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ABSTRACT
The synthesis of stochastic processes using genetic program-
ming is investigated. Stochastic process behaviours take the
form of time series data, in which quantities of interest vary
over time in a probabilistic, and often noisy, manner. A suite
of statistical feature tests are performed on time series plots
from example processes, and the resulting feature values are
used as targets during evolutionary search. A process alge-
bra, the stochastic π-calculus, is used to denote processes.
Investigations consider variations of GP representations for
a subset of the stochastic π-calculus, for example, the use
of channel unification, and various grammatical constraints.
Target processes of varying complexity are studied. Results
show that the use of grammatical GP with statistical feature
tests can successfully synthesize stochastic processes. Suc-
cess depends upon a selection of appropriate feature tests
for characterizing the target behaviour, and the complexity
of the target process.
Program Track: Genetic Programming

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
Experimentation

Keywords
Stochastic Process, Process Algebra, Time Series, Feature
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1. INTRODUCTION
A process is a series of actions or state changes that brings

about a result. These result changes can be plotted as time
series graphs. Process behaviour can be characterized by
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such time series. A deterministic process’s behaviour is de-
pendent upon the initial environment. Conversely, stochas-
tic processes model behaviours in which factors that are
unknown or too difficult to model can be abstracted with
probabilities. Stochastic process behaviour is dependent on
such probabilistic factors. Stochastic processes have been
used to model various real-world phenomena, such as stock
market behaviour, ecological balances of predators and prey,
and protein levels during bio-molecular reactions. In partic-
ular, bio-network modelling has attracted great attention.
Many important problems, such as gene regulation network
modelling, use stochastic process models.

The synthesis of process models given example time plots
of their behaviours has been well studied. The symbolic
regression problem in GP is a basic process inference prob-
lem, if one considers the x-axis as being time [11]. Koza
et al. use GP to reconstruct metabolic networks from ex-
ample time series behaviours [12]. Kitagawa and Iba evolve
metabolic networks using a GA representation of Petri nets
[10]. Nonlinear differential equations can be used to model
time plot curves, and have been subjects for evolutionary
computation [4] [27]. Stochastic process evolution has also
been studied. Leier et al. use set-based GP to evolve alge-
braic systems that denote oscillating behaviours [13]. Dren-
nan and Beer [6] and Chu [5] use GAs to evolve stochastic
models for biological networks [6]. Ross uses GP with a
stochastic process algebra, but on strictly monotonic time
series plots [24]. Imada uses GP with stochastic processes
denoting gene regulatory networks [8].

The processing of noisy data is a much-studied fundamen-
tal issue in machine learning. Although noisy time series and
stochastic time series are similar, and often amenable to the
same strategies, there is a subtle difference between them. A
noisy time series may in fact be generated by a deterministic
process. Its output, however, may be partially obfuscated
by external noise that is not to be incorporated in the under-
lying model. On the other hand, a stochastic process nor-
mally has stochastic factors encoded in the model; noise is
not necessarily disregarded or filtered. Rodriguez-Vazquez
and Fleming use GP to model oscillating chaotic systems
[22]. Financial applications of noisy time series using GP
include work by Schwarzel and Bylander [26], and Borrelli
et al.[3]. Imada applies GP to the symbolic regression prob-
lem when noise is introduced [8][9]. Other work considering
process evolution from noisy data includes [1] [30].

This paper investigates the use of GP to synthesize stochas-
tic processes. We use a technique used by Imada for noisy



time series as found in symbolic regression problems and
gene regulation networks [8]. Target process behaviour is
characterized by application of a series of statistical fea-
ture tests to the time series plots. We then evolve pro-
cesses whose feature values are as close as possible to those
of the target. Processes are denoted with a subset of the
stochastic π-calculus, which is a process algebra for mod-
elling stochastic processes [17][19]. It has been shown to be
useful for modelling various biological and chemical systems
[2][20]. Its modularity and simple semantics make it a suit-
able language for GP. The GP system defines the process
algebra with a context-free grammar, which enables useful
grammatical constraints to guide the form of solutions con-
sidered. Experiments examine the evolution of processes
exhibiting a variety of stochastic behaviours.

There are many motivations for this research. The stochas-
tic π-calculus is one of many process algebras used in the
formal methods community, which is a field whose research
is directed towards the formal analysis and modelling of con-
current (stochastic) systems. However, very little research
exists in using machine learning towards the automatic syn-
thesis of process algebra models. Process algebra are par-
ticularly well suited for GP, given their modular, program-
ming language-like nature. Stochastic π-calculus models dif-
fer from conventional reaction-based models [10] [12], whose
expressions denote the entire reaction that will ensue in a
process. Rather, the stochastic π-calculus denotes simpler
components, which interact with each another other during
process execution in complex and often unpredictable ways.
Resulting process executions are very dynamic and robust
in nature. This makes them a challenging domain for GP.

The paper is organized as follows. Section 2 describes the
stochastic π-calculus. The use of statistical features for de-
noting time series data is discussed in Section 3. Some spe-
cific methodologies used in the experiments, such as channel
unification, grammatical constraints, and fitness strategies,
are described in Section 4. Experiments and their results
are given in Section 5. Conclusions are in Section 6.

2. A STOCHASTIC PROCESS ALGEBRA

P ::= 0 ‖ P|P ‖ Repl π:P ‖ Σ
Σ ::= π.P ‖ delay(t).P ‖ Σ+Σ
π ::= ?c ‖ !c

Table 1: Process Algebra Syntax

The stochastic π-calculus is a process algebra that models
concurrency, stochastic behaviour, and mobility (dynamic
network changes) [19]. We use a subset of the stochastic
π-calculus (Table 1). We omit channel passing, renaming
and restriction found in the full algebra, which makes our
algebra similar in syntax to the CCS algebra [15]. Despite
these omissions, arguably the most interesting feature of this
process algebra is its stochastic semantics, which permits
many complex behaviours to be modelled.

In Table 1, processes can be defined by a null process
0, the concurrent operator “|”, replication operator Repl, or
choice Σ. A choice expression is one or more terms that can
be stochastically selected. A term is an input (?x) or output
(!x) action. A delay term, if selected, advances the clock
by a stochastically-determined duration, as specified by the

delay value t. Each channel c has a rate associated with it.
A shorthand notation used is K@P, which means P|P|...|P
repeated K times.

Sub-process definitions with parameter passing are possi-
ble. Letting Proc be a channel name reserved to identify a
sub-process:

Proc=P ⇒ Repl (?Proc.P)
Calls to the sub-process are denoted “!Proc”.

The stochastic semantics are based on the Gillespie algo-
rithm [7], which is used in chemical simulations. Consider
the following transition of an expression:

(?x.P1+Σ1)|(!x.P2+Σ2)|P3
rate(x)→ P1|P2|P3

Here, ?x and !x are active, in that they are both able to com-
municate. A synchronous handshaking communication has
arisen along channel x via its input and output terms, and
the entire expression has transformed. The other choices
of actions in the Σi terms have been preempted by this
communication. The Gillespie algorithm selects the exe-
cution of x stochastically. Gillespie selection is identical to
Roulette wheel selection. Each active channel has an area of
the Roulette wheel proportional to its probabilistic strength
(quantity × rate). A call to a random number generator lets
the simulation environment select a channel from the wheel.
Once the transition occurs, the global time counter is ad-
vanced by an amount inversely proportional to the probabil-
ity of the selected action. This reflects the higher frequency
of more probable actions.

During an interpretation of a stochastic π-calculus ex-
pression, the overall expression transforms dynamically as
terms replicate, and choice terms appear and disappear. The
changing quantities of active terms within the expression can
be measured over time, which permits a time series charac-
terization of process behaviour.

The stochastic π-calculus can denote complex systems el-
egantly and concisely [2][17]. Resulting time plots, however,
can be unpredictable and highly sensitive to details of the ex-
pressions, as is commonly the case with nonlinear dynamic
systems [28]. For example, the particular rate used for a
channel can result in drastically different time series plots.
Altering a single channel in an action term can immediately
result in a deadlocked expression. This makes process spec-
ification challenging, both for humans and GP.

3. TIME SERIES AND STATISTICAL FEA-
TURES

Stochastic processes generate time series which vary be-
tween separate interpretations, even when run from identical
starting conditions. By examining a possibly noisy time se-
ries from a stochastic process, standardized characteristics
are often calculable. By doing so, a complex time series
might be accurately identified by a carefully selected set of
feature characteristics.

We characterize process behaviour by analyzing the gener-
ated time series with a suite of statistical feature tests. Our
system implements an ensemble of 17 uni-variate tests taken
from [8] [16] [29]. Let the time series be denoted T = (t, vt),
where vt is the measured data value at time t. Experiments
in this paper select from the following tests: (1) Raw mean:
The mean of all vt is computed. (2) Raw standard devia-
tion: The standard deviation of vt is computed. (3) Skew:
If the data values are put into histogram bins, this mea-
sures the symmetry, or lack thereof, of the histogram. Pos-



itive values means the histogram skews to the right of the
mean. Negative values means a skew left. Zero indicates
a symmetric distribution around the mean. (4) Serial cor-
relation: This measures the degree of fit to a white noise
model. Small values indicate more noise in the data. (5)
Chaos: This measures the sensitivity to initial values. It
calculates the rate of divergence of nearby points, averaged
over many measures. Negative values indicate stability, zero
if steady-state, and positive if divergent, chaotic behaviour.
(6) Periodicity: This complex computation detects cyclic ac-
tivity which might vary in frequency. Trend is removed from
the raw data, followed by calculation of the auto-correlation
function. The periodicity is the time interval of the shortest
detected cycle.

Given a target process, the statistical feature values for its
output behaviour are computed. Hundreds of plots are gen-
erated, the feature values of all the plots are determined, and
the means and standard deviations of these values are cal-
culated. Next, a meaningful set of features must be chosen
that competently characterizes the time series. One might
be tempted to use all feature values. However, this is not
recommended, since too many features creates a highly di-
mensional search space that is too difficult for evolution.
Note that automatic feature selection is a research problem
studied elsewhere [14]. Furthermore, the automatic identifi-
cation of generalized time series is intractable.

We choose feature tests using a combination of principled
and ad hoc selection. To help rationalize which features are
worth consideration, we tabulate all the feature tests scores
and compute for each a stability measurement: stability =
μ/σ. A high stability means that the mean value does not
vary a lot compared to its standard deviation, and hence
may be an accurate measurement. Next, we manually select
from the feature tests that are both stable, and seem sensi-
ble for the target behaviour at hand. For many processes,
the feature tests to use will be obvious. For example, an
oscillating time series should use periodicity.

4. METHODOLOGY

4.1 Channel unification
One issue of concern is whether it is detrimental to repre-

sent π-calculus actions within the GP tree with hard-coded
channel names, for example, “!x” for channel x. Expressions
can deadlock with a single change of a channel label. Also,
we find that the majority of the initial population of expres-
sions are deadlocked, and hence contribute nothing to the
gene pool during evolution.

An alternative representation is to treat channels as vari-
ables to be unified. Channel unification permits channels
labels to be set dynamically, according to the structure of
expressions. Unlike hard-coded channels, this may reduce
deadlock, and promote effective evolution. Using channel
unification means that an expression is first transformed by
a unification procedure. After all channel variables are uni-
fied, the modified expression can be used as usual.

A free channel variable is a placeholder for an actual chan-
nel. It has the form Ax,n, where A is a channel variable,
with an associated channel label x and priority value n.
Terms with higher priorities can take precedence over those
with lower priorities, perhaps akin to dominant and reces-
sive genes. Unifying Ax,n with channel label z results in:
unify(Ax,n, z) ⇒ zn. The zn term is called a ground channel.

It retains a priority value n until the expression unification
procedure is complete, after which priorities are removed.
A deterministic unification algorithm unifies all the channel
variables in an expression. Unification happens only once
per instance of channel variable in the expression, and it is
permanent through the remainder of that expression’s inter-
pretation.

The prioritized unification algorithm uses a portion of the
π-calculus interpreter, in order to find active terms (ie. those
available to communicate) that might unify during actual
interpretation. It finds the set of active channel terms, and
unifies them using the following ordered set of rules:

1. Two free channel variables with the same channel label
x are unified with x.

2. The free channel variable Ax,n with the highest prior-
ity n is matched with the free variable By,m with the
lowest priority m. Both unify with x from A.

3. A free channel Ax,n is unified with a ground channel
xm, having the same name as A’s channel label x.

4. The ground channel xn with highest priority n is matched
with the free channel Ay,m with the lowest priority m.
A is unified with x.

If all variables have been unified, the process stops. Oth-
erwise, the above is applied iteratively and greedily within
a breadth-first π-calculus interpreter. Terms are unwound
by performing handshaking of complementary terms, and
putting the resulting transformed expressions in a queue.
This attempts to transform expressions that are likely to oc-
cur should communication arise, irrespective of the stochas-
tic model used in the π-calculus. The queue elements are
then processed with the above rules, one after another, un-
til all channel variables have been unified, OR a maximum
queue size is reached (100 in our experiments). Any remain-
ing free variables are unified with their composite channel
labels.

A variation of the above, free unification, ignores priority
values. The first channel term found of the type required in
the rule is used.

A stochastic π-calculus interpreter is implemented in SIC-
Stus Prolog, which implements the above channel unification
procedures as options. The interpreter is based on an ab-
stract machine specification in [18].

4.2 Grammar-Guided Genetic Programming
Grammar-guided GP is used, and the process algebra is

defined with a context-free grammar (CFG). It is useful for
this research, as it permits the definition of grammatical
constraints for the evolved process algebra expressions. The
grammar can be tailored according to the the complexity
of the process to evolve. The DCTG-GP system is used,
in which logic-based attribute grammars are used to specify
GP languages [23].

A typical CFG used in this paper is shown in Fig. 1.
This grammar evolves channel rates, which is simply a list
of float values. Next, two partitions of processes are de-
fined. Each partition is set with a mask, or direction for
action terms. The first partition is set to encode only input
terms (Dir=in), and the other uses output terms. The di-
rection is passed to the channel actions in Ch (not shown).
This improves the chances of communication, by reducing



Expr ::= Rates, Procs(in) ‖ Procs(out)
Rates ::= F loat, F loat, ...(1 per channel)

Procs(Dir)† ::= Proci = Choice ‖
Procs(Dir)|Procs(Dir)

Choice† ::= Term ‖ Choice + Choice
Term ::= Pi ‖ Pi.P i ‖ Pi.Call ‖

Pi.P i.Call ‖ Pi.(Call|Call)
Call ::= Proc Int

P i ::= ?Ch ‖ !Ch (if Dir = in or out)
Ch ::= c (c ∈ channels)

F loat ::= minf ≤ f ≤ maxf

Int ::= mini ≤ i ≤ maxi

Figure 1: A grammar for the stochastic π-calculus

potential deadlock. The Procs rule defines sub-process def-
initions. Process definitions are indexed with an integer
value. Calls to them likewise use an integer expression in
the rule Call. The integer field is processed to index a pro-
cess defined within that partition. The Choice rule defines
the main body of expressions. The Term rule shows the dif-
ferent kinds of expression sequences allowed. Note that the
terms are guarded, which means that each recursive call to a
sub-process must involve at least one action Pi beforehand.
Finally, floats and integers fall within specified ranges.

Note that the Procs and Choice rules are tagged with †.
These grammar rules permit Ohno-style subtree duplication,
implemented with a special mutation operator. For example,
a tree node labelled C may be replaced with C +C. A node
delete operator performs the inverse transformation. Procs
and Choice can have user-specified maximum sizes.

Other constraints encodable in the CFG may include mask
removal, unification variables (Section 4.1), delay terms, pa-
rameter passing to processes, adding or removing partitions,
terms size limits, and channel rates.

4.3 Fitness evaluation
Fitness evaluation follows a technique used by Imada for

noisy symbolic regression and gene regulatory network syn-
thesis[8][9]. The GP expression is interpreted by the stochas-
tic π-calculus interpreter, resulting in a time series for each
channel of interest. The feature values from Section 3 se-
lected for a given target process are computed for the time
series. The majority of these feature calculations are im-
plemented in C, and are called from the Prolog-based GP
system (described below). The periodicity is computed with
the R system [21].

Once the feature values for the GP expression are deter-
mined, the Euclidean distances between them and the target
feature values for all channels (j ∈ ch) is computed:

Distance =
X
j∈ch

vuut X
i∈features

„
(vij − tij)

σij

«2

where vij is the computed feature value, tij is the target
value, and σij is the standard deviation for that feature as
exhibited by the target process. The scaling by σi can be
replaced by the mean μi if desired.

An option is to interpret an expression multiple times dur-
ing fitness evaluation. In such cases, the mean of all the
distances for the multiple time series is used as the fitness.

5. EXPERIMENTS

5.1 KNa2Cl

Na = !ionize1.!deionize1.Na
K = !ionize2.!deionize2.K
Cl = ?ionize1.Cl minus + ?ionize2.Cl minus
Cl minus = ?deionize1.Cl + ?deionize2.Cl
KNa2Cl = 100@Na | 100@Cl | 100@K
rate(ionize1)= 100.0 rate(ionize2) = 30.0
rate(deionize1)= 10.0 rate(ionize2) = 20.0

Table 2: KNa2Cl target process

?ionize2 (a), ?deionize1 (b), ?ionize1 (c), ?deionize2 (d)

Figure 2: KNa2Cl plot (input terms)

This example is taken from [17]. The target process mod-
els the ionization and deionization of the KNa2Cl co-transporter:

K + Na + 2Cl ⇐⇒ K+ + Na+ + 2Cl−

The target stochastic π-calculus expression is shown in Table
2, and an example time-series plot for the input terms is in
Fig. 2. Each plot shows the measured quantity over time,
of the output channels (?ionize1, etc.).

Although the process plot in Fig. 2 exhibits noise, we will
use mean and standard deviation as the two feature tests.
After interpreting the expression 500 times, feature values
such as the following were computed for the input terms: (i)
?ionize1: mean (μ=37.0, σ=1.2), std dev (μ=6.2, σ=0.5);
(ii) ?ionize2: mean (μ=79.0, σ=1.2), std dev (μ=4.0, σ=0.4);
(iii) ?deionize1: mean (μ=62.9, σ=1.2), std dev (μ=6.3,
σ=0.5); (iv) ?deionize2: mean (μ=20.9, σ=1.2), std dev
(μ=3.6, σ=0.5). The output terms had similar calculations
(not given). Therefore, feature evaluation uses mean and
standard deviation scores for the in and out terms for the
ionize1, ionize2, deionize1, and deionize2 channels. This re-
sults in a 16-term weighted sum, which is normalized by
either the standard deviation or mean of the target scores.

Global parameters for all the runs are in Table 3. A few
parameters requiring explanation are the following. Because
the majority of random expressions in the initial popula-
tion are deadlocked, the initial population is oversampled,
and the worst are culled from it. Lamarckian evolution (lo-
cal search) is performed on the initial population, to help
“boost” its viability. One-third of the culled population
will have reproduction operations applied to each member
a maximum of 5 times. As soon as a change improves the



Parameter value
Initial popn. 4000
Running popn. 1500
Unique popn yes
Generations 50
Runs/experiment 20
Init max tree depth 8
Max tree depth 10
Prob. crossover 0.90
Prob. mutation 0.10
Prob. terminal mutation 0.045
Prob. node delete mut. 0.036
Prob. tree mutation 0.015
Prob. clone mut. 0.004
Tournament size 4
Lamarckian boost init. popn. 0.33 of popn,
Lamarckian evolution 0.05 of popn., every 6 gens
Elite migration 5

Table 3: Common KNa2Cl parameters

Scale Choice # I/O
Target factor size interp. mask Unif.

A: partial σ 4 4 yes no
B: partial σ 2 4 yes no
C: partial μ 2 4 yes no
D: full σ 2 4 yes no
E: full σ 2 1 yes no
F: full σ 2 1 no no
G: full σ 2 1 no yes (pri)
H: full σ 2 1 no yes (free)

Table 4: KNa2Cl experiments

fitness, the new expression replaces the old one in the popu-
lation. This local refinement is applied every 6 generations
during the run, on the top 5% of the population. The pop-
ulation always contains unique trees at all times.

The KNa2Cl experiments are shown in Table 4. Experi-
ments A, B and C target the Cl and Cl minus expressions
in Table 2, and the remaining expressions are supplied in a
wrapper. Experiments D through H remove the Na and K
expressions from the wrapper. Experiments G and H use
priority and free channel unification respectively. The max-
imum choice term size is either 2 or 4. Rates are fixed.

The single expression with the best fitness score seen dur-
ing a GP run is designated as the solution. The fitness for a
solution expression is re-evaluated, and the resulting fitness
is its test score.

5.1.1 KNa2Cl Results
The experiments that target partial expressions all ob-

tained exact hits: A got 2, B got 6, and C got 2. Hits
were determined by examining the expressions, to see if they
matched the target expressions in Table 2. This suggests
that the partial target was tractable for these runs, and that
smaller choice expressions and σ scaling are preferred.

Experiments D through H, which target the larger process
expression, did not result in hits. We believe that better re-
sults with the full expression require a more careful selection
of feature tests, and evaluation of fewer channels. Neverthe-

less, these experiments did convey useful insights: variations
in number of interpreter evaluations, I/O mask constraints
and unification did not affect results.

Statistical significance tests such as the 2-sample t-test are
erroneous to use for these experiments, because the fitness
scores of solutions are not normally distributed. Neverthe-
less, for curiosity’s sake, a 2-sample t-test assuming unequal
variances was applied to the training and testing scores of
all solutions from all runs (except experiment C, because
it uses a different fitness scale). The result suggests that
experiments A and B show superior performance to exper-
iments D through H (p<0.05). This may confirm that the
partial expression experiments are more tractable than the
full expression versions, which is evident by the exact hits
obtained. This t-test also shows that A and B are statisti-
cally equivalent, as are experiments D through H.

The Kolmogorov-Smirnov test (for non-normal distribu-
tions) was also applied. It reported no statistical difference
in training and testing performance between all experiments,
at least for p<0.05. This result is somewhat confounded by
the fact that multiple hits were indeed obtained for exper-
iments A and B, while none for D through H. More runs
could strengthen the statistical significance of the observed
results. Perhaps the fitness ranges of hit expressions over-
lap the ranges of non-hit solutions to a great extent, making
true solution expressions more difficult to identify in the fit-
ness space. A different selection of feature tests could affect
this.

5.2 Repressilator gate

Gene(a,b) = (delay(0.1).(Protein(b).0) | Gene(a,b))
+ (?a.delay(0.0001).Gene(a,b))

Protein(b) = !b.Protein(b) + delay(0.001)
Repressilator = gene(x,y) | gene(y,z) | gene(z,x)
rate(x)=rate(y)=rate(z)= 1.0

Table 5: Repressilator target process

The repressilator circuit is a genetic regulatory circuit that
produces oscillating behaviour [2]. Table 5 shows a stochas-
tic π-calculus repressilator gate, as well as the wrapper cir-
cuit Repressilator that drives the circuit. The resulting os-
cillation behaviour is in Fig. 3 (a).

The goal is to evolve expressions with behaviours equiva-
lent to that of the Gene and Protein expressions in Fig. 5.
We select the following 5 features: mean, standard devia-
tion, serial correlation, chaos, and periodicity (see Fig.3 (a)
for the values). Fitnesses are scaled by σ. The rates of chan-
nels x, y, and z are set to 1.0. The features are measured
for the output terms of x, y, and z, which gives a total of 15
terms for the weighted sum.

Two separate experiments were performed (20 runs each):
(A) 2 sub-process expression limit; (B) 1 to 3 sub-processes
limit. The GP parameters are in Table 3, except for the
following changes: 30 generations; maximum tree size of 12;
probability crossover is 0.85; probability mutation is 0.10;
probability terminal mutation is 0.075; and probability tree
mutation is 0.025. No channel unification is used.

One interpretation per expression is performed during fit-
ness evaluation. Interpretations are limited to a maximum
of 20,000 transitions, or a clock time limit of 200,000.



For efficiency purposes, interpreted streams are filtered by
using every third time value in the process output.

5.2.1 Repressilator Results

Training fitness Testing fitness
# within # within # within # within

Run target range μ ± σ target range μ ± σ
A 18 5 6 1
B 16 5 3 0

Table 6: Repressilator summary (20 runs)

Table 6 shows that runs generated solutions with fitnesses
falling within the observed range of the target repressila-
tor process, and some solutions were within one standard
deviation of the target’s mean fitness. The target fitness
range was determined by running the repressilator 100 times,
and tabulating the range of fitness values obtained. Testing
scores are more discriminating, and show that solution be-
haviour naturally varies during different interpretations.

Some example plots are shown in Fig. 3. The labels a,
b, and c label specific channels within the plots. Although
no identical solution to the target expression arose, the fol-
lowing was a“near hit” from the runs in B (hand-simplified):

Gene(a,b) = (delay(1.0).(Protein(a,b).0) | Gene(a,b))
+ (?b.delay(0.01).Gene(a,b))

Protein(a,b) = !a.(Protein(a,b)|Protein(a,b)+ delay(0.01)

This expression shares similarities with the target in Table
5. It also exhibits similar feature tests values, fitness scores,
and time series plot (Fig. 3 (b)). Other than using a differ-
ent time scale than the target process, its time series plot
is remarkably similar to the target in (a). Two other solu-
tions’ plots are shown in (c) and (d) in Fig. 3. Oscillating
behaviours often arose, although the oscillations were not
always cleanly alternating as in the target plot. As can be
seen, the periodicity is a difficult feature to fit.

5.3 A Cyclic Process
The repressilator experiment suggests that periodicity is a

challenging feature value to derive in solutions. This experi-
ment concentrates on using periodicity and skew as the only
feature tests. The target values are hand-specified, rather
than calculated from a known target expression. We supply
the following wrapper expression:

(Repl?c1)|(Repl?c3)|(Repl?c5)|P0|P1|P2

GP is to evolve P0, P1, and P2, using the 5 channels c1
through c5. The Repl terms are generating infinite streams
of communications, and improve the chances of oscillating
output. The process should have 2 observed channels: !c1 is
to have a skew of 3.0, and period of 2.0; and !c3 has a skew
of -3.0 and period of 6.0. Channel rates are to be evolved.
Rather than use a simple floating point type for rates, we
use an integer index, which is converted to a float rate using
the following discrete logarithmic transformation:

rate = 10(Index modulo 7)−4

This uniformly generates one of the rates: 0.0001, 0.001,
0.01. 0.1, 1.0, 10.0, 100.0. Since the ratio of channel rates is

of primary importance, this scheme improves the likelihood
of high channel ratios.

The GP parameters used are in Table 3, except for the fol-
lowing: initial population size is 3500; running population
size is 750; maximum 30 generations; max 13 runs; maxi-
mum initial tree depth is 8; and maximum tree depth is 12.
Fitness values are scaled by feature value σ’s. A maximum
of 3 sub-process terms and 4 choice terms are possible. No
channel unification is used.

In order to give the interpretation adequate time to cre-
ate cyclic behaviours, an iteration limit of 130,000 and time
clock limit of 50.0 is used. With such high iterations, the re-
sulting stream from the stochastic π-calculus interpreter can
be enormous, the output stream is filtered by saving every
25th series value. Then 500 evenly-spaced time values are
linearly interpolated from this stream. The resulting stream
of 500 values is efficiently processed.

5.3.1 Cyclic Process Results

!c1 !c3
period skew period skew

Target 2.0 3.0 6.0 -3.0
Avg 1.9 2.3 6.5 -1.9
Best 2.1 2.9 8.1 -3.5

Table 7: Cyclic test score summary (avg 100 plots)

!c1 and !c3. Vertical scales are indicated.

Figure 4: Cycle solution plots

A summary of the test results is in Table 7. The “Avg”
row specifies the average of each feature over all 13 solu-
tions. Hence this row does not actually correspond to any
single solution. The “Best” row specifies the features of the
solution with the best overall fitness score. Most solutions
exhibited feature values that were reasonably close to the
target features This suggests that evolution benefited from
the relatively low dimensional feature space of 4 features.
The selection of periodicity and skew, along with the partic-
ular wrapper expression used, seemed to define a tractable
search space for this problem.

An example of the best solution’s plot is in Fig. 4. The
“!c3”plot (blue, left scale) has a periodicity of 8.1. The effect
of the negative skew is to more data points lower than the
mean, which results in the shape of plot shown. The “!c1”
plot (red, right scale) is spikier, due to positive skew, and
its shorter period is evident.



(a) Target: mean=33.6, std dev=43.9, (b) Solution 1: mean=33.8, std dev=42.3,
sc=8.75, chaos=0.060,period=40915.8 sc=9.73, chaos=0.063, period=2193.8

(c) Solution 2: mean=27.8, std dev=32.3, (d) Solution 3: mean=30.7, std dev=49.3,
sc=5.82, chaos=0.072, period=9218.4 sc=8.65, chaos=0.085, period=1.41

Figure 3: Repressilator plots. Feature values averaged over all 3 channels, over 100 plots.

The best solution expression is (hand simplified):

P0 = ?c2.P0 + !c3
P1 = !c2 + !c1.P1 + !c2.(P0|P1)
P2 = !c1.(P0|P1|P2) + !c1.(P0|P1|P2)
rate(c1) = 100.0, rate(c2) = rate(c3) = 1.0

Note that P2 has two identical choice terms. This has the
effect of doubling the probability of selecting the“!c1”guard.
Channels c4 and c5 are not used.

6. CONCLUSION
This paper is one of the first examples of the automatic

synthesis of stochastic processes written in the stochastic π-
calculus. Our results show that exact solutions are readily
available for simple processes. More complex processes more
likely result in behaviourally equivalent solutions – process
expressions whose feature scores may be within the observed
bounds of the target features. Note that our criteria for so-
lution selection – the single expression with the best overall
fitness in a run – is conservative, and perhaps too discrim-
inating. A better solution may indeed exist in the popu-
lation, but its fitness score may be poorer, due entirely to
stochastic effects. By examining more individuals in the fi-
nal population, perhaps with additional interpretations or
feature tests, better results may have been reported.

A surprising result is that channel unification had no pos-
itive or negative effect when used. This suggests that the
high frequency of deadlock in early generations is not a ma-
jor detriment to evolution in the long term. Channel unifi-
cation as implemented here did not flatten the search space.

Search spaces for stochastic systems are challenging in
general, since target behaviour is inexact and often ambigu-
ous. Unlike work in deterministic bio-network evolution in
which the network model denotes reactions [12] [10], the
stochastic π-calculus denotes components of interacting sub-
processes. Although initial expressions may be simple, the
overall run-time reaction network can be robust and com-
plex, as it dynamically changes during interpretation.

This research improves on earlier work in [24] by con-
sidering true stochastic behaviours as measured by statis-
tical feature scores, rather than monotonic “fixed” time se-
ries plots evaluated by sum-of-errors. Our fitness evaluation
procedure is based on that used in [8] on noisy symbolic re-
gression and gene regulatory network problems, which also
uses normalized distances based on statistical feature scores.
Research similar in spirit to this paper is [13], which uses
another formal representation of bio-networks that is inter-
preted using the Gillespie algorithm. They also use feature
tests to denote their time series plots. Main differences are
the scope of feature tests implemented, as well as the se-
mantic differences between both algebras.

The results confirm that statistical feature tests are useful
for characterizing complex stochastic process behaviours. It
is surprising how process behaviours can be specified with
very little information. For example, mean and standard
deviation were used for the partial KNa2Cl runs. This being
said, the selection of feature sets for more complex processes
is more difficult, and an open problem [14]. Overall success
for complex processes depends upon careful selection of a
reasonable number of effective features. The full KNa2Cl
runs uses 16 features, and could benefit with a reduction.



Future work will consider means for scaling up the com-
plexity of processes, larger subsets of the π-calculus, and
more effective feature selection and evaluation strategies.
Recent work shows that multi-objective evolution is a promis-
ing approach [25].
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