.,

the union of all open sets contained in a.

2. Cl(a) =
⋂{c is closed | a ⊆ c} (the closure of a),

i.e., the intersection of all closed sets containing a.

Cl and Int are interdefinable, i.e. Cl(a) = −Int(−a) and
Int(a) = −Cl(−a).

A subset a of X is called regular closed if Cl(Int(a)) = a.
We denote by RC(X) the family of regular closed sets of

X . It is a well known fact that RC(X) is a Boolean algebra
with respect to the following operations and constants:

0 = ∅, 1 = X, a + b = a ∪ b and a · b = Cl(Int(a ∩ b)).

RC(X) naturally provides a contact relation C defined by
aCb if and only if a ∩ b 6= ∅. C is called the standard (or
Whiteheadean) contact relation on RC(X).

A topological space is called semi-regular if it has a basis
of regular closed sets. It is called compact if for every non-
empty set {Ai | i ∈ I} of closed sets the following property
holds: If

⋂
j∈J

Aj 6= ∅ for every finite subset J of I , then
⋂
i∈I

Ai 6= ∅.

Notice that all BCA’s are representable in certain topologi-
cal spaces. The following theorem can be found in [4, 6].

Theorem 1 Let 〈B, C〉 be a BCA. Then there is a com-
pact and semi-regular T0 space 〈X, τ〉 and a (Boolean)
embedding h : B → RC(X) with aCb if and only if
h(a) ∩ h(b) 6= ∅.

3. Timed Contact Structures

A timed contact structure is given by a set modelling time,
a Boolean algebra of regions and a ternary contact relation.

Definition 1 We call 〈T, B, (Ct)t∈T 〉 a timed contact
structure if T is an arbitrary set, B Boolean algebra, and
Ct is a pre-contact relation on B for every t ∈ T .

The property aCtb indicates that the regions a and b are in
contact at time t.

Notice that the family of pre-contact relations could be re-
placed by a ternary relation C ⊆ T × B × B defined by
C =

⋃
t∈T

{t} × Ct.

A suitable definition of a family of pre-contact relations is
obvious in both example. The regions r and s from Example
1 are always in contact, i.e. rCts for all t ∈ R≥0. For the
regions r and s from Example 2 we just have rC0s and
rC1s.

Lemma 1 shows that for all t ∈ T there is a quotient BCA
〈Bt, Ct/∼t〉 of B. Notice that the quotients need not be
isomorphic. Each algebra describes the static world at time
t. Given an element a ∈ B we will denote the derived
element in the quotient Bt by at.

The equivalence relation ∼t is, in general, not the identity.
For example, the region s from Example 2 is at t = 3 equiv-
alent to the empty region, i.e. s ∼3 ∅.
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3.1. Topological models

The spatial component is given by a topological space
〈X, τ〉 with the Whitheadean contact Cw. A region in time
now is a function f : T → RC(X), i.e. a function provid-
ing the spatial extent of the region for every point in time.

We denote the set of all such function by XT and define
Ct ⊆ XT ×XT by

fCtg : ⇐⇒ f(t) ∩ g(t) 6= ∅.
Notice that for each t ∈ T the relation Ct is defined by
the standard contact relation on B, i.e. fCtg if and only if
f(t)Cwg(t).

Lemma 2 XT is a Boolean algebra.

Proof. This follows immediately from the fact that RC(X)
is a Boolean algebra and the component-wise definition of
the Boolean operators in XT . ¤

Theorem 2 〈T, XT , (Ct)t∈T 〉 is a timed contact structure.

Proof. C0: We have f(t)∩0(t) = f(t)∩∅ = ∅, and, hence,
f(−Ct)0.

P1: Let be fCtg, i.e. f(t) ∩ g(t) 6= ∅. In particular, f(t) 6=
∅, and, hence, fCtf .

C2: trivial.

C3: Assume fCtg and g ≤ h. Then we have f(t)∩g(t) 6= ∅
and g(t) ⊆ h(t). This implies f(t) ∩ h(t) 6= ∅, and, hence,
fCth.

C4: Assume fCt(g + h). Then we have

∅ 6= f(t) ∩ (g + h)(t)
= f(t) ∩ (g(t) ∪ h(t))
= (f(t) ∩ g(t)) ∪ (f(t) ∩ h(t))

so that either f(t) ∩ g(t) 6= ∅ or f(t) ∩ h(t) 6= ∅. ¤

4. Representability of Timed Contact Struc-
tures

By fixing a t ∈ T we obtain a BCA 〈Bt, Ct〉 on equivalence
classes of B. As already mentioned in Section 3 different
Bt’s need not to be isomorphic. We will use the free product
of Boolean algebras in order to embed all Bt’s in a common
structure.

Let (Bi)i∈I be a family of Boolean algebras. The dual
space of the free product B is given by the product of the
dual space of the Bi’s [10], i.e. it is the set

∏
i∈I

Ult(Bi) with

the product topology.

Theorem 3 Let 〈Bi, Ci〉i∈I be a family of BCAs, B be the
free product of the Bi’s and ei : Bi → B the canonical
embedding of Bi in B. Then there is a contact relation C
on B so that aCib if and only if ei(a)Cei(b) for all i ∈ I .

Proof. In this proof we will identify the two sets
(
∏
i∈I

Ult(Bi)) × (
∏
i∈I

Ult(Bi)) and
∏
i∈I

(Ult(Bi) × Ult(Bi)).

Therefore, we can define RC :=
∏
i∈I

Ri where Ri is the dual

of the contact relation on Bi. RC is obviously reflexive and
symmetric. Furthermore, RC is closed since it is a product
of closed sets. This shows that RC is the dual of a contact
relation C on the free product B.

Recall that the embedding ei is defined as the dual of the
projection pi from the product

∏
i∈I

Ult(Bi) to Ult(Bi). It

satisfies the property:

(∗) h(ei(a)) = p−1
i [hi(a)],

where hi(a) = {F ∈ Ult(Bi) | a ∈ F} and h(b) =
{F ∈ ∏

Ult(Bi) | b ∈ F} are the Stone embeddings and
p−1

i [h(a)] denotes the inverse image of pi applied to the set
h(a), i.e.

p−1
i [h(a)] = {F ∈

∏

i∈I

Ult(Bi) | pi(F ) ∈ h(a)}.

Assume ei(a)Cei(b). By the definition of the dual RC of
C there are ultrafilters ei(a) ∈ F , ei(b) ∈ G with FRCG.
¿From ei(a) ∈ F we conclude F ∈ h(ei(a)), and, hence,
F ∈ p−1

i [h(a)] by (∗). This implies that pi(F ) ∈ h(a), and
hence a ∈ pi(F ). Analogously, we get b ∈ pi(G). From the
definition of RC and FRCG we conclude pi(F )Ripi(G).
Together we obtain aCib.

Conversely, assume aCib. Then there are ultrafilters a ∈ F ,
b ∈ G with FRiG. For each j ∈ I fix one ultrafilter Hj

and define

F̄ = (
∏

i 6=j∈I

Hj)× F, Ḡ = (
∏

i6=j∈I

Hj)×G.

Then pi(F̄ ) = F , pi(Ḡ) = G and pj(F̄ ) = pj(Ḡ) for
all i 6= j ∈ I . We conclude F̄RCḠ, F̄ ∈ p−1

i [h(a)]
and Ḡ ∈ p−1

i [h(b)]. From F̄ ∈ p−1
i [h(a)] we conclude

F̄ ∈ h(ei(a)), and, hence, ei(a) ∈ F̄ . ei(b) ∈ Ḡ follows
analogously. This shows ei(a)Cei(b). ¤
In the following we will apply the previous theorem to the
quotients 〈Bt, Ct〉 of a timed contact structure 〈T, B,C〉.

Theorem 4 Let 〈T,B, (Ct)t∈T 〉 be a timed contact struc-
ture. Then there is a compact and semi-regular T0 space
〈X, τ〉 and an embedding k : B → XT with aCtb if and
only if k(a)(t) ∩ k(b)(t) 6= ∅.
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Proof. By Lemma 1 the quotients 〈Bt, Ct〉 are BCA’s.
From Theorem 3 we obtain a contact relation on the free
product B of the Bt’s. B can be represented by a compact
and semi-regular T0 space 〈X, τ〉 and a (Boolean) embed-
ding h : B → RC(X) using Theorem 1. Now, define
k : B → XT by

k(a)(t) := h(et(at)).

k is a (Boolean) embedding since et and h are. Therefore,
it remains to show that

aCtb ⇐⇒ k(a)(t) ∩ k(b)(t) 6= ∅.
This follows from

k(a)(t) ∩ k(b)(t) 6= ∅
⇔ h(et(at)) ∩ h(et(bt)) 6= ∅
⇔ et(at)Cet(bt) property of h

⇔ atCtbt Theorem 3
⇔ aCtb Lemma 1.

This completes the proof. ¤

5. Conclusion and Outlook

In this paper we have introduced timed contact structures as
an extension of Boolean contact algebras. We studied their
canonical models using topological spaces, and we proved
a representation theorem.

In concrete timed contact structures regions are arbitrary
functions from the time domain into the regions of the static
world. Therefore, such a region need not move ’smoothly’
through the world. In future work we will investigate ad-
ditional axioms related to certain continuity properties with
respect to movement.

References

[1] Dimov, G. and Vakarelov, D. (2006). Contact algebras
and region–based theory of space: A proximity ap-
proach I. Fundamenta Informaticae, vol. 74, No 2-3,
209-249

[2] Dimov, G. and Vakarelov, D. (2006). Topological
Representation of Precontact algebras. In: W. Mac-
Caull, M. Winter and I. Duentsch (Eds.), Relational
Methods in Computer Science, LNCS No 3929, 1-16.

[3] Düntsch, I. and Vakarelov, D. (2006). Region–based
theory of discrete spaces: A proximity approach. Dis-
crete Applied Mathematics. To appear.

[4] Düntsch, I. MacCaull W. Vakarelov D. and Winter
M.(2006) Topological Representation of Contact Lat-
tices. Lecture Notes in Computer Science vol. 4136
(2006), 135-147.

[5] Düntsch, I. and Winter , M. (2005). Lattices of contact
relations. Preprint.

[6] Düntsch, I. and Winter, M. (2005). A representation
theorem for Boolean contact algebras. Theoretical
Computer Science (B), 347:498-512.

[7] Düntsch, I. and Winter, M. (2006). Weak contact
structures. In: W. MacCaull, M. Winter and I.
Duentsch (Eds.), Relational Methods in Computer
Science, LNCS No 3929:73-82.

[8] Düntsch, I. and Winter, M. (2008). A characterization
of contact relations via ultrafilters. In: R. Bergham-
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