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1 Introduction

Widely used methods of knowledge representation are

Object → Attribute

systems, in which each object x is described by an attribute (feature) vector

a(x) = <a1(x), …, an(x)>;

each ai(x) is a set of values that x may take under the attribute ai. These lead to vari-

ous relations on the object set in a natural way; for example, two objects x, y are in-

discernible under the attributes in A, if

a(x) = a(y) for all a ∈ A.

Similarly, we can say that x, y are A – distinguishable, if

a(x) ≠ a(y) for some a ∈ A.

Relations arising from these considerations are called information relations; an intro-

duction to information relations can be found in Orlowska (1997b, 1998). If R is an

information relation on an object set OB, then we can regard <OB,R> as a frame,
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which can serve as a semantic structure for a modal logic. If, for example, R is an in-

discernibility relation as defined above, then R is easily seen to be an equivalence,

and the corresponding modal logics are just the S5 logics. Modal logics for various

types of information relations have been widely studied, and the interested reader is

invited to consult Orlowska (1997b).

In this paper, we describe the logic of frames arising from information relations of

complementarity; these were introduced by Demri and Orlowska (1998). The paper is

organized as follows: Section 2 gives a brief introduction to information systems, and

their associated families of parametrized relations. Section 3 contains a short over-

view of standard modal logics with a necessity operator, and their frame semantics.

Modal logics with sufficiency operators are introduced in Section 4. Section 5 intro-

duces complementarity frames and a modal logic L1 for such frames. Sections 6 and

7 present a multi-modal logic for complementarity and incomplementarity, and a

proof system, based on the technique of relational methods (Orlowska 1988), which is

both sound and complete for the intended models. Section 8 is concerned with logics

of relative complementarity and incomplementarity.

2 Information systems and relations of complementarity

Information systems are collections of information items, which describe objects in

terms of their properties. More formally, by an information system we mean a struc-

ture

S=(OB, AT, {VALa: a∈AT})

such that OB is a nonempty finite set of objects, and AT is a finite nonempty set of

functions a: OB→Sb(VALa), where each VALa is a nonempty set of values of attribute

a, and Sb(VALa) its powerset. If each a(x) is a singleton set, then system S is said to be

deterministic, otherwise S is called nondeterministic. We shall usually identify single-

ton sets with the element that they contain. In particular, if a(x) is a singleton set, say

{v}, we omit the parentheses and write a(x)=v.

Any set a(x) can be viewed as a set of properties of an object x corresponding to at-

tribute a. For example, if attribute a is 'color' and a(x)={green}, then x possesses the

property of 'being green'; if a is 'languages spoken' and if a person x speaks, Polish

(Pl), German (D), and French (F), then a(x)={Pl, D, F}.
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In this setting, any set a(x) is referred to as the set of a−properties of object x and its

complement VALa−a(x) is said to be the set of negative a−properties of x.

Note that in the example above we interpret the nondeterminism given by a set of a-

values as a multi-valued situation, i.e. by a conjunctive interpretation. It is also pos-

sible to interpret a(x) as an indeterministic set in the sense that x speaks Polish or

German or French. These ontological differences, though of course decisive for appli-

cations, do not play a role in our logical considerations, which can be applied to both.

Since in an information system both the set of objects and the set of attributes are as-

sumed to be finite, we regard such a system as a data table with rows labeled by ob-

jects, and columns labeled by attributes; the cell entry <x,a> contains the value set

a(x) of attribute a for object x. As an example, consider a file containing information

about the academic degrees of persons P1,...,P6, and the languages that these per-

sons speak:

          Lan               Deg

P1 F, D BS, MS, Ph.D.

P2 H, R BS

P3 F, D, S BS, MS

P4 F BS, MS

P5 F, D BS

P6 R BS

The set of objects is OB={P1,...,P6}, and  the given properties of these objects are of

the form 'speaking a language' and 'having a degree'. Thus, we have the attribute set

AT={Language (Lan), Degree (Deg)}, and the sets VALDeg={BS, MS, Ph.D.}, VALLan={D, F,

H, R, S} of values of these attributes. According to the information given in our file, P2

possesses the property Lan(P2) = {H, R} of speaking  Hungarian and Romanian, while

P3 does not possess those properties. Indeed, Lan(P2) is also the set of negative

Lan−properties of P3.

Nondeterministic information systems where descriptions of objects are tuples con-

sisting of subsets of values of attributes were introduced by Lipski (1976, 1979) un-

der the name systems with incomplete information. They are also used in symbolic

data analysis, e.g. Diday (1987), Diday and Roy (1988), Prediger (1997) and in rough

set−based data analysis, e.g.  Orlowska (Ed) (1997b), Wang , Düntsch, Bell (1998a),

Wang, Düntsch, Gediga (1998b).
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Apart from the explicit information given in an information system, any such system

contains implicit information.  This information has the form of relationships among

the objects of set OB which are determined by the properties of the objects. Typically,

the relationships have the form of binary relations, and they are referred to as infor-

mation relations derived from an information system. There are two major groups of

information relations:

• Relations that reflect various forms of indistinguishability of objects in terms of

their properties.

• Relations that indicate distinguishability of the objects.

The primary relation of indistinguishability is one of indiscernibility, in which objects

cannot be distinguished by the given attributes:

(x,y) ∈ ind(a) iff a(x) = a(y) for a ∈ OB.

Whereas relations of indistinguishability have been frequently studied and are well

understood, the situation of relations of indistinguishability is much less clear. Com-

plementarity and incomplementarity relations are typical examples of indistinguish-

ability relations; they are defined as follows: Let an information system S=(OB, AT,

{VALa: a∈AT}) be given, and suppose that A ⊆ AT. We define

Strong (weak) complementarity:

(x,y)∈com(A) (wcom(A)) iff a(x)=−a(y) for all (some) a∈A

Strong (weak) incomplementarity:

(x,y)∈icom(A) (wicom(A)) iff a(x)≠−−a(y) for all (some) a∈A.

We clearly have

com(A) = −wicom(A) and wcom(A) = −icom(A).

Many other families of information relations can be found in Orlowska (1998).

In our exemplary file we have, among others, (P2, P5) ∈ icom(Lan) which means that,

up to our present knowledge, P2 and P5 are not 'completely' distinct with respect to

the attribute Lan, because the set of Lan−properties of P2 is not equal to the set of

negative Lan−properties of P5. We also have Lan(P3)=−Lan(P2), and hence, (P3,

P2)∈com(Lan).

A decision table is an information system (OB, AT, d, {VALa: a∈AT}) with a special at-

tribute d adjoined, referred to as decision attribute. Sometimes, a finite family of deci-
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sion attributes is also considered. Usually, it is assumed that d(x) is a singleton set

for every object x. The values d(x) are referred to as decisions. The attributes from AT

are referred to as condition or independent attributes. As an example, we extend our

previous example by a column Emp, which we interpret as has found employment.

          Lan               Deg                         Emp

P1 F, D BS, MS, Ph.D. Yes

P2 H, R BS No

P3 F, D, S BS, MS Yes

P4 F BS, MS No

P5 F, D BS Yes

P6 R BS No

Every row of a decision table determines a decision rule in the following way: Suppose

that AT={a1, a2,...,an}. By the rule determined by an object x∈OB we mean the following

statement:

rx If the value of a1 for x is a1(x), and ..., and the value of an for x is an(x) then de-

cide d(x).

We abbreviate such a rule as

(a1,a1(x)) &...& ( an, an(x))→d(x).

Hence, the rules are statements determining a decision that depends on the proper-

ties of objects. At our level of analysis, we do not assume a specific interpretation of

the nature of nondeterminism, and thus, rules could be interpreted either way.

The fact that the relations derived from information systems are indexed with subsets

of the attribute set suggests that, in a general setting, a hierarchy of relative relations

may be constructed determined by the powerset hierarchy of a set PAR of parameters.

Such a hierarchy was presented in Orlowska (1988a), and it is further investigated in

Balbiani (1997), Demri (1998), Demri and Gore (1998), Demri and Konikowska

(1998), Balbiani and Orlowska (1999), Konikowska (1997). Its basic idea is as follows:

Let L1(PAR)=PAR and for n≥2 let Ln(PAR) be the family of finite subsets of Ln−1(PAR).

Then we can consider families of relations indexed with the elements of any level

Ln(PAR). Relations indexed with the elements of L1(PAR) form a family of relations in-

dexed by the elements of PAR. Information relations derived from an information sys-

tem as defined above are examples of relations indexed with the elements of L2(PAR),
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where PAR is the set of attributes of the information system. Relative relations of any

level greater than 2 appear naturally in representation of hierarchical information, see

Green et al. (1996).

In this paper we present  logics of complementarity and incomplementarity relations

of level 1 and 2.

3 Standard modal logics

To make the paper more self-contained, we present in this section a brief introduction

to standard modal logics and the technique of copying. The alphabet of the language

LAN<> of any standard propositional modal logic consists of an infinite, denumerable

set VP of propositional variables and propositional connectives of disjunction (∨),

conjunction  (∧), implication (→), negation (¬), and possibility (<>).  The set of formu-

las of LAN<> is the smallest set that includes VP and is closed with respect to the con-

nectives. As usual, we define the connectives of equivalence (↔) and necessity ([]) as

follows:

F↔G := (F→G)∧(G→F)

[]F:= ¬<>¬F.

A LAN<> −frame is a structure K=(W, R) such that W is a nonempty set (of states) and R

is a binary relation on W; we write R(w) to denote the set {w'∈W: (w,w')∈R}. A LAN<>

−model based on K is a triple M=(W, R, m) such that m: VP→Sb(W) is a meaning func-

tion which assigns sets of states to propositional variables. Intuitively, m(p) is the set

of states at which p is true. We extend the meaning function to all the formulas of

LAN<>; for the sake of simplicity we denote this extended mapping by m as well:

m(¬F)=W−m(F)

m(F∨G)=m(F)∪m(G)

m(F∧G)=m(F)∩m(G)

m(F→G)=(W−m(F))∪m(G)

m(<>F)={w∈W: R(w)∩m(F)≠∅}

The definition of [] now implies that

m([]F)=(w∈W: R(w)⊆m(F)}.

Satisfiability of formulas in a model by a state is defined inductively as follows:

M, w sat p iff w∈ m(p) for p∈VP
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M, w sat F∨G iff M, w sat F or M, w sat G

M, w sat F∧G iff M, w sat F and M, w sat G

M, w sat F→G iff M, w sat F implies M, w sat G

M, w sat ¬F iff not M, w sat F

M, w sat <>F iff there is w' such that (w,w')∈R and M, w' sat F.

We clearly have

w∈m(F) iff M, w sat F.

A formula F is said to be true in model M if m(F) =W. A formula F is true in frame K if it

is true in every model based on K.

Let C be a class of LAN<> −frames. A formula F is C−valid if it is true in every frame

K∈C. The logic L(C) of the class C of frames is the set of formulas that are true in every

member of C.

A standard normal modal logic L is a set of formulas of LAN<> that includes the follow-

ing formulas:

(1n) All tautologies of the classical propositional calculus,

(2n) []F∧[](F→G)→ []G,

and which is closed with respect to:

(3n) modus ponens rule (if F and F→G∈L then G∈L),

necessitation rule (if F∈L then []F∈L),

substitution (if F(p)∈L where p is a propositional variable occurring in F, then F(G)∈L,

where F(G) is obtained from F(p) by substituting a formula G for every occurrence of

p).

The minimal normal modal logic LK is the smallest set of formulas of LAN<> that satis-

fies the conditions (1n), (2n), (3n).

A logic L is said to be sound with respect to a class C of LAN<> −frames if for every

formula F of LAN<>,  F∈L implies that F is C−valid. The logic L is complete with respect

to class C if for every formula F of LAN<>, if F is C−valid then F∈L. It is well known

that LK is sound and complete with respect to the set of all LAN<> −frames.

Let (prop) be a property of binary relations and let C(prop) be the class of LAN<>

−frames (W, R) such that relation R satisfies the property (prop). The class C(prop) is

said to be definable in LAN<> iff there is a formula F of LAN<> such that for every frame

K∈C,
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K∈C(prop) iff F is true in K.

Recall that the composition R;S of two relations R,S on W is defined as

R;S = {(x,z): There is some y ∈ W such that (x,y) ∈ R and (y,z) ∈ S}.

For later reference, we mention the well known definability of frames (W,R), where R is

symmetric or 3 – transitive, i.e. where R;R;R⊆R:

3.1 Proposition

(a) K∈C(sym) iff F→[]<>F is true in K

(b) K∈C(3−tran) iff <><><>F→<>F is true in K. (QED)

In what follows we recall the notion of copying introduced in Vakarelov (1998) and the

related theorems that enable us to prove completeness of the logic L1 of complemen-

tarity in Section 5.

Let K=(W, R) and K'=(W', R') be two LAN<> −frames and let I be a nonempty set of func-

tions f: W→W'. I is a copying from K to K' if

(1c) W'=∪{f(W): f∈I}.

(2c)  If f(x)=g(y) then x=y.

(3c) If (x,y)∈R then for all f∈I there is g∈I such that (f(x), g(y))∈R'.

(4c) If (f(x), y')∈R' then there is g∈I and there is y∈W such that y'=g(y) and (x,y)∈R.

Let M and M' be models based on K and K', respectively. I is a copying from M to M' if

for all p∈VP, for all w∈W and for all f∈I,

M, w sat p iff M', f(w) sat p.

3.2 Proposition (V akarelov, 1998)

If  I is a copying from M=(W, R, m) to M'=(W', R', m') then for every formula F of LAN<>,

for every x∈W and for every f∈I, M,

w sat F iff M', f(x) sat F.

Proof: The proof is by induction with respect to the complexity of a formula. (QED)

We invite the reader to consult Chellas (1980) as a standard reference for modal logic.

4 Modal logics with sufficiency operators

Gargov et al. (1987) noted that
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“Kripke’s mathematical interpretation of ‘p is necessary (true) in x’ … only sharpens

but does not satisfy one’s desire to formally handle the ‘sufficiency’ phenomena as

well. The first and trivial attempt is to grammatically reduce the ‘sufficiency’ to ‘neces-

sity’ saying that ‘x is sufficient for p’ iff ‘p is necessary for x’, and this surely will not

enrich our knowledge.”

To remedy this deficiency they introduce sufficiency operators. The language LAN<<>>

of modal logics with sufficiency operators differs from LAN<> in that instead of opera-

tions <> and [], we use sufficiency operators <<>> and [[]]. Semantic notions for

LAN<<>> are similar to those defined in Section 3 for LAN<>.  A LAN<<>> −frame is a

structure of the form K = (W, R), and a LAN<<>> −model based on K has the form (W, R,

m),  where the meaning function m extends to the formulas with sufficiency operators

as follows: Let −R(w) be an abbreviation for (W2−R)(w); then,

m(<<>>F)= {w∈W: −R(w)∩(W−m(F))≠∅}

m([[]]F)={w∈W: −R(w)⊆m(F)}.

Satisfiability of formulas with sufficiency operators is defined as follows:

M, w sat <<>>F iff there is w'∈W such that (w,w')∉R and not M, w' sat F

M, w sat [[]]R iff for all w'∈W, if M, w' sat F then (w,w')∈R.

Any modal logic L with sufficiency operators is a set of formulas of LAN<<>> that in-

cludes the following formulas:

(1s) All the tautologies of the classical propositional calculus

(2s) [[]]F∧[[]](¬F∧G)→ [[]]G,

and which is closed with respect to

(3s) the modus ponens rule, sufficiency rule (if  F∈L then [[]]¬F∈L) and substitu-

tion.

The minimal modal logic LK* is the smallest set of formulas of LAN<<>> that satisfies the

conditions (1s), (2s), and (3s).

Definability of classes of frames in LAN<<>> is defined in the way analogous to de-

finability in LAN<>: Let (prop) be a property of binary relations and let C(prop) be the

class of LAN<<>> −frames (W, R) such that the relation R satisfies (prop). Class C(prop)

is said to be definable in LAN<<>> iff there is a formula F of LAN<<>> such that for every

frame K∈C, K∈C(prop) iff F is true in K. By way of example we show definability of ir-

reflexive frames:
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4.1 Proposition

K∈C(irref) iff F→<<>>¬F is true in K.

Proof: (→)  Let K=(W, R) be a frame such that R is an irreflexive relation, and suppose

that the formula F is not true in some model M=(W, R, m) based on K.  Hence, there is

some x∈W such that (i) M, x sat F and (ii) not M, x sat <<>>¬F.

It follows from (ii) that for all y∈W, either (x,y)∈R or M, y sat ¬F.  In particular, if y = x

we get (x,x)∈R which contradicts the assumption, or M, x sat ¬F which contradicts (i).

(←) Let the formula F be true in K, and suppose that R is not irreflexive, that is

(a,a)∈R for some a∈W. Consider the model M=(W, R, m) based on K such that for

some propositional variable p, m(p)={y∈W: (a,y)∈R}. We have M, a sat p, so we also

have M, a sat <<>>¬p.  But this means that there is some x∈W such that (a,x)∉R and

(a,x)∈R, a contradiction. (QED)

The following relationships between the logics LK and LK* are presented in Gargov et

al. (1987). Let t be a translation mapping from the set of formulas of LAN<> onto the

set of formulas of LAN<<>> defined as follows:

t(p)=p for p∈VP,

t(¬F)=¬t(F),

t(F•G)=t(F)•t(G) for • ∈ {∨, ∧, →, ↔},

t(<>F)=<<>>¬t(F),

t([]F)=[[]]¬t(F).

4.2 Proposition (Gargov et al, 1987)

For every formula F of LAN<>, F∈LK iff t(F)∈LK*. (QED)

Let M=(W, R, m) be a LAN<> −model, and consider the LAN<<>> −model M'=(W, W2−R, m).

Then the following holds:

4.3 Proposition

M, w sat F iff M', w sat t(F), i.e. a formula F of LAN<> is true in M iff t(F) is true in M'.

(QED)

Propositions 4.2 and 4.3 and the properties of the logic LK immediately lead to the

following result:
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4.4 Proposition

The logic LK* is sound and complete with respect to the class of all LAN<<>> −frames.

(QED)

The relationship between normal modal logics and logics with sufficiency operators is

the following: Let C be a class of LAN<> −frames, and consider the class C* of LAN<<>>

−frames defined by C*={(W, W2−R): (W, R)∈C}.

4.5 Proposition

Let (prop) be a property of binary relations. A class C(prop) of LAN<> −frames is defin-

able in LAN<> with a formula F iff C* (prop) is definable in LAN<<>> with the formula

t(F). (QED)

For example, it is known that reflexivity of relations is definable in LAN<> with the

formula F→<>F. In view of the above proposition, reflexivity of the complement of a

relation (and hence irreflexivity of the relation) is definable in LAN<<>> with the formula

F→<<>>¬F.

Similarly, in view of Proposition 3.1, 3−transitivity of the complement of a relation is

definable in LAN<<>> with the formula <<>>[[]]<<>>F→<<>>F.   

5 A Logic for complementarity

Let R be a binary relation on a set W. By a standard complementarity frame we mean

any frame (W, R) such that R is an irreflexive, symmetric and 3−transitive relation on

W. Let COMs be the family of all standard complementarity frames. By a general com-

plementarity frame we mean a frame whose relation is symmetric and 3−transitive. Let

COMg be the family of all general complementarity frames.

Let L1 be the smallest set of LAN<> formulas which includes

(1com) All tautologies of the classical propositional calculus,

(2com) []F∧[](F→G)→ []G,

(3com) F→[]<>F,

(4com) []F→[][][]F,

and which is closed with respect to modus ponens, necessitation and substitution.

Dimiter Vakarelov (1998) has communicated the following result to us:
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5.1 Proposition

For every K∈COMg there are some K'∈COMs and a copying I from K to K'.

Proof: Let K=(W, R); we will construct K'=(W', R'). Let W'=W×{1,−1}. For a ∈ {1, -1} let fa:

W → W’ be defined by fa(x) = (x,a); observe that each element of W’ has the form fa(x)

for some x ∈ W, a ∈ {1, -1}.

For a, b∈{1,−1}; we define the relation R' on W’ by

((x,a), (y,b)) ∈ R’ iff (x,y) ∈ R and a = -b.

It is easy to see that R' is irreflexive, symmetric and 3−transitive, and hence K' =

(W’,R’) ∈ COMs. Furthermore, it is easy to verify that I={f1, f−1} is a copying from K to K'.

(QED)

5.2 Proposition

The logic L1 is sound with respect to the classes COMs and COMg. (QED)

5.3 Proposition

(a) The logic L1 is complete with respect to COMg

(b) The logic L1 is complete with respect to COMs.

Proof: Since all the properties of a relation in general frames are definable in LAN<>,

the proof  of (a) can be easily obtained using standard techniques of modal logic.

The proof of (b) is due to D. Vakarelov (1998) and uses the copying method. Assume

that a formula F is true in all frames of COMs, and suppose that F∉L1. By (a) there is

a general frame K=(W, R) such that F is not true in K. Hence, there is a model M=(W,

R, m) based on K such that F is not true in M, that is, for some x∈W, we have not M,

x sat F. By Proposition 5.1, there are a standard frame K' = (W', R'), and a copying I

from K to K'. We can now define the model M' based on K' such that m'(p)={f(x)∈W':

x∈m(p), f∈I}. It follows that I is a copying from M to M'. By Proposition 3.2 we have not

M', f(x) sat F, which contradicts the assumption. (QED)

Proposition 5.3 shows that the logic L1 is too weak to distinguish between standard

and general complementarity frames.
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6 A logic of complementarity and incomplementarity

Let LAN<>,<<>> be the join of the languages LAN<> and LAN<<>>.  Let CI (Complementarity

+ Incomplementarity) be the class of frames (W, R, S) such that

(i) W is a nonempty set,

(ii) R is a symmetric and 3−transitive relation on W,

(iii) S is a reflexive relation on W, and

(iv) R∪S=W2, R∩S=∅.

Observe that these frames have the status of standard frames. Although

neither irreflexivity of R nor symmetry of S are assumed explicitly, irreflexivity of R is

guaranteed by reflexivity of S, and symmetry of S is guaranteed by symmetry of R,

since R = -S. The standard notion of modal definability of frames assumes implicitly

that the formula that defines a property of a relation contains a modal operator that is

determined by that relation. The considerations of this paper suggest that in fact this

notion should be broader. In the context of multi−modal logics, one might admit a

relative definability, that is, a definability of a property of a relation, say A, via a prop-

erty of some other relation(s) together with a relationship between A and those rela-

tions.

Let L2=L(CI) be the logic of the class CI of  frames. In the sequel, we present a rela-

tional proof system for this logic, and we show its completeness with respect to the

class of relational models determined by CI. Relational formalization of nonclassical

logics and relational proof systems were suggested in Orlowska (1988, 1996, 1997a).

Suppose that VR is an infinite, denumerable  set of relational variables, and R, S are

relational constants (representing the accessibility relations of CI frames). Relational

terms are generated by VR∪{R, S} with the relational operations of union, intersection,

complement, and relative product (;).  A relational logic ReL2 for L2 is the logic whose

formulas are of the form xAy, where x, y are individuum variables taken from an infi-

nite set VI, and A is a relational term.

Models for the relational logic ReL2 are structures of the form M=(W, m), where W is a

nonempty set, and m:VR∪{R, S} →Sb(W×W) is a meaning function that assigns binary

relations on W to relational variables and constants, and satisfies the following condi-

tions:
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(i) m(A);(W×W)=m(A) for A∈VR (that is the relation variables are mapped into right

ideal relations),

(ii) m(R) is a symmetric and 3−transitive relation,

(iii) m(S) is a reflexive relation,

The function m extends to all the relational terms in a homomorphic way, that is

m(−A)=−m(A),m(A∪B)=m(A)∪m(B),  m(A∩B)=m(A)∩m(B),  m(A;B)=m(A);m(B),

and, moreover, m(R)∪m(S)=W2 and  m(R)∩m(S)=∅.

By a valuation in M we understand a function v:VI→W assigning elements of W to the

individuum variables.  A relational formula xAy is satisfied by v in M, written as M,v

sat xAy, whenever (v(x),v(y))∈m(A), i.e.

M,v sat xAy iff (v(x),v(y))∈m(A).

A formula xAy is true in M iff M,v sat xAy for all valuations v in M, and xAy  is valid in

ReL2 iff it is true in all models for ReL2. In other words, the formula xAy is true in a

model M whenever m(A)=W2.

Next, we define a relational translation RT of formulas of L2 into formulas of ReL2.

Let t': VP→VR be a bijection from propositional variables to relational variables. Then

we define

RT(p)=t'(p)

RT(¬F)=−RT(F)

RT(F∨G)=RT(F)∪RT(G)

RT(F∧G)=RT(F)∩RT(G)

RT(F→G)=−RT(F)∪RT(G)

RT(F↔G)=RT(F→G)∩ RT(G→F)

RT(<>F)=R;RT(F)

RT([]F)=−(R;−RT(F))

RT(<<>>F)=−S;−RT(F)

RT([[]]F)=−(−S;RT(F)).

The semantic relationship between the logic L2 and the relational logic ReL2 is estab-

lished in the following results.
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6.1 Proposition

For every model M=(W, R, S, m) of L2 there is a  model M`=(W, m') of the relational

logic ReL2 such that for any formula F of L2 and for any w∈W we have:

(i) M,w sat F iff (w,z)∈m'(t(F)) for all z∈W.

Proof: We define the desired model M' as follows: Its universe coincides with the universe W of M. If

P∈VR and P=t'(p) for a propositional variable p, then we set m'(P)=m(p)×W. For the constants R and S we

set m'(R)=R, m'(S)=S, that is, the meaning of the constants in the relational model are the relations from the

model M, denoted by the respective constants; we use the same symbols for both of them. The proof of the

required condition is by induction with respect to the complexity of F. We only show the induction step for

a formula of the form <<>>F, since the rest is straightforward. We have M, x sat <<>>F iff there is y∈W

such that (x,y)∉S and not M, y sat F. By the induction hypothesis (x,z)∉m'(t(F)) for all z∈W which yields

(x,z)∈−m'(S);−m'(t(F))=m'(−S;−t(F))=m'(t(<<>>F)). (QED)

6.2 Proposition

For every model M'=(W, m') of the relational logic ReL2, there is a model M of L2 such

that condition (i) of Proposition 6.1 is satisfied.

Proof: We define the model M as follows: Its universe coincides with the universe W of

M'. Accessibility relations in M are the relations m'(R) and m'(S). For any propositional

variable p we put m(p) = domain of m'(P) where P = t'(p). By induction on the com-

plexity of a formula F one can easily show that condition (i) is satisfied. (QED)

6.3 Proposition

A formula F of the logic L2 is CI−valid iff the relational formula xRT(F)y is valid in

ReL2.

Proof: (→) Let F be CI−valid and suppose that there is a model M=(W, m) of ReL2 and

a valuation v in M such that not M, v sat xRT(F)y. It follows that there are a, b∈W

such that (a,b)∉m'(RT(F)). By Proposition 6.2 there is a model M' of L2 with the uni-

verse W such that for any w∈W, M', w sat F iff (w,z)∈m'(RT(F)) for all z∈W. Conse-

quently, not M', a sat F, a contradiction.

(←) Assume that for every model (W, m) of ReL2 we have m'(RT(F))=W2, and suppose

that there are a frame K=(W, R, S) ∈CI,  a model M based on K, and some w∈W such

that not M, w sat F. By Proposition 6.1 there is a model M'=(W, m') of ReL2 such that
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M, w sat F iff (w,z) ∈ m'(RT(F)) for all z ∈ W. It follows that (w,z) ∉ m'(RT(F)) for some z,

a contradiction. (QED)

7 A relational proof system for the logic L2

The proof system for the relational logic ReL2 is a Rasiowa−Sikorski style system (Ra-

siowa and Sikorski 1963); it consists of the rules that apply to finite sequences of re-

lational formulas. There are two groups of rules, namely, decomposition rules and

specific rules. Decomposition rules enable us to decompose formulas into a sequence

of simpler formulas; we shall see that decomposition depends on relational operations

occurring in a formula. As a result of decomposition, we obtain finitely many new se-

quences of formulas.

The specific rules enable us to modify a sequence to which they are applied; they have

a status of structural rules. The role of axioms is played by what is called fundamen-

tal sequences. In what follows, K and H denote finite, possibly empty, sequences of

formulas of the relational logic. A variable is said to be restricted in a rule whenever it

does not appear in any formula of the upper sequence in that rule.

(DEC) Decomposition rules:

(∪) K, xA∪By, H (−∪) K, x−(A∪B)y, H

K, xAy, xBy, H K, x−Ay, H     K, x−By, H

(∩) K, xA∩By, H (−∩) K, x−(A∩B)y, H

K, xAy, H     K, xBy, H K, x−Ay, x−By, H

(−−) K, x−−Ay, H

K, xAy, H

(;) K, xA;By, H

K, xAz, H, xA;By     K,  zBy, H, xA;By, where z is a variable

(−;) K, x−(A;B)y, H

K, x−Az, z−By, H,    where z is a restricted variable
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(SPE) Specific rules:

(ideal) K, xAy, H

K, xAz, H, xAy, where z is a variable, A∈VR

(symR) H, xRy, H

H, yRx, H

(3−tranR)       K, xRy, H

K, xRz, H, xRy    K, zRt, H, xRy    K, tRy, H, xRy

where z, t are variables

(−R) K, x−Ry, H

K, xSy, H, x−Ry

(−S) K, x−Sy, H

K, xRy, H, x−Sy

(cut) K

K, xAy       K, x−Ay for A ∈ {R, S}

(FND) Fundamental sequences:

A sequence of formulas is said to be fundamental whenever it contains a subsequence

of one of the following forms:

(f1) xAy, x−Ay,  where A is a relational term

(f2) xSx

(f3) xRy, xSy

A sequence K of relational formulas is valid in ReL2 iff for every model (W,v) of the re-

lational logic ReL2, there is a formula in K which is satisfied in (W,v); it follows that

sequences of  formulas are interpreted as (metalevel) disjunctions of their elements. A

relational rule of the form K/{Ht: t∈T} is admissible in ReL2 whenever

The sequence K is valid in ReL2 iff for all t∈T the sequence Ht is valid in ReL2.
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7.1 Proposition

(a) The rules given above are admissible in ReL2.

(b) The fundamental sequences are valid in ReL2.

Proof: (a) Admissibility of decomposition rules follows from the definitions of the rela-

tional operations.  The rules (−R) and (−S) are admissible iff S ⊆ −R and R ⊆ −S, re-

spectively, and these conditions hold due to the fact that R∩S = ∅ is satisfied in CI

frames. The remaining specific rules are admissible due to the respective properties of

relations reflected in the names of the rules.

The sequence (f2) is valid due to reflexivity of S. The sequence (f3) is valid due to the

condition S∪R=W2  which holds in CI frames. (QED)

Relational proofs have the form of trees. Given a relational formula xAy, where A

might be a compound relational expression, we successively apply decomposition or

specific rules. In this way, we form a tree whose root consists of xAy and whose nodes

consist of finite sequences of relational formulas. We stop applying rules to the for-

mulas in a node after obtaining a fundamental sequence, or when none of the rules is

applicable to the formulas in this node. A branch of a proof tree is said to be closed

whenever it contains a node with a fundamental sequence of formulas. A tree is

closed iff all of its branches are closed.

7.2 Proposition (Completeness theorem)

A relational formula xAy is valid in ReL2 iff there is a closed proof tree with root xAy.

Proof: (→) Suppose that there is no closed proof tree for xAy, and consider a tree sat-

isfying the following conditions for every non−closed branch b. We write G∈b when-

ever a formula G is a member of a sequence of formulas in a certain node of b.

(b1) xAy∈b

(b2) If x(B∪C)y (x−(B∩C)y)∈b, then both xBy (x−By)∈b and xCy (x−Cy)∈b are ob-

tained by application of rule (∪) (resp. (−∩)).

(b3) If x−(B∪C)y (x(B∩C)y)∈b, then, either x−By (xBy)∈b or x−Cy (xCy)∈b is obtained

by application of rule (−∪) (resp. (∩)).

(b4) If x(B;C)y∈b, then, for every z∈VI, either xBz∈b or zCy∈b is obtained by appli-

cation of rule (;).
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(b5) If x−(B;C)y∈b, then, for some z∈VI, x−Bz∈b and z−Cy∈b are obtained by appli-

cation of rule

(−;).

(b6) If x−−By∈b, then xBy∈b is obtained by application of rule (−−)

(b7) If xBy∈b with B∈VR, then, for every z∈VI, we have xBz∈b obtained by applica-

tion of rule (ideal).

(b8) If xRy∈b, then yRx∈B is obtained by application of rule (symR).

(b9) If xRy∈b, then, for every z, t∈VI, either of xRz, zRt, tRy belongs to b obtained by

application of rule (3−tranR)

(b10) If x−Ry∈b, then xSy∈b is obtained by application of rule (−R)

(b11) If x−Sy∈b, then xRy∈b is obtained by application of rule (−S)

(b12) For every x, y∈VI, either xAy∈b or x−Ay∈b, for A=R, S, obtained by application

of rule (cut).

Any tree satisfying conditions (b1),...,(b12) is referred to as a complete proof tree. The

standard proof−theoretic construction shows  that for every formula there is a  com-

plete proof tree with this formula in a root.

Let b be a non−closed branch of a complete proof tree. We define the system Mb=(Wb,

mb) such that

1. Wb = VI

2. mb(P) = {(x,y)∈Wb×Wb: xPy ∉ b} for P ∈ VR∪{R, S}.

We extend mb in a homomorphic way to all relational expressions. Observe that

(i) mb(R) is a symmetric relation on set Wb.

Let (x,y)∈mb(R), hence xRy∉b. If (y,x)∉mb(R), then yRx∈b, and by (b8) we have xRy∈b,

a contradiction.

(ii) mb(R) is a 3−transitive relation on Wb:

The proof is by an easy verification using condition (b9).

(iii) mb(S) is a reflexive relation on Wb:

Otherwise, assume that for some x we have (x,x)∉mb(S). It follows that xSx∈b, and

then branch b would be closed, a contradiction.

(iv) mb(R)∪mb(S)=Wb×Wb:
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Suppose that there are x, y∈VI such that (x,y)∉mb(R) and (x,y)∉mb(S). It follows that

xRy∈b and xSy∈b, and then branch b would be closed, a contradiction.

(v) mb(R)∩ mb(S)=∅:

Suppose that there are x, y such that (x,y)∈mb(R) and (x,y)∈mb(S). It follows that

xRy∉b and xSy∉b. By (b12) x−Ry∈b and by (b10) xSy∈b, a contradiction.

(vi) mb(P) is an ideal relation for any P∈VR:

This condition follows from (b7).

Let vb be a valuation in Mb such that vb(x)=x for every individual variable x. We say

that formula xBy is indecomposable whenever B∈VR∪{R, S}. Let INDb be the set of all

indecomposable formulas occurring in the nodes of branch b. From the definition of

mb we obtain

(vii) For every zBt∈INDb we have not Mb,vb sat zBt.

Next, we define an ordering of relational terms as follows:

1. If P is a relational variable then ord(P)=ord(R)=ord(S)=1.

2. If ord(B)=n then for any unary relational operation * we define ord(*B)=n+1.

3. If ord(B)≤n and ord(C)≤n and at least one of the inequalities is =, then for every bi-

nary relational operation # we define ord(B#C)=n+1.

We will show that:

(viii) not Mb,vb sat xAy:

Otherwise, assume the negation, and let Xb be the set of formulas zBt on b such that

Mb,vb sat zBt. Xb is nonempty since, by our assumption, it contains xAy. Let C be a

term of minimal order such that uCw is in Xb for some variables u, w. We show that

C must be either a relational variable or a relational constant: C cannot be of the form

u−Pw for a relational variable P or P=R, S: Otherwise we would have u−Pw ∈ b and

Mb,vb sat u−Pw; by definition of mb, the latter is equivalent to uPw ∈ b, and then

branch b would be closed.

Suppose that C is of the form C1;C2. Hence, the conditions

(a1) uC1;C2w ∈ b and

(a2) Mb,vb sat uC1;C2w
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hold. From (a1) and (b4) we conclude that for all z either uC1z ∈ b or zC2w ∈ b. From

(a2) we have that there is some t such that Mb,vb sat uC1t and Mb,vb sat tC2w.

Hence, either uC1t∈Xb or tC2w∈Xb, and C1,C2 have a smaller value of ord than C, a

contradiction.

In a similar way we show that C is neither an expression built with any other rela-

tional operators, nor a complemented compound expression.

In view of the above, uCw∈INDb, and hence, by (vii), we have not Mb,vb sat uCw, a

contradiction. This completes the proof of (viii).

We conclude that Mb is a model of the relational logic such that xAy is not true in Mb, a contradic-

tion.

The proof of part (←)follows from Proposition 7.1. (QED)

Next, we present two examples of relational proofs of formulas of the logic L2. Let G

be the formula

[[]]¬F→[]F.

This formula is true in a frame (W, R, S) iff R ⊆ −S. For the sake of simplicity, let us

denote TR(F) by F. Then the relational translation of G is RT(G)=(−S;−F) ∪ −(R;−F).

xRT(G)y

(∪)

x(−S;−F)y, x−(R;−F)y

(−;) z is a restricted variable

x(−S;−F)y, x−Rz, zFy,...

(;) new variable:= z

x−Sz, x−Rz, zFy,... z−Fy, x−Rz, zFy,...

(−S) fundamental (f1)

    xRz, x−Rz, zFy,...

    fundamental (f1)

As another example consider the formula G = F→[[]][[]]F. It is true in the frame (W, R,

S) iff the relation S is symmetric. Its relational translation is RT(G)=−F∪−(−S;−(−S;F)).

xRT(G)y
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(∪)

x−Fy, x−(−S;−(−S;F))y

(−;) z is a restricted variable

x−Fy, xSz, z−S;Fy

(;)  new variable:=x

x−Fy, xSz, z−Sx,... x−Fy, xSz, xFy,...

(−S) fundamental (f1)

            x−Fy, xSz, zRx,...

(symR)

x−Fy, xSz, xRz,...

fundamental (f3)

8 Logics of relative complementarity and incomplementarity

In this section we discuss logics for the relations of complementarity and incomple-

mentarity of level 2. Let K=(W,{R(P):P⊆PAR}) be a relational system such that U is a

nonempty set, PAR is a nonempty finite set, and each R(P) is a binary relation on W.

We say that K is an information frame with strong relations, if for all P,Q ⊆ PAR the

relations of K satisfy the following conditions:

1. R(P∪Q)=R(P)∩R(Q)

2. R(∅)=U×U.

K is called an information frame with weak relations if for all P,Q ⊆ PAR the relations

of K satisfy the following conditions:

1. R(P∪Q)=R(P)∪R(Q)

2. R(∅)=∅

We now define complementarity and incomplementarity frames with relative relations:

Strong complementarity frame (SCOM):

Strong, symmetric, 3−transitive and irreflexive relations.

Weak complementarity frame (WCOM):

Weak, symmetric and irreflexive relations, and for all a∈A, R({a}) is 3−transitive

Strong incomplementarity frame (SICOM):

Strong, symmetric and reflexive relations such that −R({a}) is 3−transitive for all a∈A.
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Weak incomplementarity frame (WICOM):

Weak, symmetric and reflexive relations whose complements are 3−transitive.

Let T(PAR) be the set of terms over the Boolean algebra of subsets of PAR. The ade-

quate language for expressing properties of the above relations of level 2 is a multi-

modal language LAN(PAR)<>,<<>> with multiple modal operators of possibility <R(P)>

and sufficiency <<R(P)>>, where P∈T(PAR), and each operator is determined by a

relative complementarity or incomplementarity relation.

8.1 Proposition

Let K=(W, {R(P): P⊆PAR}) be a frame with relative relations. Then

(a) <<R(P∪Q)>>F→<<R(P)>>F∨<<R(Q)>>F is true in K iff R(P) ∩R(Q)⊆R(P∪Q)

(b) <<R(P)>>F∨<<R(Q)>>→<<R(P∪Q)>>F is true in K iff R(P∪Q)⊆R(P)∩R(Q)

(c) <R(P∪Q)>F→<R(P)>F∨<R(Q)>F is true in K iff R(P∪Q)⊆R(P)∪R(Q)

(d) <R(P)>F∨<R(Q)>F→<R(P∪Q)>F is true in K iff R(P)∪R(Q)⊆R(P∪Q)

(e) ¬<<R(∅)>>false is true in K iff R(∅)=W×W where 'false' denotes a formula of the

form F∧¬F

(d) ¬<R(∅)>true is true in K iff R(∅)=∅ where 'true' denotes a formula of the form

F∨¬F.

Proof: By way of example we prove (a) and (e).

(a)(→) Suppose that there are a,b∈W such that (a,b)∈R(P)∩R(Q) and (a,b)∉R(P∪Q).

Consider a model based on K, such that

m(p)={y∈W: (a,y)∉R(P)∩R(Q)}

for some propositional variable p. It is easy to show that M, a sat <<R(P∪Q)>>p and

not M, a sat <<R(P)>>p∨<<R(Q)>>p, a contradiction.

(a)(←) This part of the proof is by an easy verification.

(e) Truth in K of this formula means that for every model M based on K and for every

x∈W, not M, x sat  <<R(∅)>>false. Equivalently, for every x∈W it is not the case that

there is y∈W such that not M, y sat false and (x,y)∉R(∅).  We conclude that for every

x∈W, for every y∈W, not (x,y)∉R(∅) which completes the proof. (QED)

A relational formalization of logics of strong (weak) complementarity and incomple-

mentarity frames contains the rules and fundamental sequences that reflect strong-

ness or weakness of the respective relations:
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(s) K, xR(P∪Q)y, H (−s) K,  x−R(P∪Q)y, H

K, xR(P)y, H K, xR(Q)y, H K, x−R(P)y, x−R(Q)y, H

(w) K, xR(P∪Q)y, H (−w)          K, x−R(P∪Q)y, H

K, xR(P)y, xR(Q)y, H K, x−R(P)y, HK, x−R(Q)y,

H

(fs) xR(∅)y

(fw) x−R(∅)y

Let L(SCOM) be the logic of strong complementarity frames. By ReL(SCOM) we mean

the relational logic for L(SCOM) defined in a simalar way as the logic ReL2 presented

in section 6. Then the theorems analogous to Propositions 6.1, 6.2, 6.3 hold. The

translation from formulas of L(SCOM) into relational formulas is analogous to the

translation RT and it will be denoted by RT as well.

The relational proof system D(SCOM) for the logic L(SCOM) consists of the following

rules: all the decomposition rules from (DEC), (s), (−s), (ideal), and, for every R(P) with

P ∈ T(PAR), the rules of the form (symR), (3−tranR) and (cut). The fundamental se-

quences are: (f1), (fs), and

(f4) any sequence containing x−R(P)y for P∈T(PAR).

8.2 Proposition

A relational formula xAy is valid in ReL(SCOM) iff there is a closed proof tree with the

root xAy built according to the rules of the proof system D(SCOM).

Proof: This is similar to the proof of Proposition 7.2: To the definition of the complete

proof tree we add the conditions:

(b13) If xR(P∪Q)y∈b then either xR(P)y∈b or xR(Q)y∈b obtained by application of rule

(s)

(b14) If x−R(P∪Q)y∈b then both x−R(P)y∈b and x−R(Q)y∈b obtained by application of

rule (−s).

Then we show that in a model Mb the following conditions are satisfied:

1) mb(R(P∪Q))= mb(R(P))∩mb(R(Q)):

 (⊆) Let (i) (x,y)∈mb(R(P∪Q)), and suppose that (ii) (x,y)∉mb(R(P))∩mb(R(Q)). It follows

from (i) that xR(P∪Q)y∉b. By (b12), x−R(P∪Q)y∈b. By (b14), we have x−R(P)y∈b and

x−R(Q)y∈b. It follows from (ii) in the proof of Proposition 7.2, that (x,y)∉mb(R(P)) or

(x,y)∉mb(R(Q)), which yields xR(P)y∈b or xR(Q)y∈b; however, in this case, branch b

would contain a fundamental sequence, a contradiction.



25

 (⊇) Let (x,y)∈mb(R(P))∩mb(R(Q)). It follows that xR(P)y∉b and xR(Q)y∉b. Suppose that

(x,y)∉mb(R(P∪Q)). We obtain xR(P∪Q)y∈b. By (b13) xR(P)y∈b or xR(Q)y∈b, a contra-

diction.

2) mb(R(∅))=Wb×Wb:

 Suppose that there are x, y ∈ VI such that (x,y) ∉ mb(R(∅)). This means that xR(∅)y∈b,

but then b would contain a fundamental sequence of the form (fs), a contradiction.

3) mb(R(P)) is irreflexive:

Suppose that there is some x∈VI such that (x,x) ∈ R(P). It follows that xR(P)x ∉ b. By

(b12) we have x−R(P)x∈b; but then, branch b would contain a fundamental sequence

of the form (f4), a contradiction.

The proof of symmetry and 3−transitivity of relations mb(R(P)) is the same as in the

proof of Proposition 7.2. (QED)

The relational proof system for the logic L(WCOM) of weak complementarity frames

consists of rules (DEC), (w), (−w), (ideal), for every R(P) with P∈T(PAR), the rules of the

form (symR) and (cut), and for every R({a}) with a∈PAR, of the rule of the form

(3−tranR); the fundamental sequences are (f1), (fw) and (f4). The proof of the com-

pleteness theorem  is similar to the proof of 8.2. In the definition of the complete proof

tree we add the conditions:

(b13') If xR(P∪Q)y∈b, then both xR(P)y∈b and xR(Q)y∈b are obtained by application of

rule (w).

(b14') If x−R(P∪Q)y∈b, then either x−R(P)y∈b or x−R(Q)y∈b are obtained by application

of rule (−w).

Then we show that in model Mb the following conditions are satisfied:

(a) mb(R(P∪Q))= mb(R(P))∪mb(R(Q))

(b) mb(R(∅))=∅
(c) mb(R(∅)) is irreflexive.

By way of example we show condition (b): Suppose that there are x, y ∈ VI such that

(x,y)∈mb(R(∅)). It follows that xR(∅) ∉ b. By (b12), we have x−R(∅)y∈b, a contradiction

because a fundamental sequence of the form (f4) cannot belong to b.

The rest of the proof follows the lines of the proof of Proposition 8.2.

The rule reflecting 3−transitivity of the complement of a relation is as follows:

(3−tran−R) K, x−Ry, H

K, x−Rz, H, x−Ry K, z−Rt, H, x−Ry K, t−Ry, H, x−Ry

z, t are variables
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Clearly, the rule is admissible in a relational logic iff the relation −R is 3−transitive in

all models of that logic.

The relational proof system for logic L(SICOM) of strong incomplementarity frames

consists of the rules (DEC), (s), (−s), (ideal), for every R(P) with P∈T(PAR) of the rules of

the form (symR) and (cut), and for every R({a}) with a∈PAR of the rule of the form

(3−tran−R). The fundamental sequences are: (f1), (fs) and

(f5) any sequence containing formula xR(P)x for P∈T(PAR).

The relational proof system for the logic L(WICOM) of weak incomplementarity frames

consists of the rules (DEC), (w), (−w), (ideal), and for every R(P) with P∈T(PAR) of the

rules of the form (symR), (cut) and (3−tran−R). The fundamental sequences are: (f1),

(fw) and (f5).

The respective completeness proofs are analogous to the proof of Proposition 7.2 ex-

tended in a similar way to that presented for the logics of complementarity relations

in Proposition 8.2.

In what follows we present two examples of relational proofs in the logics presented

above: Consider the formula

G = <<R({a})>>[[R({a})]]<<R({a})>>F→<<R({a})>>F.

We show that G∈L(SICOM). For the sake of simplicity in the formulas below we shall

write R and F instead of R({a}) and RT(F), respectively. The relational translation of G

is

RT(G)=−(−R;(−R;(−R;−F)))∪(−R;−F).

Now,

xRT(G)y

(∪)

x−(−R;(−R;(−R;−F)))y, x−R;−Fy

(−;) z is a restricted variable

xRz, z−(−R;(−R;−F))y, x−R;−Fy

(−;) t is a restricted variable

xRz, zRt, t−(−R;−F)y, x−R;−Fy

(−;) u is a restricted variable

xRz, zRt, tRu, uFy, x−R;−Fy

(;) new variable :=u

xRz, zRt, tRu, uFy, x−Ru,... xRz, zRt, tRu, uFy, u−Fy,...

(3−tran−R) new variables:=z, t fundamental (f1)

.....x−Rz,... ....z−Rt,... ....t−Ru,...

fund. (f1)     fund. (f1)     fund. (f1)
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Next, we show that formula

G=<R(∅)><R(∅)>F→<R(∅)>F

belongs to the logics of strong frames of complementarity or incomplementarity. We

have

RT(G)=−(R;(R;F))∪(R;F).

Now,

xRT(G)y

(∪)

x−(R;(R;F))y, xR;Fy

(−;) z is a restricted variable

x−Rz, z−(R;F)y, xR;Fy

(−;) t is a restricted variable

x−Rz, z−Rt, t−Fy, xR;Fy

(;) new variable :=t

x−Rz, z−Rt, t−Fy, xRt,... x−Rz, z−Rt, t−Fy, tFy,...

fundamental (fs) fundamental (f1)

9 Conclusion and outlook

In this paper we proposed a relational methodology for analyzing and reasoning about

complementarity of objects in information systems. We presented relation-based con-

cepts of complementarity/incomplementarity, and we exhibited their role in knowl-

edge representation. We showed how various forms of complementar-

ity/incomplementarity appear in information systems depending on the properties of

their objects. We developed modal formalisms for reasoning about families of com-

plemetarity/incomplementarity relations. Their semantics is based on complementar-

ity/incomplementarity frames. For these logics we constructed relational proof sys-

tems and we proved their completeness.

In the forthcoming paper (Düntsch and Orlowska, 1999) we continue investigating

complementarity, and we present classes of information algebras with the information

operators determined by complementarity relations. The algebras are referred to as

the complementarity algebras. We develop the Jónsson-Tarski style duality theory for

the complementarity frames and the complementarity algebras.
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