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Abstract

Classificatory data filtering is concerned with reducing data in size while preserving classi-
fication information. Diintsch and Gediga [2] presented a first approach to this problem. Their
technique collects values of a single feature into a single value. In this paper we present a novel
approach to classificatory filtering, which can be regarded as a generalisation of Diintsch and
Gediga’s approach. This approach is aimed at collecting values of a set of features into a single
value. We look at the problem abstractly in the context of lattice. We focus on hypergranules
(arrays of sets) in a problem domain, and it turns out the collection of all hypergranules is a lat-
tice. Our solution (namely LM algorithm) is formulated to find a set of maximal elements for
each class, which covers all elements in a given dataset and is consistent with the dataset. This
is done through the lattice sum operation. In terms of decision systems, LM collects attributes
values while preserving classification structure.

To use the filtered data for classification, we present and justify two measures (C° and C1)
for the relationship between two hypergranules. Based on the measures, we propose an algorithm
(C2) for classification.

Both algorithms are evaluated using real world datasets and are compared with C4.5. The
result is analysed using statistical test methods and it turns out that there is no statistical differ-
ence between the two. Regression analysis shows that the reduction ratio is a strong indicator of
prediction success.

Keywords: artificial intelligence, machine learning, rough set, data filtering, data reduction, de-
cision system, lattice.

1 Introduction

Data reduction is a process which is used to transform raw data into a more condensed form without

losing significant semantic information. In data mining, data reduction in a stricter sense refers to
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feature selection and data sampling [15]; in a broader sense, data reduction can be regarded as the

main task of data mining [4].

Horizontal reduction consists of identifying several rows in a data table according to specified criteria.
The identification of suitable rows has the welcome effect of strengthening rules in the following
sense: If the prediction of a decision attribute is based on a few values only, the statistical significance
of the rule may be low, and it cannot be ruled out that the rule is due to chance; data reduction may

enhance the statistical basis of the rule, and thus increase its significance [1].

Discretization of continuous attributes which constructs intervals within data domains and collects
attribute values within each of the intervals is a well known device of data analysis and prediction.
However, in most discretization methods, parameters outside the given data have to be assumed in
order for the procedure to work. The choice of these parameters is largely subjective, and may result
in unwelcome decontextualisation. On the other hand, classificatory data filtering as explained below
uses only the structural information given by the data under consideration, and does not take into
account numerical information of the data domains; neither does it introduce additional parameters.
Indeed, it stays on the level of operationalization in the sense of [6], and therefore it can be used as a

safe pre-processing mechanism before “harder” computational methods are employed.

A first approach to classificatory data filtering was taken by [2]. This technique collects values of a
feature into a single value by taking a union of deterministic equivalence classes which are totally

contained in a class of the decision attribute. For example, if we have an attribute ¢ and a rule
Ifg=2o0rq=3o0rqg=5thend=blue,
then we can collect 2,3,5 into a single attribute value of q.

The important feature of this procedure is that the internal dependency structure of the system is kept

intact, and that one does not need additional parameters as other more sophisticated methods.

As an example, consider the famous Iris data. The data used by [5] to demonstrate his discriminant
analysis consists of 50 specimen of each of the iris species Sefosa, Versicolor, and Virginica, measured

by the features given in Tab. 1.

Table 1: Iris Data

Attribute  Range inmm Classes | Attribute  Rangeinmm  Classes
Sepal length 43 <z <79 35 Petal length 10 < 2 < 69 23
Sepal width 22 <z <44 43 Petal width 1<z <25 22




The column “classes” tells us, how many of the attribute values are actually taken by the specimen.

On inspection of the data, we find, for example, the rules

If “Petal width” € {1,...,6}, then “Species” = Setosa

If “Petal width” € {10,...,13}, then “Species” = Versicolor

If “Petal width” € {17, 20, ...,25}, then “Species” = Virginica
If we collect the appropriate values into one single set, then the number of “Petal width” classes is
reduced to eight. The complete analysis is given in Tab. 2. There, the new number of values of the
attribute is given in brackets, e.g. after collecting non—splitting values into one, Sepal Length takes
only 22 values, compared to 35 before. The column # tells us, how many objects are described by this

new value; for example, the set {10, ... ,19} of values of Petal Length determines all of the Setosa

class.

Table 2: One dimensional classificatory filtering

Sepal length (22) Sepal width (16)
Filter # Filter #
Setosa 43-48,53 | 17 Setosa 35,37,39-44 | 15
Versicolor 66,70 3 || Versicolor 20,24 4
Virginica 71-79 12 || Virginica — —
Petal length (8) Petal width (8)
Filter # Filter #
Setosa 10-19 50 Setosa 1-6 50
Versicolor | 30-44,46,47 | 37 || Versicolor 10-13 28
Virginica | 52,54-69 | 34 || Virginica 19-25 34

In this paper, we generalize this one dimensional approach to more attributes by allowing sets of
attribute values in more than one column as entries in a data table. These hypergranules ' can be
made into a semilattice in a natural way, and a hypergranule can represent one or more rows of our

data table, according to the relation of their values with respect to a decision attribute.

The paper is structured as follows: In Section 2 we recall some definitions from lattice theory and
introduce our notation of data relations and decision systems. Section 3 will provide the formal
reduction machinery. Classification based on the filtered data is discussed in Section 4. An example
is presented in Section 5 to illustrate both the filtering method and the classification method. The
proposed methods are evaluated and the results and analysis are reported in Section 6. In Section 7

related work is discussed and compared. Finally Section 8 summarises and concludes the paper.

The concept of hypergranule or hyper relation is first proposed in [12].



2 Definitions and notation

2.1 Order and lattices

A partial order on a set P is a binary relation < with the properties

r <z, (Reflexive)
r<yandy < zimply z =y, (Antisymmetric)
r<yandy < zimply z < z. (Transitive)

Suppose that P = (P, <) is a partially ordered set and 7' C P. T is called an antichain if any two

elements of T are incomparable in <. We let | T 4 {yeP:(Fxel)y <z} T ={a}, we

will write | a instead of | {a}; more generally, if no confusion can arise, we shall usually identify

singletons with the element they contain.

A sup— semilattice L is a nonempty partially ordered set such that for each x,y € L the least upper
bound x + y exists. The greatest element of L, if it exists, is denoted by 1; if L is finite then 1 exists,

anditisequal to ) _; a. Anelement o € L is called maximal, if a # 1 and forall b € L,
a<b=0b=1.

If A, B C L, we write A < B if for each s € A there is some ¢ € B such that ¢ < b; furthermore, we
set A+ B={a+b:a€c Abe B}.

Lemma 2.1. If A <X B, B < A, and both A and B are antichains, then A = B.

Proof. Assume wl.o.g. thata € A\ B. Since A < B, there is some b € B such that a < b, and
B < A implies the existence of some ¢ € A with b < ¢. Since a ¢ B, we have a < ¢, contradicting

that A is an antichain. O

For unexplained notation and background reading in lattice theory, we invite the reader to consult [7].

2.2 Decision systems
An information system is atuple 7 = (U, Q, V,) ., Where
1. U ={ay,...,an} is a nonempty finite set.

2. Q={z1,...,zr}is anonempty finite set of mappings x; : U — V..



We interpret U as a set of objects and (2 as a set of attributes or features each of which assigns to an

object a its value under the respective attribute. Let V' def H,eqV,. Fora € U, we let

2.1) Q(a) = (z(a))zeq,
Each Q(a) is called a granule, and the collection of all granules is denoted by D. Clearly D C V.
Thus, if ¢ € D, there is some a € U such that Q(a) = ¢; if z € Q, then ¢(z) is just z(a).

A decision system D is a pair (Z, d), where T = (U, ), V) zeq is an information system as above, and
d:D — Vg ={m,...,mg} is an onto mapping, called a labeling of D; the value d(t) is called

the label of t. We will also refer to d as the decision attribute.

The mapping d induces a partition P4 of D with the classes { My, ..., Mk}, where

2.2) t € M; < d(t) = m,.

3 Collecting attribute values

In the sequel, we shall use D as described above as a generic decision system.

Let 7 be the set HT cQ 2Vz: T is a + — semilattice (in fact, a Boolean algebra, but we will not need

this here) under the ordering
t<s<=t(zx) Cs(z)

for all z € Q. The elements ¢ of 7 with |¢(z)| = 1 for all z € § are called simple tuples. There is a
natural embedding of D into 7 by assigning

3.1 Qa) = {z1(a)}, {z2(a)}, .., {zr(a)}).

and we shall identify D with result of this embedding.

It is our aim to reduce the data with respect to the classes of the decision attribute; this can be done
one class at a time. Thus, fix a class M in Py belonging to m € Vi, and let L), be the subsemilattice
of 7 generated by M ; the elements of L, are called hypergranules. We call an element » € Ly,
equilabeled (with respect to M), if | » N D C M. In other words, everything below r which is in D
is labeled m. Each equilabeled element may replace a number of elements of M, and thus, we result

in some form of data compression.

Let £ be the set of all » € L), which are equilabeled w.r.t. M. A cover of M is a set C C & such that
for each t € M there is some ¢ € C' such thatt < ¢,i.e. M < C.



Clearly, M is a cover of itself. A less trivial example is the following: If for all ¢ € D and for some

reQ,
If t(x) = a or t(z) = b, then t € M,
then
C = {Z{t e D:t(z) € {a, b}}} U{te D:t(x) ¢ {a,b}}.
is a cover.

If Cisacover, s,t € Cand s+t € &, then (C\ {s,t}) U {s + t} is also a cover with smaller
cardinality, i.e. with greater data reduction. This leads to the following definition: An E—sef is a cover
C for which s, t € C implies s + ¢ ¢ £. E—sets are those covers in which the sum of two elements is

not equilabeled with respect to M ; in particular, each E—set is an antichain.

A prime candidate for a set of hypergranules which can replace M is the set H of maximal elements
of £. Since M C & and each element of £ is below or equal to some element of H, we see that H
covers M. Itis clear that this H is an E-set for M. Therefore our objective becomes, given M, finding

an E-set for M.

An algorithm to find H is as follows (LM - algorithm):

1. ¢, %

2. Crq1 4 The set of maximal elements of [l (Cp+M)NE.

Each Cj, isasubsetof £, and Cj, < [| (Cx+ M)|NE < Ci41. The finiteness of L, and the fact that
each (Y is an antichain now imply that thete is some n such that C,, = C,, 11, and therefore C,, = C,

for all r > n.
Claim: C,, = H.

4 times

e N
Proof. We first show that (M + ...+ M) N E < C;: This s clearly true for ¢ = 1; thus, suppose that

(i—1)- times
itholdsforall1 < j < i Lett =t +...+¢ € £ Then, to +...+¢; € (M) nE,
and thus, to + ...+ t; € C;. Itfollows that t € (C; + M) N &, and hence, ¢ is below some maximal
element of [| (C; + M)|NE = C;.

Since C,, C &, and H is the set of maximal elements of £, we have C,, < H. By Lemma 2.1 it
suffices to show that H < C),; indeed, since C < C, for all £ € w it is enough to show H < C}, for
some k. Thus, let ¢t € H; then, t € £ and there are tg, ...t € M suchthatt = \/71<k t;. It follows

from the previous result that there is some s € C}, such that ¢ < s, which proves our claim. U



Figure 1: A labelled lattice showing that H is not the least cover of M.

We observe that H need not be the least cover of M in terms of cardinality, since there may be covers
C C H. Consider the lattice in Figure 1. For the dark black class, LM find H = {a, b, c}. But {a, ¢}

is also a cover and has less number of elements.

4 Assigning new information

Suppose we have chosen for each class M; of P an E-set E;, i.e.

1. Eacht € F; is a sum of elements of D,
2. Eacht € E; is equilabeled m;,
3. Each element of M; is below some t € E;,
4. Ifs,te E;,thens+t ¢ E;.
5. E;NE; = fori # j, since every element of E; is equilabeled with m,.
To label t € V, we have the following three cases:
e Single coverage: t €| F; for one and only one 4.

e Multiple coverage: ¢ €| E; for more than one i. In other words, | E;N | E; = () is not true.
Suppose that we have the system given in Table 3. The hypergranules are ({0, 1}, {0,1}) and
({0, 2}, {0, 2}) for the 0-class and 1-class respectively. Clearly (0, 0) is below both of them.

e Non coverage: t ¢ F; for any 4. Due to the incompleteness of the data (decision system), the E-
sets may also be incomplete in the sense that they don’t cover the whole data space. Therefore
it is possible that some ¢ € V' is not covered by any E;. Consider Table 3 again. Clearly (2, 1)

is not below any of the hypergranules.

Our solution to the assignment problem is designed to address each of the above cases:



Table 3: An example

Q. 0 o9 |
o N O T
N O = O
~ = o o|lg

Single coverage

For t € V, if there is only one F; such thatt €| E;, it is reasonable to label ¢ by m;.

Multiple coverage

For t € V, if there are 4 and j such thatt €| E; and ¢t €| F,, then the labelling is determined by
whichever has the largest coverage of the elements in D. For example, if s, s1 € E;, so € Ej, and
t < sg,t < spandt < sg, then we would label ¢ by m; instead of m ;. In our experience, however,

this case rarely happens in practice.

Non coverage

For t € V, if there is no E; such that ¢t €| F;, we would tend to examine the likelihood of each
s € |J E; potentially covering this ¢. By “potentially” we mean that if sufficient information were
given in the dataset, t would be covered by s. The ¢ is then labelled by the label of the s with the
greatest likelihood. The question now is: how to measure the likelihood of a tuple potentially covered

by an E-set? To introduce our solution, we look at the following example first.

Example 1. Let Q = {X1, Xo}, Vx, = {a,b}, Vx, = {0,1}. The data space V.= Vx, x Vx, is
shown in Table 4. The T is shown in Table 7. Now let Y be a decision attribute where Vy = {«, 3},
and assume that we have a decision system (dataset) as shown in Table 5. Using the algorithm
described above, we get two E-sets as shown in Table 6 with one for each class. Clearly tuple t =
us = (b, 1) in Table 4 is not covered by either E-set. Then uncertainty arises as to how to label t.
Looking at the problem tuple-wise, we find that t(X1) £ up(X1) but t(X2) < wy(Xe), and that
HX1) < uj(X1) but t(Xso) £ uy(Xa). This seems that t should be equally likely labelled as either as
a or 3. Looking at the Xo column, however, we find that there is the likelihood that 0 and 1 belong to

the same class (cluster) of the domain of Xo, whereas the current model (in Table 6) doesn’t support

putting a and b in the same cluster. Therefore it is more likely that t is labelled as (3 than as .



In the spirit of Example 1, we now formally describe our measures for the likelihood of one hyper-
granule happening given another hypergranule. Given two hypergranules, ¢y and t;, we first of all
need a measure for the likelihood that ¢y is covered by t;. Since tg may not be fully covered by
t1 hence assuming ¢ is covered by ¢; may not preserve the structure in the dataset, we then need a
measure for the degree in which assuming this could preserve the structure. Displaying the E-sets in
a table (see Table 6), it turns out that each column represents a subset of the power set of the attribute
domain. This can be studied in the context of Evidence Theory [8].

Let X C Q, and S % Vy be the domain of X . Consider a mass function  m : 25 — [0, 1] such that

Y weos m(x) = 1. Givena,b € 25, where m(b) # 0, the first measure is derived by answering this
question: what is the likelihood that b appears whenever a appears? In other words, if a appears, what
is the likelihood that b will be regarded as appearing as well? Denoting this likelihood by C% (b|a),

one solution is:

ZanCc (C)
Zch ( )

C% (t1]to) is the likelihood of o (X ) U1 (X ) appearing relative to the likelihood of 1 (X) appearing.

C% (bla) =

In the same spirit, another measure is defined as

chb m (C)
chaub m (C)

C)l( (bla) measures the degree in which merging a and b preserves the existing structure embodied by

Cx (bla) =

the mass function.

The definition of Cg( is easy to understand, and the significance of C)l( can be illustrated as follows.

Example 2. Consider two intervals of the same length in Figure 2. We are interested in two cases:
non-overlapping and overlapping, as shown in the figure. Given each of the 5 points on the top and
bottom figures, we now calculate the C° and C' values assuming that the mass function is a linear

SJunction of interval length:

CO(IL|t1) = 0, CH(I4|t1) = 1, CO(Lo|ty) = 0, CY(Llty) = 0.5
CO(L|t2) = 1, CYH(L1|t2) = 1, CO(Ls|ty) = 0, CH(Loto) = 1;
CO(L|t3) = 0, CY(I1|t3) = 1, CO(Lst3) = 0, CH(Lots3) = 1;
CO(I|ty) = 0, CH(I1[ts) = 1, CO(Io)ty) = 1, C (Is|ts) = 1;
CO(I1|ts) = 0, CH(I4|t5) = 0.5, CO(Lylts) = 0, C1(Is|ts) =

’In the context of decision table, the mass function can be regarded as the uniform distribution over the tuples in D
collapsed to the set of hypergranules. For an example, consider the decision system in Table 5. We can reasonably assume
a uniform distribution for the table. Collapsing the tuples in Table 5 as hypergranules in Table 6, we get a new distribution
over the hypergranules — uf, : 2/3,u} : 1/3. Then the mass function for 22 becomes {0, 1} : 2/3, and {0} : 1/3.
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Figure 2: A one dimensional example justifying the significance of the two measures.

CO(I1|s1) = 0, CY(I4|s1) = 1, CO(Ly|s1) = 0, C1(Ly|sy) = 0.5
CO(I1|sy) = 1, CY(I4|sg) = 1, CO(Ly|sy) = 0, C1(Ls9) = 1;
CO(I1|s3) = 1, CH(I1]s3) = 1, CO(Iy|s3) = 1, CH(Iy|s3) = 1;
CO(I1|sg) = 0, CY(I4|s4) = 1, CO(Ly|ss) = 1, C1(Lys4) = 1;
CO(I1|s5) = 0, C1(I4|s5) = 0.5, CO(ILy|s5) = 0, C(Iy]s5)

Now assume that given any point, one of the interval must be “activated” (i.e., the interval is regarded
as appearing accordingly). Then intuitively, for t1, I, other than I, should be “activated” since
ty is closer to I than to Is. This is reflected by CO(I1|t1) = 0, C*(L1]t1) = 1, CO(Llt;) =
0, CY(Iz|t1) = 0.5. For ty, clearly Iy should be activated, which is reflected by C°(I1|t) = 1
and C°(Ilty) = 0. For t3, both I and Iy are equally likely to be activated, which is reflected by
CO(L|t3) = 0, C*(1]t3) = 1, CO(Islt3) = 0, C (Ia|t3) = 1. Similar analysis can be done for t4
and ts. For s3, both Iy and Iy should be equally likely to be activated, which is reflected by the fact
that C°(I1|s3) = 1, CY(I1|s3) = 1, C°(I3s3) = 1, C(I5]s3) = 1.

From this example, we can draw a two-stage decision rule: consider two intervals [ and I». Given
a point t, if CO(I;,|t) > C°(I,,|t), then I;, is more likely to be activated than I;,, where {i1,is} =
{1,2}; if CO(I;,|t) = CO(I;,|t) and C (I, |t) > CL(I,,|t), then I;, is more likely to be activated
than I;,; otherwise, I; and I, are equally likely to be activated with regard to these two measures. In

this case we probably need to resort to other measures to decide which is more likely to be activated.

The above decision rule can be generalised to our case, if the set inclusion relation (C) is replaced by

the tuple ordering relation (<) on page 3.

Example 3. Now let’s look at Example 1 again. Assume a uniform distribution for the decision system
in Table 5. Given the model in Table 6, we want to classify a new tuple t =< b, 1 >. Using the above
definitions and letting X = {2%1,2%2}, we have C% (uj|t) = 0, C% (u}|t) = 0; CL(uplt) = 2/3,
Ck (u}|t) = 1. These measures mean that t is not covered by ufy nor u}, and that merging t with u}

better preserves the structure than merging t with w),. Therefore we would classify t as 3.

10
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Table 6: The model.

Table S: A decision system.
Table 4: A data space.
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Table 7: The space of hypergranules.

The properties of C (t1]to) and C% (t1]to) are stated in the following lemmas.
Lemma 4.1. C% (t1|to) satisfies the following:

e 0<C%(t|ty) <L

o O%(t1]to) # C% (to|t1) in general.

o C%(tilto) = 1ifto(X) < t1(X).

o C%(t1]to) = 0 if there is no t such that to(X) U t1(X) < ¢(X).
Lemma 4.2. Ck (t1to) satisfies the following:

e 0 < C(tlty) <L

o CL(t1]tg) # C%(to|t1) in general.

o Cl(tilto) = 1ifto(X) U t1(X) doesn’t cover any t(X) where t(X) # to(X) and t(X) #
t1(X).

° C)l((tl‘to) =0 l'ftl(X) = 0.
The proofs of the two lemmas are straightforward.

Having the above two measures, we devise the following algorithm (C2) for the assignment problem.

Lette V.

e For each s € | J; E;, calculate CY)(s|t) and C (st).

11



o Let @ be the set of s € J; E; which have maximal C% values. If Q has only one element,
namely ) = {s}, then label ¢ by the label of s. Otherwise, let R be the set of s € ) which have
maximal C'% values. If R has only one element, namely R = {s}, then label ¢ by the label of s.

Otherwise, label ¢ by the label of the hypergranule in R which has the highest coverage.

5 An example

In this section we are going to illustrate both the LM and C2 algorithms using one example.
Table 8: A sample of 4 rows of the Iris data

| SL | SW [ PL|PW [ Spec. [[SL|SW |PL|PW | Spec. [ SL|SW |PL|PW | Spec.

50| 36 | 14 | 02 | Setosa || 61 | 28 | 40 | 13 | Versicolor || 63 | 28 | 51 | 15 | Virginica
54| 39 | 17| 04 | Setosa || 63 | 25 | 49 | 15 | Versicolor || 61 | 26 | 56 | 14 | Virginica
46 | 34 | 14 | 03 | Setosa || 62 | 29 | 43 | 13 | Versicolor || 72 | 30 | 58 | 16 | Virginica
50| 34 | 15| 02 | Setosa || 60 | 27 | 51 | 16 | Versicolor || 67 | 31 | 56 | 24 | Virginica

LM

First of all, we illustrate LM. For the Setosa class, the sum of the first two rows results in
({50,54},{36,39}, {14,17}, {2, 4}).

Since this hypergranule doesn’t cover * any tuple in the other two classes, this hypergranule is equil-
abelled. It can be similarly verified that the sum of any pair of tuples in Setosa class is equilabelled.
The set of all sums is shown in Table 9, and it is a cover for this class. However this cover is not an E-
set as the sum of the first two hypergranules in Table 9, ({46, 50, 54}, {34, 36,39}, {14, 17}, {2, 3,4}),
is also equilabelled. Eventually we get an E-set for Setosa class, which has only one hypergranule —
({46, 50,54}, {34,36,39},{14,15,17},{2,3,4}). The same procedure can be applied to the other
two classes. As a result, we get a reduced dataset — a set of E-sets one for each class, shown in Table
10. Note that the E-set for the Virginica class has two hypergranules as summing them would result

in loss of consistency (the sum is not equilabelled).

C2

Now we illustrate C2. Consider ¢ %' (48,34, 16, 2). Following the C2 procedure, we calculate the
Cp and O values for all the hypergranules as follows: C(sg|t) = 1, C%(sy]t) = 0, C%(s2|t) = 0,

CO(s3|t) = 0. There is no need to calculate C'* values since there is only one hypergranule having the

3In terms of the < ordering on page 3

12



Table 9: The set of all sums of pair of Setosa tuples

Attribute
Sepal length | Sepal width | Petal length | Petal width Class
{50, 54} {36,39} {14,17} {2,4} Setosa
{50, 46} {34, 36} {14} {2,3} Setosa
{50} {34, 36} {14,15} {2} Setosa
{46, 54} {34,39} {14,17} {3,4} Setosa
{50, 54} {34,39} {15,17} {2,4} Setosa
{46, 50} {34} {14,15} {2,3} Setosa
Table 10: Model: The set of all E-sets.
Attribute
b Sepal length Sepal width Petal length Petal width Class
50 {46, 50, 54} {34, 36,39} {14,15,17} {2,3,4} Setosa
S1 {61,62,63} {25, 28,29} {40, 43,49} {13,15} Virginica
59 {60} {27} {51} {16} Virginica
sg | {61,63,67,72} | {26,28,30,31} | {51,56,58} | {14,15,16,24} | Versicolor

maximal C? value. Then we can label ¢ by the label of s, — Setosa. This is in fact the single coverage
case.

Now we consider another tuple ¢ def (58,40, 55,17).

For C* values, we have Ct(so|t) = 1, CY(s1]t) = 0, C(sa]t) = 1, and C(s3]t) = 0. Since s

The CY values for all hypergranules are 0.

has higher coverage (4 cases covered) than so (1 case covered), we label ¢ by Setosa. This is the

non-coverage case.
Using the hypergranules in Table 10 to label the whole of Iris data, we get a success rate of 88.7%.

The complete Iris data and the complete set of hypergranules found by LM are listed in Appendix.

6 Evaluation

In order to test the LM and C2 algorithm, we have used a number of datasets available from the UCI
machine learning repository from where the appropriate references of origin can be obtained. Most of
the datasets are frequently used in literature. Some general information about these datasets is given

in Table 11.

Most of the datasets contain missing values. Missing values usually mean either that the actual values
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Table 11: General information about the datasets.

Datasets Features | Examples | Classes
Annealing 38 798 6
Australian 14 690 2

Auto 25 205 6
Breast 9 286 2
Diabetes 8 768 2
German 20 1000 2
Glass 9 214 6
Heart 13 270 2
Hepatitis 19 155 2
Horse-Colic 22 368 2
Iris 4 150 3
Sonar 60 208 2
Tic-Tac-Toe 9 958 2
Vehicle 18 846 4
Vote 18 232 2

are not important, or that the actual values are not available. Our philosophy is that, whichever case
this is, missing values should not contribute in the modelling process and the classification process.
As a result, we deal with missing values simply by filling them with empty set, which contribute
nothing to either modelling or classification because our hypergranules contain sets of values instead

of single values.

To achieve our objective, we need a standard data mining algorithm for benchmarking. We chose
C4.5 (see [14]) as it is one of the most extensively used algorithms in the literature and it is widely
available so that the experiment results can be easily repeated, if needed; in the present study, we have
used the C4.5 module of the Clementine [? ] package. We have used 5-fold cross validation for both
C4.5 and LM.

The results are shown in Table 12. We analysed the prediction success of C4.5 and LM, and the
cross-classification is a straight line. Therefore we can say that LM is comparable to C4.5.

We also analysed the relationship between reduction ratio and prediction success. The regression line
is estimated by PredictionSuccess = 1.044*ReductionRatio - 0.128. This suggests that the reduction

ratio is a good measure of prediction success.

14



Table 12: Prediction success of C4.5 and LM and the reduction ratio obtained by LM. These results are based
on the new C° and C'! measures. The [.M results were obtained with pruning. The reduction ratio is
defined as | D| — |, Es|/|D|, where E; is the E-set for class M;, and D is the dataset.

Prediction success . .
Dataset CAs M Reduction ratio
Annealing | 91.8 93.6 90.6
Australian | 85.2 83.5 85.2
Auto 72.2 76.1 89.9
Breast 74.7 72.6 82.5
Diabetes 72.9 71.7 82.0
German 70.5 72.5 96.0
Glass 81.3 82.7 87.3
Heart 77.1 71.0 84.4
Hepatitis 80.7 80.0 894
Horse-Colic | 80.9 78.2 83.0
Iris 94.0 96.0 97.6
Sonar 69.4 69.7 90.8
Tic-Tac-Toe | 86.2 83.5 88.5
Vehicle 69.9 62.2 84.1
Vote 95.1 97.0 98.5
Wine 94.3 94.4 96.1
Average 79.95 79.75 88.70

7 Related work

The classic work of Mitchell on version spaces [11] is directly relevant. Mitchell viewed space of all
possible concept descriptions as a lattice from the most general down to the most specific. He defined
the version space as the sub-lattice that is consistent with a set of labelled examples. He defined the G-
set and the S-set (the subsets of descriptions that make up the most general/most specific boundaries
of the sub-lattice). This work was followed up by many others, most notably Hirsh [9, 10], who
discussed how to merge version spaces when a central idea in Mitchell’s work is removed — a version
space is the set of concepts strictly consistent with training data. This merging process can therefore

accommodate noises.

This line of research is concerned mainly with how to find, given a set of labelled examples (i.e., a
set of positive and negative examples of a concept), the G-set and the S-set, which together represents

the space of all possible consistent concepts. However, for practical tasks, we usually do not need all
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Figure 3: A labelled lattice.

concepts, but a single one which predicts or classifies best. The question of how to find such a concept

is not addressed in this line of research, as far as we know.

Each E-set found by LM is a single concept consistent with a class of labelled examples. In the case
of two class classification problem, there will be one E-set for the positive case, and another for the
negative case. Different E-sets represent single concepts for different classes. To justify the selection
of such single concepts, consider the abstract lattice in Figure 3. In this labelled lattice, elements A
and B are both equilabeled elements. But A has greater coverage of unlabeled elements than B; in
other words, A is more general than B (or B is more specific than A). In the spirit of least general
generalisation (LGG) 4, we should prefer B to A in our pursuit of a single concept for the dark black
class. LM is designed having this in mind, which concludes that the E-set for the dark black class is
{B}, and the E-set for the light black class is {D}.

Each E-set is a subset of the S-set in the following sense. Let .S and T' be two arbitrary sets, dg def
(s,to),d1 e (s,t1) € S x T. Let Mit be the operation implied in the S-set examples used by
Mitchell ([11],page 214). If to # t1, then Mit(dy, d1) = (s, 7), where the question mark means that
the elements in T are unimportant ([11],page 205). In the context of our decision system, this amounts
to Mit(dy,d1) = (s,T), since for any d' = (s, t'), the comparison between d’ and M:it(dy, d;)
regarding which is more general or specific will be made by comparing s and s’ irrespective of t/, g, 1.
This is to say that the Mt operation generalises dy and d; to (s, T'), which clearly assumes too much
extra information which may not be true in reality. However, by some misuse of notation, our approach
results in LM (do, d1) = (s, {to, t1}), which uses only available information. In this sense we say that
each E-set is a subset of the S-set. No decision rules is provided for classification in [11], nor has one
been found elsewhere in this line of research, as far as we know. Furthermore, no application in a

practical setting has been found.

*LGG says that if two clauses ¢; and ¢, are true, it is very likely that their most specific generalisation will also be true
[13,3].
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Mitchell used an example to illustrate his idea. The training set is as follows:

(7.1) {(Large Red Triangle)(Small Blue Circle)} : +
(7.2) {(Large Blue Circle)(Small Red Triangle)} : +
(7.3) {(Large Blue Triangle)(Small Blue Triangle)} : —

Each line describes a pair of unordered objects, which is labelled as either positive (+) or negative (-).

The S-set and G-set obtained are

S — set : [{(? Red Triangle)(? Blue Circle)), ((Large ? ?)(Small ? ?))]
G — set : [((?Red ?7)(? 7 ?)),((?? Circle)(? ? ?))]

This example can be turned into a set of 8 decision systems as shown in Table 13, and the E-sets
corresponding to these tables are shown in Table 14. The collection of different incomparable E-sets
for the positive class is {({L, S}, R, T),({L, S}, B,C), (L, {B, R},{C,T}),(S,{B,R},{C,T})}.
Clearly this is exactly the S-set except that { L, S}, { B, R}, {C, T'} are replaced by the question mark

respectively. As we argued earlier, Mitchell’s results generalise beyond given information.

In sum, Mitchell’s version space is where the underlying concepts should belong to, though for larger
problems the space could be large, and the use of the space rest with the users. Our approach attempts
to find a single concept which is relatively conservative in the sense of least general generalisation

principle.

8 Summary and conclusion

In this paper we have presented a novel approach to the problem of classificatory filtering — preserving
classification information in the process of data reduction. Our approach is a generalisation of the

filtering method discussed in [2].

We presented an algorithm (ILM) in the context of lattice. In the context of decision systems, we
look at hypergranules and it turns out that the collection of all hypergranules in a given domain is a
lattice. LM works, in decision systems, by collecting attribute values while preserving classification
information. It inputs a decision system, and outputs a set of maximal hypergranules that, collectively,

is consistent with the original decision system but is much smaller in size.

We also discussed the problem of assigning classification labels to new data based on filtered data,

with respect to three cases: single coverage, mutiple coverage, and non coverage. We proposed and
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Table 13

: Representing Mitchell’s example using multiple tables.

U | Size | Colour | Shape | Class U | Size | Colour | Shape | Class
ug | L R T + ug | L R T +
up | L B C + uy | L B C +
U2 L B T - U2 S B T -
U | Size | Colour | Shape | Class U | Size | Colour | Shape | Class
ug | L R T + ug | L R T +
Ui S R T + Ui S R T +
U2 L B T - U2 S B T -
U | Size | Colour | Shape | Class U | Size | Colour | Shape | Class
uo S B C + uo S B C +
up | L B C + uy | L B C +
U2 L B T - U2 S B T -
U | Size | Colour | Shape | Class U | Size | Colour | Shape | Class
uo S B C + uo S B C +
Ui S R T + Ui S R T +
U2 L B T - U2 S B T -
Table 14: E-sets corresponding to the tables in Table 13.
U | Size | Col Sh Cl
; 3 Rour ;pe jss U | Size | Colour | Shape | Class
U y
L
o 3 B C n u? = {BI;R} {C:FT } +
uy | L B T - ! -
U Size | Colour | Shape | Class U Size | Colour | Shape | Class
uy | {L,S} R T + uy | {L, S} R T +
uh L B T - uh S B T -
U Size | Colour | Shape | Class U Size | Colour | Shape | Class
uy | {L, S} B C + uy | {L, S} B C +
u) L B T - u) S B T -
i 1 h 1
U | Size | Colour | Shape | Class [{ Size | Colour | Shape | Class
; ug | S B C +
ug S {B,R} | {C,T} + p
; up | S R T +
uy | L B T - p
uy | S B T -
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justified two measures: one measures the likelihood that one hypergranule covers another; another
measures the likelihood that merging two hypergranules covers others. Based on the two measures

we devised an algorithm (C2) which efficiently classifies new data.

We evaluated both LM and C2 using some real world datasets. We used LM to discover “knowledge”
— hypergranules from these datasets, and then we used C2 to classify new data. We used 5-fold cross
validation method for the evaluatation and we found that the result is comparable to that of C4.5.
Analysis of the result by statistical test methods showed that there is no statistical difference between
LM/C2 and C4.5. Further regression analysis shows that the reduction ratio is a strong indicator of

prediction success.
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A Iris data

Table 15: Iris data

SL | SW [PL [ PW | Spec. [|[SL | SW |PL|PW | Spec. [ SL|SW |PL|PW | Spec.

51| 35 | 14| 02 | Setosa || 70 | 32 | 47 | 14 | Versicolor || 63 | 33 | 60 | 25 | Virginica
54 | 39 | 17| 04 | Setosa | 57 | 28 | 45 | 13 | Versicolor || 76 | 30 | 66 | 21 | Virginica
46 | 34 | 14 | 03 | Setosa || 63 | 33 | 47 | 16 | Versicolor || 49 | 25 | 45 | 17 | Virginica
50| 34 | 15| 02 | Setosa || 49 | 24 | 33 | 10 | Versicolor || 73 | 29 | 63 | 18 | Virginica
44 | 29 | 14 | 02 | Setosa || 66 | 29 | 46 | 13 | Versicolor || 67 | 25 | 58 | 18 | Virginica
49 | 30 | 14 | 02 | Setosa || 64 | 32 | 45 | 15 | Versicolor || 58 | 27 | 51 | 19 | Virginica
47 | 32 | 13| 02 | Setosa || 69 | 31 | 49 | 15 | Versicolor || 71 | 30 | 59 | 21 | Virginica
46 | 31 | 15 | 02 | Setosa || 55 | 23 | 40 | 13 | Versicolor || 63 | 29 | 56 | 18 | Virginica
50| 36 | 14 | 02 | Setosa || 65 | 28 | 46 | 15 | Versicolor || 65 | 30 | 58 | 22 | Virginica
49 | 31 | 15| 01 | Setosa || 52 | 27 | 39 | 14 | Versicolor || 72 | 36 | 61 | 25 | Virginica
54 | 37 | 15| 02 | Setosa || 50 | 20 | 35 | 10 | Versicolor || 65 | 32 | 51 | 20 | Virginica
48 | 34 | 16 | 02 | Setosa || 59 | 30 | 42 | 15 | Versicolor || 64 | 27 | 53 | 19 | Virginica
48 | 30 | 14 | 01 | Setosa || 60 | 22 | 40 | 10 | Versicolor || 68 | 30 | 55 | 21 | Virginica
43 | 30 | 11 | 01 | Setosa || 61 | 29 | 47 | 14 | Versicolor || 57 | 25 | 50 | 20 | Virginica
58 | 40 | 12 | 02 | Setosa || 56 | 29 | 36 | 13 | Versicolor || 58 | 28 | 51 | 24 | Virginica
57 | 44 | 15| 04 | Setosa | 67 | 31 | 44 | 14 | Versicolor || 64 | 32 | 53 | 23 | Virginica
54| 39 | 13| 04 | Setosa || 56 | 30 | 45 | 15 | Versicolor || 65 | 30 | 55 | 18 | Virginica
51| 35 | 14| 03 | Setosa || 58 | 27 | 41 | 10 | Versicolor || 77 | 38 | 67 | 22 | Virginica
57 | 38 | 17 | 03 | Setosa || 62 | 22 | 45 | 15 | Versicolor || 77 | 26 | 69 | 23 | Virginica
51| 38 | 15| 03 | Setosa || 56 | 25 | 39 | 11 | Versicolor || 60 | 22 | 50 | 15 | Virginica
54 | 34 | 17| 02 | Setosa || 59 | 32 | 48 | 18 | Versicolor || 69 | 32 | 57 | 23 | Virginica
51| 37 | 15| 04 | Setosa || 61 | 28 | 40 | 13 | Versicolor || 56 | 28 | 49 | 20 | Virginica
46 | 36 | 10 | 02 | Setosa || 63 | 25 | 49 | 15 | Versicolor || 77 | 28 | 67 | 20 | Virginica
51| 33 | 17| 05 | Setosa || 61 | 28 | 47 | 12 | Versicolor || 63 | 27 | 49 | 18 | Virginica
48 | 34 | 19 | 02 | Setosa || 64 | 29 | 43 | 13 | Versicolor || 67 | 33 | 57 | 21 | Virginica
50| 30 | 16 | 02 | Setosa || 66 | 30 | 44 | 14 | Versicolor || 72 | 32 | 60 | 18 | Virginica
50| 34 | 16 | 04 | Setosa || 68 | 28 | 48 | 14 | Versicolor || 62 | 28 | 48 | 18 | Virginica
52| 35 | 15| 02 | Setosa || 67 | 30 | 50 | 17 | Versicolor || 61 | 30 | 49 | 18 | Virginica
52 | 34 | 14 | 02 | Setosa || 60 | 29 | 45 | 15 | Versicolor || 64 | 28 | 56 | 21 | Virginica
47 | 32 | 16 | 02 | Setosa || 57 | 26 | 35 | 10 | Versicolor || 72 | 30 | 58 | 16 | Virginica
48 | 31 | 16 | 02 | Setosa || 55 | 24 | 38 | 11 | Versicolor || 74 | 28 | 61 | 19 | Virginica
54| 34 | 15| 04 | Setosa || 55 | 24 | 37 | 10 | Versicolor || 79 | 38 | 64 | 20 | Virginica
52 | 41 | 15| O1 | Setosa || 58 | 27 | 39 | 12 | Versicolor || 64 | 28 | 56 | 22 | Virginica
55| 42 | 14| 02 | Setosa || 60 | 27 | 51 | 16 | Versicolor || 63 | 28 | 51 | 15 | Virginica
49 | 31 | 15| 01 | Setosa || 54 | 30 | 45 | 15 | Versicolor || 61 | 26 | 56 | 14 | Virginica
50| 32 | 12| 02 | Setosa || 60 | 34 | 45 | 16 | Versicolor || 77 | 30 | 61 | 23 | Virginica
55| 35 | 13| 02 | Setosa || 67 | 31 | 47 | 15 | Versicolor || 63 | 34 | 56 | 24 | Virginica
49 | 31 | 15| 01 | Setosa || 63 | 23 | 44 | 13 | Versicolor || 64 | 31 | 55 | 18 | Virginica
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Cont. from previous page

| SL | SW | PL|[PW | Spec. [[SL|[SW [PL|PW | Spec. [ SL|SW |PL|PW | Spec.
44 | 30 | 13 | 02 | Setosa || 56 | 30 | 41 | 13 | Versicolor || 60 | 30 | 48 | 18 | Virginica
51| 34 | 15| 02 | Setosa || 55 | 25 | 40 | 13 | Versicolor || 69 | 31 | 54 | 21 | Virginica
50| 35 | 13| 03 | Setosa || 55 | 26 | 44 | 12 | Versicolor || 67 | 31 | 56 | 24 | Virginica
45 | 23 | 13 | 03 | Setosa || 61 | 30 | 46 | 14 | Versicolor || 69 | 31 | 51 | 23 | Virginica
44 | 32 | 13 | 02 | Setosa || 58 | 26 | 40 | 12 | Versicolor || 58 | 27 | 51 | 19 | Virginica
50| 35 | 16 | 06 | Setosa || 50 | 23 | 33 | 10 | Versicolor || 68 | 32 | 59 | 23 | Virginica
51| 38 | 19 | 04 | Setosa | 56 | 27 | 42 | 13 | Versicolor || 67 | 33 | 57 | 25 | Virginica
48 | 30 | 14 | 03 | Setosa || 57 | 30 | 42 | 12 | Versicolor || 67 | 30 | 52 | 23 | Virginica
51| 38 | 16 | 02 | Setosa || 57 | 29 | 42 | 13 | Versicolor || 63 | 25 | 50 | 19 | Virginica
46 | 32 | 14 | 02 | Setosa || 62 | 29 | 43 | 13 | Versicolor || 65 | 30 | 52 | 20 | Virginica
53 | 37 | 15| 02 | Setosa || 51 | 25 | 30 | 11 | Versicolor || 62 | 34 | 54 | 23 | Virginica
50| 33 | 14| 02 | Setosa || 57 | 28 | 41 | 13 | Versicolor || 59 | 30 | 51 | 18 | Virginica
The hypergranules obtained by the LM — algorithm for the Iris data are given in Table 16.
Table 16: Hypergranules for Iris
Attribute
: - Class
Sepal length | Sepal width Petal length | Petal width
{43,...,58} x {23,29,... 44} x {10,...,17,19} x  {1,...,6} Setosa
s{fgii} X {20,22,...,34} x  {30,33,35,...,49} x  {10,...,16} | Versicolor
{56,...,59,61,....., 69, {25,...,34,36,38}  x {49, 61, x  {18,...,25} | Virginica
71,...,74,76,77,79} ’ e 63, 64, 66,67, 69} ’ ’
{61, 63} X {26, 28} X {51, 56} X {14,15} Virginica
{60} X {30} X {48} X {18} Virginica
{72} X {30} X {58} X {16} Virginica
{62} X {28} X {48} X {18} Virginica
{60} X {22} X {50} X {15} Virginica
{49} X {25} X {45} X {17} Virginica
{60} X {27} X {51} X {16} Versicolor
{67} X {30} X {50} X {17} Versicolor
{59} X {32} X {48} X {18} Versicolor
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