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Abstract

Classi�catory data �ltering is concerned with reducing data in size while preserving classi-

�cation information. Düntsch and Gediga [2] presented a �rst approach to this problem. Their

technique collects values of a single feature into a single value. In this paper we present a novel

approach to classi�catory �ltering, which can be regarded as a generalisation of Düntsch and

Gediga's approach. This approach is aimed at collecting values of a set of features into a single

value. We look at the problem abstractly in the context of lattice. We focus on hypergranules

(arrays of sets) in a problem domain, and it turns out the collection of all hypergranules is a lat-

tice. Our solution (namely LM algorithm) is formulated to �nd a set of maximal elements for

each class, which covers all elements in a given dataset and is consistent with the dataset. This

is done through the lattice sum operation. In terms of decision systems, LM collects attributes

values while preserving classi�cation structure.

To use the �ltered data for classi�cation, we present and justify two measures (C0 and C1)

for the relationship between two hypergranules. Based on the measures, we propose an algorithm

(C2) for classi�cation.

Both algorithms are evaluated using real world datasets and are compared with C4.5. The

result is analysed using statistical test methods and it turns out that there is no statistical differ-

ence between the two. Regression analysis shows that the reduction ratio is a strong indicator of

prediction success.

Keywords: arti�cial intelligence, machine learning, rough set, data �ltering, data reduction, de-

cision system, lattice.

1 Introduction

Data reduction is a process which is used to transform raw data into a more condensed form without

losing signi�cant semantic information. In data mining, data reduction in a stricter sense refers to
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feature selection and data sampling [15]; in a broader sense, data reduction can be regarded as the

main task of data mining [4].

Horizontal reduction consists of identifying several rows in a data table according to speci�ed criteria.

The identi�cation of suitable rows has the welcome effect of strengthening rules in the following

sense: If the prediction of a decision attribute is based on a few values only, the statistical signi�cance

of the rule may be low, and it cannot be ruled out that the rule is due to chance; data reduction may

enhance the statistical basis of the rule, and thus increase its signi�cance [1].

Discretization of continuous attributes which constructs intervals within data domains and collects

attribute values within each of the intervals is a well known device of data analysis and prediction.

However, in most discretization methods, parameters outside the given data have to be assumed in

order for the procedure to work. The choice of these parameters is largely subjective, and may result

in unwelcome decontextualisation. On the other hand, classi�catory data �ltering as explained below

uses only the structural information given by the data under consideration, and does not take into

account numerical information of the data domains; neither does it introduce additional parameters.

Indeed, it stays on the level of operationalization in the sense of [6], and therefore it can be used as a

safe pre-processing mechanism before �harder� computational methods are employed.

A �rst approach to classi�catory data �ltering was taken by [2]. This technique collects values of a

feature into a single value by taking a union of deterministic equivalence classes which are totally

contained in a class of the decision attribute. For example, if we have an attribute q and a rule

If q = 2 or q = 3 or q = 5 then d = blue,

then we can collect 2,3,5 into a single attribute value of q.

The important feature of this procedure is that the internal dependency structure of the system is kept

intact, and that one does not need additional parameters as other more sophisticated methods.

As an example, consider the famous Iris data. The data used by [5] to demonstrate his discriminant

analysis consists of 50 specimen of each of the iris species Setosa, Versicolor, and Virginica, measured

by the features given in Tab. 1.

Table 1: Iris Data

Attribute Range in mm Classes Attribute Range in mm Classes

Sepal length 43 ≤ x ≤ 79 35 Petal length 10 ≤ x ≤ 69 23

Sepal width 22 ≤ x ≤ 44 43 Petal width 1 ≤ x ≤ 25 22
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The column �classes� tells us, how many of the attribute values are actually taken by the specimen.

On inspection of the data, we �nd, for example, the rules

If �Petal width� ∈ {1, . . . , 6}, then �Species� = Setosa

If �Petal width� ∈ {10, . . . , 13}, then �Species� = Versicolor

If �Petal width� ∈ {17, 20, . . . , 25}, then �Species� = Virginica

If we collect the appropriate values into one single set, then the number of �Petal width� classes is

reduced to eight. The complete analysis is given in Tab. 2. There, the new number of values of the

attribute is given in brackets, e.g. after collecting non�splitting values into one, Sepal Length takes

only 22 values, compared to 35 before. The column # tells us, howmany objects are described by this

new value; for example, the set {10, . . . , 19} of values of Petal Length determines all of the Setosa

class.

Table 2: One dimensional classi�catory �ltering

Sepal length (22) Sepal width (16)

Filter # Filter #

Setosa 43�48, 53 17 Setosa 35, 37, 39�44 15

Versicolor 66,70 3 Versicolor 20,24 4

Virginica 71�79 12 Virginica � �

Petal length (8) Petal width (8)

Filter # Filter #

Setosa 10�19 50 Setosa 1�6 50

Versicolor 30�44,46,47 37 Versicolor 10�13 28

Virginica 52, 54�69 34 Virginica 19�25 34

In this paper, we generalize this one dimensional approach to more attributes by allowing sets of

attribute values in more than one column as entries in a data table. These hypergranules 1 can be

made into a semilattice in a natural way, and a hypergranule can represent one or more rows of our

data table, according to the relation of their values with respect to a decision attribute.

The paper is structured as follows: In Section 2 we recall some de�nitions from lattice theory and

introduce our notation of data relations and decision systems. Section 3 will provide the formal

reduction machinery. Classi�cation based on the �ltered data is discussed in Section 4. An example

is presented in Section 5 to illustrate both the �ltering method and the classi�cation method. The

proposed methods are evaluated and the results and analysis are reported in Section 6. In Section 7

related work is discussed and compared. Finally Section 8 summarises and concludes the paper.
1The concept of hypergranule or hyper relation is �rst proposed in [12].
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2 De�nitions and notation

2.1 Order and lattices

A partial order on a set P is a binary relation ≤ with the properties

x ≤ x, (Re�exive)

x ≤ y and y ≤ x imply x = y, (Antisymmetric)

x ≤ y and y ≤ z imply x ≤ z. (Transitive)

Suppose that P = 〈P,≤〉 is a partially ordered set and T ⊆ P . T is called an antichain if any two

elements of T are incomparable in ≤. We let ↓ T
def= {y ∈ P : (∃x ∈ T ) y ≤ x}. If T = {a}, we

will write ↓ a instead of ↓ {a}; more generally, if no confusion can arise, we shall usually identify

singletons with the element they contain.

A sup� semilattice L is a nonempty partially ordered set such that for each x, y ∈ L the least upper

bound x + y exists. The greatest element of L, if it exists, is denoted by 1; if L is �nite then 1 exists,

and it is equal to
∑

a∈L a. An element a ∈ L is called maximal, if a 6= 1 and for all b ∈ L,

a � b ⇒ b = 1.

If A, B ⊆ L, we write A 4 B if for each s ∈ A there is some t ∈ B such that a ≤ b; furthermore, we

set A + B = {a + b : a ∈ A, b ∈ B}.

Lemma 2.1. If A 4 B, B 4 A, and both A and B are antichains, then A = B.

Proof. Assume w.l.o.g. that a ∈ A \ B. Since A 4 B, there is some b ∈ B such that a ≤ b, and

B 4 A implies the existence of some c ∈ A with b ≤ c. Since a 6∈ B, we have a � c, contradicting

that A is an antichain.

For unexplained notation and background reading in lattice theory, we invite the reader to consult [7].

2.2 Decision systems

An information system is a tuple I = 〈U, Ω, Vx〉x∈Ω, where

1. U = {a1, . . . , aN} is a nonempty �nite set.

2. Ω = {x1, . . . , xT} is a nonempty �nite set of mappings xi : U → Vxi .
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We interpret U as a set of objects and Ω as a set of attributes or features each of which assigns to an

object a its value under the respective attribute. Let V
def= Πx∈ΩVx. For a ∈ U , we let

Ω(a) = 〈x(a)〉x∈Ω,(2.1)

Each Ω(a) is called a granule, and the collection of all granules is denoted by D. Clearly D ⊂ V .

Thus, if t ∈ D, there is some a ∈ U such that Ω(a) = t; if x ∈ Ω, then t(x) is just x(a).

A decision systemD is a pair 〈I, d〉, where I = 〈U, Ω, Vx〉x∈Ω is an information system as above, and

d : D � Vd = {m1, . . . , mK} is an onto mapping, called a labeling of D; the value d(t) is called

the label of t. We will also refer to d as the decision attribute.

The mapping d induces a partitionPd of D with the classes {M0, . . . , MK}, where

t ∈ Mi ⇐⇒ d(t) = mi.(2.2)

3 Collecting attribute values

In the sequel, we shall use D as described above as a generic decision system.

Let T be the set
∏

x∈Ω 2Vx; T is a + � semilattice (in fact, a Boolean algebra, but we will not need

this here) under the ordering

t ≤ s ⇐⇒ t(x) ⊆ s(x)

for all x ∈ Ω. The elements t of T with |t(x)| = 1 for all x ∈ Ω are called simple tuples. There is a

natural embedding of D into T by assigning

Ω(a) 7→ 〈{x1(a)}, {x2(a)}, . . . , {xT (a)}〉.(3.1)

and we shall identify D with result of this embedding.

It is our aim to reduce the data with respect to the classes of the decision attribute; this can be done

one class at a time. Thus, �x a class M in Pd belonging to m ∈ Vd, and let LM be the subsemilattice

of T generated by M ; the elements of LM are called hypergranules. We call an element r ∈ LM

equilabeled (with respect to M ), if ↓ r ∩ D ⊆ M . In other words, everything below r which is in D

is labeled m. Each equilabeled element may replace a number of elements of M , and thus, we result

in some form of data compression.

Let E be the set of all r ∈ LM which are equilabeled w.r.t. M . A cover of M is a set C ⊆ E such that

for each t ∈ M there is some c ∈ C such that t ≤ c, i.e. M 4 C.
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Clearly, M is a cover of itself. A less trivial example is the following: If for all t ∈ D and for some

x ∈ Ω,

If t(x) = a or t(x) = b, then t ∈ M,

then

C =
{∑

{t ∈ D : t(x) ∈ {a, b}}
}
∪ {t ∈ D : t(x) 6∈ {a, b}}.

is a cover.

If C is a cover, s, t ∈ C and s + t ∈ E , then (C \ {s, t}) ∪ {s + t} is also a cover with smaller

cardinality, i.e. with greater data reduction. This leads to the following de�nition: An E�set is a cover

C for which s, t ∈ C implies s + t 6∈ E . E�sets are those covers in which the sum of two elements is

not equilabeled with respect to M ; in particular, each E�set is an antichain.

A prime candidate for a set of hypergranules which can replace M is the set H of maximal elements

of E . Since M ⊆ E and each element of E is below or equal to some element of H , we see that H

covers M . It is clear that thisH is an E-set for M . Therefore our objective becomes, givenM , �nding

an E-set for M .

An algorithm to �nd H is as follows (LM - algorithm):

1. C1
def= M .

2. Ck+1
def= The set of maximal elements of [↓ (Ck + M)] ∩ E .

Each Ck is a subset of E , and Ck 4 [↓ (Ck +M)]∩E 4 Ck+1 . The �niteness of LM and the fact that

each Ck is an antichain now imply that there is some n such that Cn = Cn+1 , and therefore Cn = Cr

for all r ≥ n.

Claim: Cn = H .

Proof. We �rst show that (

i times︷ ︸︸ ︷
M + . . . + M)∩ E 4 Ci: This is clearly true for i = 1; thus, suppose that

it holds for all 1 ≤ j < i. Let t = t1 + . . . + ti ∈ E . Then, t2 + . . . + ti ∈ (

(i−1)� times︷ ︸︸ ︷
M + . . . + M) ∩ E ,

and thus, t2 + . . . + ti ∈ Ci. It follows that t ∈ (Ci + M) ∩ E , and hence, t is below some maximal

element of [↓ (Ci + M)] ∩ E = Ci.

Since Cn ⊆ E , and H is the set of maximal elements of E , we have Cn 4 H . By Lemma 2.1 it

suf�ces to show that H 4 Cn; indeed, since Ck 4 Cn for all k ∈ ω it is enough to show H 4 Ck for

some k. Thus, let t ∈ H ; then, t ∈ E and there are t0, . . . , tk ∈ M such that t =
∨

i≤k ti. It follows

from the previous result that there is some s ∈ Ck such that t ≤ s, which proves our claim.
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Figure 1: A labelled lattice showing that H is not the least cover of M .

We observe that H need not be the least cover of M in terms of cardinality, since there may be covers

C ( H . Consider the lattice in Figure 1. For the dark black class, LM �nd H = {a, b, c}. But {a, c}
is also a cover and has less number of elements.

4 Assigning new information

Suppose we have chosen for each class Mi of P an E�set Ei, i.e.

1. Each t ∈ Ei is a sum of elements of D,

2. Each t ∈ Ei is equilabeled mi,

3. Each element of Mi is below some t ∈ Ei,

4. If s, t ∈ Ei, then s + t 6∈ Ei.

5. Ei ∩ Ej = ∅ for i 6= j, since every element of Ei is equilabeled with mi.

To label t ∈ V , we have the following three cases:

• Single coverage: t ∈↓ Ei for one and only one i.

• Multiple coverage: t ∈↓ Ei for more than one i. In other words, ↓ Ei∩ ↓ Ej = ∅ is not true.

Suppose that we have the system given in Table 3. The hypergranules are 〈{0, 1}, {0, 1}〉 and
〈{0, 2}, {0, 2}〉 for the 0-class and 1-class respectively. Clearly 〈0, 0〉 is below both of them.

• Non coverage: t 6∈ Ei for any i. Due to the incompleteness of the data (decision system), the E-

sets may also be incomplete in the sense that they don't cover the whole data space. Therefore

it is possible that some t ∈ V is not covered by any Ei. Consider Table 3 again. Clearly 〈2, 1〉
is not below any of the hypergranules.

Our solution to the assignment problem is designed to address each of the above cases:
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Table 3: An example

U p q D

a 1 0 0
b 0 1 0
c 2 0 1
d 0 2 1

Single coverage

For t ∈ V , if there is only one Ei such that t ∈↓ Ei, it is reasonable to label t by mi.

Multiple coverage

For t ∈ V , if there are i and j such that t ∈↓ Ei and t ∈↓ Ej , then the labelling is determined by

whichever has the largest coverage of the elements in D. For example, if s0, s1 ∈ Ei, s2 ∈ Ej , and

t ≤ s0, t ≤ s1 and t ≤ s2, then we would label t by mi instead of mj . In our experience, however,

this case rarely happens in practice.

Non coverage

For t ∈ V , if there is no Ei such that t ∈↓ Ei, we would tend to examine the likelihood of each

s ∈
⋃

Ei potentially covering this t. By �potentially� we mean that if suf�cient information were

given in the dataset, t would be covered by s. The t is then labelled by the label of the s with the

greatest likelihood. The question now is: how to measure the likelihood of a tuple potentially covered

by an E-set? To introduce our solution, we look at the following example �rst.

Example 1. Let Ω = {X1, X2}, VX1 = {a, b}, VX2 = {0, 1}. The data space V = VX1 × VX2 is

shown in Table 4. The T is shown in Table 7. Now let Y be a decision attribute where VY = {α, β},
and assume that we have a decision system (dataset) as shown in Table 5. Using the algorithm

described above, we get two E-sets as shown in Table 6 with one for each class. Clearly tuple t =

u3 = 〈b, 1〉 in Table 4 is not covered by either E-set. Then uncertainty arises as to how to label t.

Looking at the problem tuple-wise, we �nd that t(X1) 6≤ u′
0(X1) but t(X2) ≤ u′

0(X2); and that

t(X1) ≤ u′
1(X1) but t(X2) 6≤ u′

1(X2). This seems that t should be equally likely labelled as either as

α or β. Looking at the X2 column, however, we �nd that there is the likelihood that 0 and 1 belong to

the same class (cluster) of the domain of X2, whereas the current model (in Table 6) doesn't support

putting a and b in the same cluster. Therefore it is more likely that t is labelled as β than as α.
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In the spirit of Example 1, we now formally describe our measures for the likelihood of one hyper-

granule happening given another hypergranule. Given two hypergranules, t0 and t1, we �rst of all

need a measure for the likelihood that t0 is covered by t1. Since t0 may not be fully covered by

t1 hence assuming t0 is covered by t1 may not preserve the structure in the dataset, we then need a

measure for the degree in which assuming this could preserve the structure. Displaying the E-sets in

a table (see Table 6), it turns out that each column represents a subset of the power set of the attribute

domain. This can be studied in the context of Evidence Theory [8].

Let X ⊆ Ω, and S
def= VX be the domain of X . Consider a mass function 2 m : 2S → [0, 1] such that∑

x∈2S m(x) = 1. Given a, b ∈ 2S , where m(b) 6= 0, the �rst measure is derived by answering this

question: what is the likelihood that b appears whenever a appears? In other words, if a appears, what

is the likelihood that b will be regarded as appearing as well? Denoting this likelihood by C0
X(b|a),

one solution is:

C0
X(b|a) =

∑
a∪b⊆c m(c)∑
b⊆c m(c)

C0
X (t1|t0) is the likelihood of t0(X)∪ t1(X) appearing relative to the likelihood of t1(X) appearing.

In the same spirit, another measure is de�ned as

C1
X(b|a) =

∑
c⊆b m(c)∑

c⊆a∪b m(c)

C1
X (b|a) measures the degree in which merging a and b preserves the existing structure embodied by

the mass function.

The de�nition of C0
X is easy to understand, and the signi�cance of C1

X can be illustrated as follows.

Example 2. Consider two intervals of the same length in Figure 2. We are interested in two cases:

non-overlapping and overlapping, as shown in the �gure. Given each of the 5 points on the top and

bottom �gures, we now calculate the C0 and C1 values assuming that the mass function is a linear

function of interval length:

C0(I1|t1) = 0, C1(I1|t1) = 1, C0(I2|t1) = 0, C1(I2|t1) = 0.5;

C0(I1|t2) = 1, C1(I1|t2) = 1, C0(I2|t2) = 0, C1(I2|t2) = 1;

C0(I1|t3) = 0, C1(I1|t3) = 1, C0(I2|t3) = 0, C1(I2|t3) = 1;

C0(I1|t4) = 0, C1(I1|t4) = 1, C0(I2|t4) = 1, C1(I2|t4) = 1;

C0(I1|t5) = 0, C1(I1|t5) = 0.5, C0(I2|t5) = 0, C1(I2|t5) = 1.
2In the context of decision table, the mass function can be regarded as the uniform distribution over the tuples in D

collapsed to the set of hypergranules. For an example, consider the decision system in Table 5. We can reasonably assume

a uniform distribution for the table. Collapsing the tuples in Table 5 as hypergranules in Table 6, we get a new distribution

over the hypergranules � u′
0 : 2/3, u′

1 : 1/3. Then the mass function for 2X2 becomes {0, 1} : 2/3, and {0} : 1/3.
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t1 t2 t3 t4 t5

s1 s2 s3 s4 s5

Case 1:

Case 2: 

I1: I2: 

Figure 2: A one dimensional example justifying the signi�cance of the two measures.

C0(I1|s1) = 0, C1(I1|s1) = 1, C0(I2|s1) = 0, C1(I2|s1) = 0.5;

C0(I1|s2) = 1, C1(I1|s2) = 1, C0(I2|s2) = 0, C1(I2|s2) = 1;

C0(I1|s3) = 1, C1(I1|s3) = 1, C0(I2|s3) = 1, C1(I2|s3) = 1;

C0(I1|s4) = 0, C1(I1|s4) = 1, C0(I2|s4) = 1, C1(I2|s4) = 1;

C0(I1|s5) = 0, C1(I1|s5) = 0.5, C0(I2|s5) = 0, C1(I2|s5) = 1.

Now assume that given any point, one of the interval must be �activated� (i.e., the interval is regarded

as appearing accordingly). Then intuitively, for t1, I1 other than I2 should be �activated� since

t1 is closer to I1 than to I2. This is re�ected by C0(I1|t1) = 0, C1(I1|t1) = 1, C0(I2|t1) =

0, C1(I2|t1) = 0.5. For t2, clearly I1 should be activated, which is re�ected by C0(I1|t2) = 1

and C0(I2|t2) = 0. For t3, both I1 and I2 are equally likely to be activated, which is re�ected by

C0(I1|t3) = 0, C1(I1|t3) = 1, C0(I2|t3) = 0, C1(I2|t3) = 1. Similar analysis can be done for t4

and t5. For s3, both I1 and I2 should be equally likely to be activated, which is re�ected by the fact

that C0(I1|s3) = 1, C1(I1|s3) = 1, C0(I2|s3) = 1, C1(I2|s3) = 1.

From this example, we can draw a two-stage decision rule: consider two intervals I1 and I2. Given

a point t, if C0(Ii1|t) > C0(Ii2|t), then Ii1 is more likely to be activated than Ii2 , where {i1, i2} =

{1, 2}; if C0(Ii1|t) = C0(Ii2|t) and C1(Ii1|t) > C1(Ii2|t), then Ii1 is more likely to be activated

than Ii2; otherwise, I1 and I2 are equally likely to be activated with regard to these two measures. In

this case we probably need to resort to other measures to decide which is more likely to be activated.

The above decision rule can be generalised to our case, if the set inclusion relation (⊆) is replaced by

the tuple ordering relation (≤) on page 3.

Example 3. Now let's look at Example 1 again. Assume a uniform distribution for the decision system

in Table 5. Given the model in Table 6, we want to classify a new tuple t =< b, 1 >. Using the above

de�nitions and letting X = {2X1, 2X2}, we have C0
X(u′

0|t) = 0, C0
X(u′

1|t) = 0; C1
X(u′

0|t) = 2/3,

C1
X (u′

1|t) = 1. These measures mean that t is not covered by u′
0 nor u′

1, and that merging t with u′
1

better preserves the structure than merging t with u′
0. Therefore we would classify t as β.
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U X1 X2

u0 a 0
u1 a 1
u2 b 0
u3 b 1

Table 4: A data space.

U X1 X2 Y

u0 a 0 α

u1 a 1 α

u2 b 0 β

Table 5: A decision system.

U 2X1 2X2 Y

u′
0 {a} {0, 1} α

u′
1 {b} {0} β

Table 6: The model.

2
VX2 ∅ {0} {1} {0, 1} ∅ {0} {1} {0, 1} ∅ {0} {1} {0, 1} ∅ {0} {1} {0, 1}

2
VX1 ∅ ∅ ∅ ∅ {a} {a} {a} {a} {b} {b} {b} {b} {a, b} {a, b} {a, b} {a, b}
U u′′

0 u′′
1 u′′

2 u′′
3 u′′

4 u′′
5 u′′

6 u′′
7 u′′

8 u′′
9 u′′

10 u′′
11 u′′

12 u′′
13 u′′

14 u′′
15

Table 7: The space of hypergranules.

The properties of C0
X(t1|t0) and C1

X(t1|t0) are stated in the following lemmas.

Lemma 4.1. C0
X(t1|t0) satis�es the following:

• 0 ≤ C0
X (t1|t0) ≤ 1.

• C0
X(t1|t0) 6= C0

X(t0|t1) in general.

• C0
X(t1|t0) = 1 if t0(X) ≤ t1(X).

• C0
X(t1|t0) = 0 if there is no t such that t0(X) ∪ t1(X) ≤ t(X).

Lemma 4.2. C1
X(t1|t0) satis�es the following:

• 0 ≤ C1
X (t1|t0) ≤ 1.

• C1
X(t1|t0) 6= C1

X(t0|t1) in general.

• C1
X(t1|t0) = 1 if t0(X) ∪ t1(X) doesn't cover any t(X) where t(X) 6= t0(X) and t(X) 6=

t1(X).

• C1
X(t1|t0) = 0 if t1(X) = ∅.

The proofs of the two lemmas are straightforward.

Having the above two measures, we devise the following algorithm (C2) for the assignment problem.

Let t ∈ V .

• For each s ∈
⋃

i Ei, calculate C0
Ω(s|t) and C1

Ω(s|t).

11



• Let Q be the set of s ∈
⋃

i Ei which have maximal C0
X values. If Q has only one element,

namely Q = {s}, then label t by the label of s. Otherwise, letR be the set of s ∈ Q which have

maximal C1
X values. If R has only one element, namely R = {s}, then label t by the label of s.

Otherwise, label t by the label of the hypergranule in R which has the highest coverage.

5 An example

In this section we are going to illustrate both the LM and C2 algorithms using one example.

Table 8: A sample of 4 rows of the Iris data

SL SW PL PW Spec. SL SW PL PW Spec. SL SW PL PW Spec.

50 36 14 02 Setosa 61 28 40 13 Versicolor 63 28 51 15 Virginica

54 39 17 04 Setosa 63 25 49 15 Versicolor 61 26 56 14 Virginica

46 34 14 03 Setosa 62 29 43 13 Versicolor 72 30 58 16 Virginica

50 34 15 02 Setosa 60 27 51 16 Versicolor 67 31 56 24 Virginica

LM

First of all, we illustrate LM. For the Setosa class, the sum of the �rst two rows results in

〈{50, 54}, {36, 39}, {14, 17}, {2, 4}〉.

Since this hypergranule doesn't cover 3 any tuple in the other two classes, this hypergranule is equil-

abelled. It can be similarly veri�ed that the sum of any pair of tuples in Setosa class is equilabelled.

The set of all sums is shown in Table 9, and it is a cover for this class. However this cover is not an E-

set as the sum of the �rst two hypergranules in Table 9, 〈{46, 50, 54}, {34, 36, 39}, {14, 17}, {2, 3, 4}〉,
is also equilabelled. Eventually we get an E-set for Setosa class, which has only one hypergranule �

〈{46, 50, 54}, {34, 36, 39}, {14, 15, 17}, {2, 3, 4}〉. The same procedure can be applied to the other

two classes. As a result, we get a reduced dataset � a set of E-sets one for each class, shown in Table

10. Note that the E-set for the Virginica class has two hypergranules as summing them would result

in loss of consistency (the sum is not equilabelled).

C2

Now we illustrate C2. Consider t
def= 〈48, 34, 16, 2〉. Following the C2 procedure, we calculate the

C0 and C1 values for all the hypergranules as follows: C0(s0|t) = 1, C0(s1|t) = 0, C0(s2|t) = 0,

C0(s3|t) = 0. There is no need to calculate C1 values since there is only one hypergranule having the

3In terms of the ≤ ordering on page 3
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Table 9: The set of all sums of pair of Setosa tuples

Attribute

Sepal length Sepal width Petal length Petal width
Class

{50, 54} {36, 39} {14, 17} {2, 4} Setosa

{50, 46} {34, 36} {14} {2, 3} Setosa

{50} {34, 36} {14, 15} {2} Setosa

{46, 54} {34, 39} {14, 17} {3, 4} Setosa

{50, 54} {34, 39} {15, 17} {2, 4} Setosa

{46, 50} {34} {14, 15} {2, 3} Setosa

Table 10: Model: The set of all E-sets.

Attribute
ID

Sepal length Sepal width Petal length Petal width
Class

s0 {46, 50, 54} {34, 36, 39} {14, 15, 17} {2, 3, 4} Setosa

s1 {61, 62, 63} {25, 28, 29} {40, 43, 49} {13, 15} Virginica

s2 {60} {27} {51} {16} Virginica

s3 {61, 63, 67, 72} {26, 28, 30, 31} {51, 56, 58} {14, 15, 16, 24} Versicolor

maximal C0 value. Then we can label t by the label of s0 � Setosa. This is in fact the single coverage

case.

Now we consider another tuple t
def= 〈58, 40, 55, 17〉. The C0 values for all hypergranules are 0.

For C1 values, we have C1(s0|t) = 1, C1(s1|t) = 0, C1(s2|t) = 1, and C1(s3|t) = 0. Since s0

has higher coverage (4 cases covered) than s2 (1 case covered), we label t by Setosa. This is the

non-coverage case.

Using the hypergranules in Table 10 to label the whole of Iris data, we get a success rate of 88.7%.

The complete Iris data and the complete set of hypergranules found by LM are listed in Appendix.

6 Evaluation

In order to test the LM and C2 algorithm, we have used a number of datasets available from the UCI

machine learning repository from where the appropriate references of origin can be obtained. Most of

the datasets are frequently used in literature. Some general information about these datasets is given

in Table 11.

Most of the datasets contain missing values. Missing values usuallymean either that the actual values
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Table 11: General information about the datasets.

Datasets Features Examples Classes

Annealing 38 798 6
Australian 14 690 2

Auto 25 205 6
Breast 9 286 2
Diabetes 8 768 2
German 20 1000 2
Glass 9 214 6
Heart 13 270 2

Hepatitis 19 155 2
Horse-Colic 22 368 2

Iris 4 150 3
Sonar 60 208 2

Tic-Tac-Toe 9 958 2
Vehicle 18 846 4
Vote 18 232 2

are not important, or that the actual values are not available. Our philosophy is that, whichever case

this is, missing values should not contribute in the modelling process and the classi�cation process.

As a result, we deal with missing values simply by �lling them with empty set, which contribute

nothing to either modelling or classi�cation because our hypergranules contain sets of values instead

of single values.

To achieve our objective, we need a standard data mining algorithm for benchmarking. We chose

C4.5 (see [14]) as it is one of the most extensively used algorithms in the literature and it is widely

available so that the experiment results can be easily repeated, if needed; in the present study, we have

used the C4.5 module of the Clementine [? ] package. We have used 5-fold cross validation for both

C4.5 and LM.

The results are shown in Table 12. We analysed the prediction success of C4.5 and LM, and the

cross-classi�cation is a straight line. Therefore we can say that LM is comparable to C4.5.

We also analysed the relationship between reduction ratio and prediction success. The regression line

is estimated by PredictionSuccess = 1.044*ReductionRatio - 0.128. This suggests that the reduction

ratio is a good measure of prediction success.
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Table 12: Prediction success of C4.5 and LM and the reduction ratio obtained by LM. These results are based

on the new C0 and C1 measures. The LM results were obtained with pruning. The reduction ratio is

de�ned as |D| − |
⋃

i Ei|/|D|, where Ei is the E-set for class Mi, and D is the dataset.

Prediction success
Dataset

C4.5 LM
Reduction ratio

Annealing 91.8 93.6 90.6

Australian 85.2 83.5 85.2

Auto 72.2 76.1 89.9

Breast 74.7 72.6 82.5

Diabetes 72.9 71.7 82.0

German 70.5 72.5 96.0

Glass 81.3 82.7 87.3

Heart 77.1 77.0 84.4

Hepatitis 80.7 80.0 89.4

Horse-Colic 80.9 78.2 83.0

Iris 94.0 96.0 97.6

Sonar 69.4 69.7 90.8

Tic-Tac-Toe 86.2 83.5 88.5

Vehicle 69.9 62.2 84.1

Vote 95.1 97.0 98.5

Wine 94.3 94.4 96.1

Average 79.95 79.75 88.70

7 Related work

The classic work of Mitchell on version spaces [11] is directly relevant. Mitchell viewed space of all

possible concept descriptions as a lattice from the most general down to the most speci�c. He de�ned

the version space as the sub-lattice that is consistent with a set of labelled examples. He de�ned the G-

set and the S-set (the subsets of descriptions that make up the most general/most speci�c boundaries

of the sub-lattice). This work was followed up by many others, most notably Hirsh [9, 10], who

discussed how to merge version spaces when a central idea in Mitchell's work is removed � a version

space is the set of concepts strictly consistent with training data. This merging process can therefore

accommodate noises.

This line of research is concerned mainly with how to �nd, given a set of labelled examples (i.e., a

set of positive and negative examples of a concept), the G-set and the S-set, which together represents

the space of all possible consistent concepts. However, for practical tasks, we usually do not need all
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Figure 3: A labelled lattice.
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concepts, but a single one which predicts or classi�es best. The question of how to �nd such a concept

is not addressed in this line of research, as far as we know.

Each E-set found by LM is a single concept consistent with a class of labelled examples. In the case

of two class classi�cation problem, there will be one E-set for the positive case, and another for the

negative case. Different E-sets represent single concepts for different classes. To justify the selection

of such single concepts, consider the abstract lattice in Figure 3. In this labelled lattice, elements A

and B are both equilabeled elements. But A has greater coverage of unlabeled elements than B; in

other words, A is more general than B (or B is more speci�c than A). In the spirit of least general

generalisation (LGG) 4, we should prefer B to A in our pursuit of a single concept for the dark black

class. LM is designed having this in mind, which concludes that the E-set for the dark black class is

{B}, and the E-set for the light black class is {D}.
Each E-set is a subset of the S-set in the following sense. Let S and T be two arbitrary sets, d0

def=

〈s, t0〉, d1
def= 〈s, t1〉 ∈ S × T . Let Mit be the operation implied in the S-set examples used by

Mitchell ([11],page 214). If t0 6= t1, then Mit(d0, d1) = 〈s, ?〉, where the question mark means that

the elements in T are unimportant ([11],page 205). In the context of our decision system, this amounts

to Mit(d0, d1) = 〈s, T 〉, since for any d′ = 〈s′, t′〉, the comparison between d′ and Mit(d0, d1)

regardingwhich is more general or speci�c will bemade by comparing s and s′ irrespective of t′, t0, t1.

This is to say that the Mit operation generalises d0 and d1 to 〈s, T 〉, which clearly assumes too much

extra informationwhichmay not be true in reality. However, by some misuse of notation, our approach

results inLM(d0, d1) = 〈s, {t0, t1}〉, which uses only available information. In this sense we say that

each E-set is a subset of the S-set. No decision rules is provided for classi�cation in [11], nor has one

been found elsewhere in this line of research, as far as we know. Furthermore, no application in a

practical setting has been found.

4LGG says that if two clauses c1 and c2 are true, it is very likely that their most speci�c generalisation will also be true

[13, 3].
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Mitchell used an example to illustrate his idea. The training set is as follows:

{(Large Red Triangle)(Small Blue Circle)} : +(7.1)

{(Large Blue Circle)(Small Red Triangle)} : +(7.2)

{(Large Blue Triangle)(Small Blue Triangle)} : −(7.3)

Each line describes a pair of unordered objects, which is labelled as either positive (+) or negative (-).

The S-set and G-set obtained are

S − set : [〈(? Red Triangle)(? Blue Circle)〉, 〈(Large ? ?)(Small ? ?)〉]

G − set : [〈(? Red ?)(? ? ?)〉, 〈(? ? Circle)(? ? ?)〉]

This example can be turned into a set of 8 decision systems as shown in Table 13, and the E-sets

corresponding to these tables are shown in Table 14. The collection of different incomparable E-sets

for the positive class is {〈{L, S}, R, T 〉, 〈{L,S}, B, C〉, 〈L, {B, R}, {C, T}〉, 〈S, {B, R}, {C, T}〉}.
Clearly this is exactly the S-set except that {L, S}, {B, R}, {C,T} are replaced by the question mark

respectively. As we argued earlier, Mitchell's results generalise beyond given information.

In sum, Mitchell's version space is where the underlying concepts should belong to, though for larger

problems the space could be large, and the use of the space rest with the users. Our approach attempts

to �nd a single concept which is relatively conservative in the sense of least general generalisation

principle.

8 Summary and conclusion

In this paper we have presented a novel approach to the problem of classi�catory �ltering � preserving

classi�cation information in the process of data reduction. Our approach is a generalisation of the

�ltering method discussed in [2].

We presented an algorithm (LM) in the context of lattice. In the context of decision systems, we

look at hypergranules and it turns out that the collection of all hypergranules in a given domain is a

lattice. LM works, in decision systems, by collecting attribute values while preserving classi�cation

information. It inputs a decision system, and outputs a set of maximal hypergranules that, collectively,

is consistent with the original decision system but is much smaller in size.

We also discussed the problem of assigning classi�cation labels to new data based on �ltered data,

with respect to three cases: single coverage, mutiple coverage, and non coverage. We proposed and
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Table 13: Representing Mitchell's example using multiple tables.

U Size Colour Shape Class

u0 L R T +

u1 L B C +

u2 L B T -

U Size Colour Shape Class

u0 L R T +

u1 L B C +

u2 S B T -

U Size Colour Shape Class

u0 L R T +

u1 S R T +

u2 L B T -

U Size Colour Shape Class

u0 L R T +

u1 S R T +

u2 S B T -

U Size Colour Shape Class

u0 S B C +

u1 L B C +

u2 L B T -

U Size Colour Shape Class

u0 S B C +

u1 L B C +

u2 S B T -

U Size Colour Shape Class

u0 S B C +

u1 S R T +

u2 L B T -

U Size Colour Shape Class

u0 S B C +

u1 S R T +

u2 S B T -

Table 14: E-sets corresponding to the tables in Table 13.

U Size Colour Shape Class

u′
0 L R T +

u′
1 L B C +

u′
2 L B T -

U Size Colour Shape Class

u′
0 L {B, R} {C, T} +

u′
1 S B T -

U Size Colour Shape Class

u′
0 {L, S} R T +

u′
1 L B T -

U Size Colour Shape Class

u′
0 {L, S} R T +

u′
1 S B T -

U Size Colour Shape Class

u′
0 {L, S} B C +

u′
1 L B T -

U Size Colour Shape Class

u′
0 {L, S} B C +

u′
1 S B T -

U Size Colour Shape Class

u′
0 S {B, R} {C, T} +

u′
1 L B T -

U Size Colour Shape Class

u′
0 S B C +

u′
1 S R T +

u′
2 S B T -

18



justi�ed two measures: one measures the likelihood that one hypergranule covers another; another

measures the likelihood that merging two hypergranules covers others. Based on the two measures

we devised an algorithm (C2) which ef�ciently classi�es new data.

We evaluated both LM and C2 using some real world datasets. We used LM to discover �knowledge�

� hypergranules from these datasets, and then we used C2 to classify new data. We used 5-fold cross

validation method for the evaluatation and we found that the result is comparable to that of C4.5.

Analysis of the result by statistical test methods showed that there is no statistical difference between

LM/C2 and C4.5. Further regression analysis shows that the reduction ratio is a strong indicator of

prediction success.
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A Iris data

Table 15: Iris data

SL SW PL PW Spec. SL SW PL PW Spec. SL SW PL PW Spec.

51 35 14 02 Setosa 70 32 47 14 Versicolor 63 33 60 25 Virginica

54 39 17 04 Setosa 57 28 45 13 Versicolor 76 30 66 21 Virginica

46 34 14 03 Setosa 63 33 47 16 Versicolor 49 25 45 17 Virginica

50 34 15 02 Setosa 49 24 33 10 Versicolor 73 29 63 18 Virginica

44 29 14 02 Setosa 66 29 46 13 Versicolor 67 25 58 18 Virginica

49 30 14 02 Setosa 64 32 45 15 Versicolor 58 27 51 19 Virginica

47 32 13 02 Setosa 69 31 49 15 Versicolor 71 30 59 21 Virginica

46 31 15 02 Setosa 55 23 40 13 Versicolor 63 29 56 18 Virginica

50 36 14 02 Setosa 65 28 46 15 Versicolor 65 30 58 22 Virginica

49 31 15 01 Setosa 52 27 39 14 Versicolor 72 36 61 25 Virginica

54 37 15 02 Setosa 50 20 35 10 Versicolor 65 32 51 20 Virginica

48 34 16 02 Setosa 59 30 42 15 Versicolor 64 27 53 19 Virginica

48 30 14 01 Setosa 60 22 40 10 Versicolor 68 30 55 21 Virginica

43 30 11 01 Setosa 61 29 47 14 Versicolor 57 25 50 20 Virginica

58 40 12 02 Setosa 56 29 36 13 Versicolor 58 28 51 24 Virginica

57 44 15 04 Setosa 67 31 44 14 Versicolor 64 32 53 23 Virginica

54 39 13 04 Setosa 56 30 45 15 Versicolor 65 30 55 18 Virginica

51 35 14 03 Setosa 58 27 41 10 Versicolor 77 38 67 22 Virginica

57 38 17 03 Setosa 62 22 45 15 Versicolor 77 26 69 23 Virginica

51 38 15 03 Setosa 56 25 39 11 Versicolor 60 22 50 15 Virginica

54 34 17 02 Setosa 59 32 48 18 Versicolor 69 32 57 23 Virginica

51 37 15 04 Setosa 61 28 40 13 Versicolor 56 28 49 20 Virginica

46 36 10 02 Setosa 63 25 49 15 Versicolor 77 28 67 20 Virginica

51 33 17 05 Setosa 61 28 47 12 Versicolor 63 27 49 18 Virginica

48 34 19 02 Setosa 64 29 43 13 Versicolor 67 33 57 21 Virginica

50 30 16 02 Setosa 66 30 44 14 Versicolor 72 32 60 18 Virginica

50 34 16 04 Setosa 68 28 48 14 Versicolor 62 28 48 18 Virginica

52 35 15 02 Setosa 67 30 50 17 Versicolor 61 30 49 18 Virginica

52 34 14 02 Setosa 60 29 45 15 Versicolor 64 28 56 21 Virginica

47 32 16 02 Setosa 57 26 35 10 Versicolor 72 30 58 16 Virginica

48 31 16 02 Setosa 55 24 38 11 Versicolor 74 28 61 19 Virginica

54 34 15 04 Setosa 55 24 37 10 Versicolor 79 38 64 20 Virginica

52 41 15 01 Setosa 58 27 39 12 Versicolor 64 28 56 22 Virginica

55 42 14 02 Setosa 60 27 51 16 Versicolor 63 28 51 15 Virginica

49 31 15 01 Setosa 54 30 45 15 Versicolor 61 26 56 14 Virginica

50 32 12 02 Setosa 60 34 45 16 Versicolor 77 30 61 23 Virginica

55 35 13 02 Setosa 67 31 47 15 Versicolor 63 34 56 24 Virginica

49 31 15 01 Setosa 63 23 44 13 Versicolor 64 31 55 18 Virginica
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Cont. from previous page

SL SW PL PW Spec. SL SW PL PW Spec. SL SW PL PW Spec.

44 30 13 02 Setosa 56 30 41 13 Versicolor 60 30 48 18 Virginica

51 34 15 02 Setosa 55 25 40 13 Versicolor 69 31 54 21 Virginica

50 35 13 03 Setosa 55 26 44 12 Versicolor 67 31 56 24 Virginica

45 23 13 03 Setosa 61 30 46 14 Versicolor 69 31 51 23 Virginica

44 32 13 02 Setosa 58 26 40 12 Versicolor 58 27 51 19 Virginica

50 35 16 06 Setosa 50 23 33 10 Versicolor 68 32 59 23 Virginica

51 38 19 04 Setosa 56 27 42 13 Versicolor 67 33 57 25 Virginica

48 30 14 03 Setosa 57 30 42 12 Versicolor 67 30 52 23 Virginica

51 38 16 02 Setosa 57 29 42 13 Versicolor 63 25 50 19 Virginica

46 32 14 02 Setosa 62 29 43 13 Versicolor 65 30 52 20 Virginica

53 37 15 02 Setosa 51 25 30 11 Versicolor 62 34 54 23 Virginica

50 33 14 02 Setosa 57 28 41 13 Versicolor 59 30 51 18 Virginica

The hypergranules obtained by the LM � algorithm for the Iris data are given in Table 16.

Table 16: Hypergranules for Iris

Attribute

Sepal length Sepal width Petal length Petal width
Class

{43, . . . , 58} × {23, 29, . . . , 44} × {10, . . . , 17, 19} × {1, . . . , 6} Setosa

{49, . . . 52,

54, . . . , 70} × {20, 22, . . . , 34} × {30, 33, 35, . . . , 49} × {10, . . . , 16} Versicolor

{56, . . . , 59, 61, . . . , 69, {49, . . . , 61,

71, . . . , 74, 76, 77, 79} × {25, . . . , 34, 36, 38} ×
63, 64, 66, 67, 69} × {18, . . . , 25} Virginica

{61, 63} × {26, 28} × {51, 56} × {14, 15} Virginica

{60} × {30} × {48} × {18} Virginica

{72} × {30} × {58} × {16} Virginica

{62} × {28} × {48} × {18} Virginica

{60} × {22} × {50} × {15} Virginica

{49} × {25} × {45} × {17} Virginica

{60} × {27} × {51} × {16} Versicolor

{67} × {30} × {50} × {17} Versicolor

{59} × {32} × {48} × {18} Versicolor
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