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Abstract Stochastic regular motifs are evolved for protein sequences
using genetic programming. The motif language, SRE-DNA, is a stochas-
tic regular expression language suitable for denoting biosequences. Three
restricted versions of SRE-DNA are used as target languages for evolved
motifs. The genetic programming experiments are implemented in DCTG-
GP, which is a genetic programming system that uses logic–based at-
tribute grammars to define the target language for evolved programs.
Earlier preliminary work tested SRE-DNA’s viablility as a representation
language for aligned protein sequences. This work establishes that SRE-
DNA is also suitable for evolving motifs for unaligned sets of sequences.∗1
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§1 Introduction
A motif is a representation modeling some shared characteristic of a

family of proteins.5) There are a number of ways in which motifs can be used.
The most common use of a motif, as considered in this paper, is to act as a device
for characterizing the sequence pattern common to a particular protein family,
and therefore distinguishes them from unrelated sequences. In other words, a
motif is a signature for a protein family. Once an effective motif is established
for a set of protein sequences, it can be used to query a database of proteins
in order to extract the sequences belonging to the family. This permits the
discovery of structural similarities between new sequences added to the database
∗1 New Generation Computing, vol.20, n.2, Feb. 2002, pp. 187-213.
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and others whose functionalities have been established earlier. Hence, motifs are
means for determining potential protein functionalities for new sequences, which
is obviously an important practical tool for biologists.

An active research area is automated motif discovery. Given the grow-
ing rate at which biosequences are being cultivated and added to databases, the
manual construction of useful motifs becomes increasingly impractical, given the
sheer volume of data to be analyzed. Furthermore, manual design of motifs is
error prone, since a human being may not recognize the subtleties that deter-
mine protein family membership. The use of machine learning techniques for
automatic motif synthesis has been studied by many researchers.3, 6) Given the
technical complexities of predicting protein functionality from raw biosequences,
there does not yet exist a machine learning technology which can determine the
most biologically pertinent motif for a given family of sequences. In the mean-
time, however, different machine learning algorithms and sequence representa-
tions can serve as tools that geneticists can use to study new sequence patterns,
and therefore aid them in deriving the most biologically sound representation
for new families of interest.

This paper describes research in the automatic synthesis of biosequence
motifs using evolutionary computation. A contribution of this work is the in-
troduction of a new motif language, stochastic regular expressions (SRE-DNA).
SRE-DNA has characteristics of other, more established motif representations.
Its regular expression bases is similar to commonly used regular expression motif
languages, such as that used by the PROSITE protein database.12) On the other
hand, its probabilistic nature is similar to stochastic biosequence representations
such as HMM’s.22) Another goal of this paper is to show that SRE-DNA motifs
are readily synthesizable by genetic programming. SRE-DNA’s stochastic mod-
eling of biosequences can be exploited directly by the evolution process, both
during fitness evaluation, and during the evolutionary search itself. It is not a
goal of this paper to suggest that this approach to motif discovery is necessarily
superior to other established techniques, but rather, to illustrate that the au-
tomatic discovery of stochastic motifs is feasible using SRE-DNA and genetic
programming.

Section 2 reviews the problem of motif identification. The SRE-DNA
motif language is outlined in Section 3. Genetic programming is reviewed in Sec-
tion 4. Section 5 overviews the design of the experiments. Results are presented
in Section 6, and evaluated in Section 7. Comparisons to related work are given
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in Section 8. Conclusions and future directions conclude the paper in Section 9.

§2 Biosequence Identification

2.1 Motif Representations
Genetic similarities due to common evolutionary origins amongst differ-

ent species can often be identified by the similar protein functionalities observed
at the bio-molecular level. The precise functionality of a transcribed protein
is fundamentally determined by its 3D structure. Although of primary impor-
tance, such 3D structures are difficult and impractical to ascertain directly from
biosequences themselves, and thus remains a critically important open problem
in bioinformatics. Consequently, more rudimentary characterizations are used
for protein classification and prediction. Motifs that model protein families via
the shared similarities in their biosequence composition are widely used. Even
though such motifs are crude, indirect denotations of the real factor of impor-
tance (3D structure), often they are currently the most practical means for char-
acterizing protein families, due to their parsimony, efficiency of interpretation,
and amenability to automatic acquisition from raw sequences.

Many factors are pertinent to biosequence representation, which dif-
ferent motif representations may incorporate in varying degrees.5, 8) Of central
importance is the ability to represent conserved regions of amino acid sequences.
These are the sequences common within a protein family, where differences are
usually minor, and inserts and deletes are rare. Typically the conserved region
is surrounded by similar sequential patterns unique to an identified protein, but
which vary in composition, size, and location according to the particular species
of interest. Naturally, when larger sequence lengths in the vicinity are consid-
ered, wider variability to motif patterns are introduced; a point will be reached
when the length is too large to be representationally beneficial. Consensus pat-
terns can vary with respect to their location within supersequences. They can
also repeat within sequences, and possibly overlap. What can greatly complicate
the use of motifs is the phenomena of convergent evolution, in which two sepa-
rate evolutionary paths have evolved completely different sequences, but which
have similar (converged) protein functionalities. In other words, the 3D struc-
ture of these different sequences yield similar functionalities. Such cases prohibit
straight-forward use of motifs, and they will not be considered further in this
paper.
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Different motif languages have different linguistic strengths and weak-
nesses with respect to biosequence representation. The simplest motif is a con-
sensus sequence, which defines the exact sequence of amino acid codons common
to a family of proteins. Since such common sequences may be too small to be
practical, longer consensus patterns are often used. Pattern representations
permit variability, which reflect species diversity due to evolution. Consensus
patterns may be symbolic, for example, regular languages 2, 6, 7) and higher-level
grammars.27, 28) Symbolic representations are called such because the structure
of the motif is directly mappable to the symbolic representation within the mo-
tif expression. This lends symbolic representations such as regular expressions
their greatest advantage: the user-level interface to a family of sequences is an
algebraic abstraction of the consensus pattern. Such motifs are akin to query
languages used in conventional databases. A disadvantage of symbolic represen-
tations is that more complex protein families result in correspondingly complex
symbolic expressions. Numeric and probabilistic representations are also com-
monly used in motif representations.8, 22, 16) Their main advantages are their
inherent ability to account for structural variation, and their natural encoding
of “scores” with which to heuristically judge the relative similarity of candidate
sequences to a family profile. An instance of a motif language sharing both sym-
bolic and numeric features is the stochastic context-free grammar of Sakakibara
et al.,26) as well as the stochastic regular expression language used in this paper.

The comparative linguistic power of different motif representations can
be better understood when formal language theory is considered.14) An impor-
tant insight obtained from such a viewpoint is that motif languages can be
formally categorized with respect to their expressive power, according to their
position in the Chomsky hierarchy. For example, all regular motif languages are
expressively equivalent; regular expressions are no more or less powerful than
regular automata such as HMM’s. Furthermore, context-free grammar motifs
are representationally more powerful than regular language motifs. Formal lan-
guage theory also lends insight into the complexity of recognizing sequences with
respect to motif representations. For example, strings can be recognized by reg-
ular languages in polynomial time. This means that efficient database access is
possible for regular motif languages; such advantages will be lost if higher-level
denotations such as context-sensitive grammars are used. Finally, a language-
theoretic view of motif representation can indicate if the automatic induction of
motifs is feasible.
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Not withstanding the advantages of characterizing motifs as formal lan-
guages, this purely formal perspective can be somewhat myopic. At a funda-
mental level, biosequences are indeed programs: they are used as instructions
during protein translation. However, this does not imply that a family of biose-
quences is most naturally or effectively denoted by a particular formal language
in the Chomsky hierarchy. Although symbolic or numeric representations can
be useful classification and prediction tools, they are not designed as models
of the pertinent structural effects that determine protein functionality. For ex-
ample, a regular expression motif may adequately segregate a family of protein
sequences from non-family sequences. However, this sequence-level classifica-
tion does not account for the deeper structural principles defining the family.
A more intelligent motif representation would use 3D stuctural information and
other domain-specific knowledge. Such a motif representation would likely be
too complex for user-specified protein classification and database access, at least
compared to regular motifs. Despite shortcomings, there are often benefits to
simplicity.

2.2 Regular Expression Motifs
Regular expressions are widely used as symbolic motif languages, and

are used in protein databases such as PROSITE and its variants.12) Their popu-
larity as motif languages arises from their simplicity, which makes them straight-
forward to learn; their expressive adequacy for representing relatively small se-
quences; and their computational tractability with respect to interpretation and
automatic acquisition. A hierarchy of regular expression motif languages has
been proposed.6) This hierarchy identifies the various degrees of expressiveness
with which nondeterministic choice of codons and gap expressions can be ar-
ticulated. For example, the most deterministic category (class A) is one that
denotes simple sequences of required codons (“t-c-t-t-g-a”). Class B extends
class A with a wildcard “x” character, which substitutes for any codon (“t-c-
x-x-g-a”). Further classes introduce additional devices. At the most expressive
extreme, class I languages are those which additionally permit nondeterministic
skip expressions, indeterminate gaps, and alternate choices (masks):

d-t-x(2,4)-v-*-a-x-[nq]-g

Here, “x(2,4)” denotes a skip of length 2 to 4, “*” is an indeterminate gap, and
“[nq]” denotes a choice of either n or q.



6 Brian J. ROSS

Note that formal language theory states that all regular languages, and
hence all the motif classes discussed above, are equivalent with respect to the
languages denotable. However, the introduction of new language constructs en-
ables motif expressions to be more convenient and parsimonious. Higher classes
of regular expressions can characterize particular protein patterns more con-
cisely than more rudimentary classes. Hence the concept of expressiveness as
used in the classification scheme in 6) is one of user-oriented convenience, rather
than a language-theoretic one. Nevertheless, this classification scheme can have
ramifications on the tractability of automatic expression synthesis performed via
machine learning algorithms.

2.3 Automatic Motif Acquisition
Much work has been done on machine learning techniques for biose-

quences identification.6, 3) The survey in 6) lists 26 different algorithms, published
between the years 1983 and 1996. Most work has focussed on regular language
representations, since they are efficient to learn, and both adequate and prac-
tical for the relatively low complexity of sequences being analyzed. Motif dis-
covery is an instance of a classical machine learning problem: formal language
induction.17) A successful motif should accurately identify a sequence belong-
ing to a given family, while at the same time, reject sequences that are not
members. This implies the existence of two sets of examples – a positive set
consisting of protein sequences, and negative examples which are disjoint from
the positive set. Motif discovery algorithms that use this criteria are classifi-
cation algorithms, as opposed to conservation algorithms which only use a set
of positive example sequences.6) Successful classification requires a balance be-
tween recognizing member sequences and rejecting non-member sequences in the
training set, while at the same time being general enough to recognize and reject
sequences not seen in the original training sets.

There are other dimensions by which motif learning algorithms can be
classified. The solution space of an algorithm is the type of representation used
to denote hypotheses, and may include regular consensus patterns, weight matri-
ces, Bayesian networks, or Hidden Markov Models (HMM). The alphabet used
by a representation is also pertinent, as are the generalizations used by the motif
language, for example, wildcard characters that denote sequence gaps. Learning
algorithms are also distinguishable by such factors as whether sequences must
be prealigned or not, whether they guarantee solutions, their computational
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efficiency, and their overall effectiveness in biological applications. The effec-
tiveness of a learning algorithm is difficult to define, since different algorithms
exhibit particular advantages and disadvantages in their natural domains. Con-
sequently, the various approaches to motif learning have not yet been empirically
compared with one another.

2.4 Motifs and Genetic Programming
Genetic programming (GP) is a machine learning paradigm, and it is re-

viewed in Section 4. GP has been successfully applied towards various problems
in biosequence analysis.19, 10, 11, 20) Most of these applications involve the evolu-
tion of programs which identify various properties of biosequences, for example,
intracellular or extracellular portions of sequences.

There are a couple of examples of the use of GP to evolve biosequence
motifs. Hu uses GP to evolve motifs for unaligned example sequences, using a
regular language equivalent to that used by PROSITE.15) Expressions are evolved
from sets of unaligned example sequences. Hu’s evolution algorithm uses a local
optimization step, in which expression terms denoting gaps are refined. A num-
ber of protein families were studied, and the evolved solutions were often very
similar to the source PROSITE motifs used to extract the example sequences.

Koza, Bennett, Andre and Keane use GP with ADF’s (automatically
defined functions) to evolve a motif for a few unaligned sequence examples.21)

An ADF is a type of module or subroutine. The regular motif language used is
simpler than the full PROSITE language as used by Hu. The protein families
studied contain sequence repetitions, which makes the use of ADF’s advanta-
geous, since the ADF’s modularize the repeated structures. Koza did not specify
any motif parameterization requirements (eg. window size), other than overall
expression depth limits. The motif evolved for one case was found to be more
accurate than the accepted one on file for that protein family.

§3 Stochastic Regular Expressions

3.1 SRE
Stochastic Regular Expressions (SRE) is a probabilistic regular expres-

sion language, in which regular expressions14) are embellished with probability
fields.23) A similar language was previously proposed by Garg, Kumar and Mar-
cus, who prove a number of mathematical properties of the language.9)
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Unrestricted SRE has the following form. Let E range over SRE, α range
over atomic actions, n range over integers (n ≥ 1), and p range over probabilities
(0 < p < 1). SRE syntax is:

E ::= α | E : E | E∗p | E+p | E1(n1) + ...+ Ek(nk)

The terms denote atomic actions, concatenation, iteration (Kleene closure or
* iteration, and + iteration), and choice. The + iteration operator, E+p, is
equivalent to E :E∗p.

The semantics of the language are briefly outlined as follows. With
choice, each term Ei(ni) is chosen with a probability equivalent to ni/Σj(nj).
For example, a(1) + b(2) + c(3) means that the terms are selected with probabil-
ities of 1/6, 1/3 and 1/2 respectively. With the Kleene closure term E∗p, each
iteration of E occurs with a probability p, and the termination of iteration has
a probability 1 − p. Probabilities between terms propagate in an intuitive way.
For example, with concatenation, the probability of E : F is the probability of
E multiplied by the probability of F . Therefore, the probability of E+p is the
same as E : E∗p, which is the probability of E multiplied by the probability of
the Kleene iteration.

The overall effect of this probability scheme is that an SRE expression
defines a sound, well-formed model of probability: each expression defines a
probability function. The sum of all the probabilities for all s ∈ L(E) is 1.23)

Furthermore, each string s ∈ L(E) has an associated probability, while any
s 6∈ L(E) has a probability of 0. This property is important for this research,
since biosequences will be associated with probabilities when given to particular
SRE-DNA motifs. A task of motif synthesis will therefore be to evolve motifs
that yield high probabilities for candidate strings.

An example SRE expression is:

(a : b∗0.7)(2) + c∗0.1(3)

It recognizes string c with Pr = 0.054 (the term with c can be chosen with
Pr = 3/(2 + 3) = 0.6; then that term iterates once with Pr = 0.1; finally the
iteration terminates with Pr = 1 − 0.1 = 0.9, giving an overall probability of
0.6× 0.1× 0.9 = 0.054). The string bb is not recognized; its probability is 0.

An SRE interpreter is implemented and available for GP fitness func-
tions. Like the case with conventional regular expressions,14) string recognition
for SRE expressions is of polynomial time complexity. To test whether a string
s is a member of an SRE expression E, the interpreter attempts to consume s
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with E. If successful, a probability p > 0 is produced. Unsuccessful matches
will result in probabilities of 0. The SRE-DNA interpreter only succeeds if an
entire SRE-DNA expression is successfully interpreted. For example, in E1 :E2,
if E1 consumes part of a string, but E2 does not, then the interpretation fails
and yields a probability of 0.

3.2 SRE-DNA
The protein sequences studied here are fairly restricted in form. This is

evident if one examines the source PROSITE motifs used to access them from
the database. This implies that unrestricted SRE may be too descriptively rich
for the motifs required here. This would not normally pose a problem, since
a linguistically richer language may enjoy benefits over weaker ones. Unfor-
tunately, unrestricted SRE does indeed pose problems during interpretation of
expressions, because of the nature of the iteration and choice operators. Al-
though regular expression and SRE expression interpretation is of polynomial
complexity, expression interpretation is of combinatorial complexity with respect
to expression size. For example, the expression ((a)∗)∗ can generate the string
a...a of length k a total of 2k different ways, due to the combinatorial number
of ways the two nested iteration operators can interact.

Early work on this project found that inefficient SRE expressions with
nested iteration and choice were commonly constructed, and their slow interpre-
tation made processing impossible.25) As a consequence, a restricted version of
SRE, SRE-DNA, is more practical. The details of the grammatical constraints
in SRE-DNA are described in Section 5.2, where three variations of SRE-DNA
are introduced. All the variants ignore the choice operator, and restrict iteration
so that terms with iteration are guaranteed to be constructive.

SRE-DNA also introduces mask terms, which are sets of amino acid
codons. A mask within an SRE-DNA expression means that any of the listed
codons is permissible at that portion of the sequence. For example, the mask in
the expression

a : [b, c, d] : e

denotes a choice of b, c, or d, each with an equal probability of 1/3. Hence the
strings abe, ace, and ade are valid strings of the expression, and each have a
probability of 1/3. SRE’s choice (+) operator is more general than a mask, and
can denote the same probabilistic languages. For example, SRE would denoted
the above as:



10 Brian J. ROSS

a : (b(1) + c(1) + d(1)) : e

Choice expressions also permit the modeling of more informative codon proba-
bility distributions that might exist in real familes. For example,

a : (b(120) + c(12) + d(3)) : e

says that codon b has a probability of 120/135 or 88.9%. This expressiveness is
not available in a mask set, which treats all codons with the same probability.

Despite the weaker stochastic expressiveness of masks compared to choice
expressions, masks are more concise, and consequently lend efficiency to evolu-
tion during motif synthesis. Earlier work found that the choice operator is
detrimental to motif evolution for the proteins studied here, because it promotes
GP intron material (expression bloat).25) Another reason to adopt masks is that
PROSITE motifs use them, and so it might be possible to evolve SRE expres-
sions similar to the non-probabilistic regular motifs used by PROSITE. If a more
precise denotation of codon distributions is required, choice expressions should
be investigated further.

Core regions of conserved motifs are ungapped, in the sense that in-
sertions or deletions can change the activity dramatically. Nevertheless, as a
linguistic convenience, the use of skip (gap) expressions is convenient in the
context of regular motif languages such as SRE-DNA and PROSITE. This is
because the purpose of such regular motif expressions is to concisely denote the
common amino acids within a protein sequence. Since there will areas of pat-
tern variability within family sequences, they are best denoted by gaps. Ideally,
the resulting codons resident in a motif will be the commonly shared ones in
the family. The alternative is to represent all possible codons at these positions
explicitly with masks or choice expressions, as is done in 21). This would result
in large motifs whose compactness and utility is lost.

Skip expressions are implemented via the code x, which is a wildcard
that replaces any codon in a sequence. SRE-DNA will combined this with iter-
ation operators (for example, “c∗.10”), which permits variable-length gaps to be
represented (details in Section 5.2).

§4 Genetic Programming
Genetic programming 4, 18, 21) is a method of automatic programming in

which programs are evolved using a genetic algorithm.13). Both GP and GA are
characterized by their use of the following (see Fig. 1): (i) an initial popula-
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1. Initialize: Generate initial randomized population.
2. Evolution:

GenCount := 0
Loop while GenCount < maximum generations

and fitness of best individual not considered a solution {
Loop until New population size = max. population size {

Select a genetic operation probabilistically:
→ Crossover:

Select two individuals based on fitness.
Perform crossover.

→ Mutation:
Select one individual based on fitness.
Perform mutation.

Add offspring to new population.
}

GenCount := GenCount+1
}

3. Output: Print best solution obtained.

Fig. 1 Genetic Algorithm

tion of random individuals, which in the case of GP are randomly–constructed
programs; (ii) a finite number of generations, each of which results in a new
or replenished population of individuals; (iii) a problem–dependent fitness func-
tion, which takes an individual and gives it a numeric score indicative of that
individual’s ability to solve a problem at hand; (iv) a fitness–proportional se-
lection scheme, in which programs are selected for reproduction in proportion
to their fitness; (v) reproduction operations, usually the crossover and mutation
operations, which take selected programs and generate offspring for the next
generation.

The essential difference between GP and GA is the denotation of in-
dividuals in the population. A pure GA uses genotypes that are fixed–length
bit strings, and which must be decoded into a phenotype for the problem be-
ing solved. A GP uses a variable–length tree data structure genotype, which
is directly interpretable as a computer program by some interpreter. The use
of programming code as genotype is a powerful and practical representation for
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solving a wide variety of problems.
The two main reproduction operators used in GP are crossover and

mutation. Crossover permits the genetic combination of program code from
programs into their offspring, and hence acts as the means for inheritance of
desirable traits during evolution. Crossover takes two selected programs, finds
a random crossover point in each program’s internal representation (normally a
parse tree), and swaps the subtrees at those crossover points. Mutation finds a
random node in a selected program, and the subtree at that node is replaced with
a new, randomly generated tree. This is the means by which new genetic traits
can be introduced into the population during evolution. Although crossover and
mutation preserve the grammatical integrity of programs, the user must ensure
closure – that the resulting programs are always executable. So long as closure
is maintained, all programs derivable by the GP system will be executable by
the fitness function, and hence their fitness will be derivable.

The GP implementation used in this paper is DCTG-GP. DCTG-GP
is a grammatical genetic programming system.24) It uses logical grammars for
defining the target language for evolved programs. The logic grammar formalism
used is definite clause translation grammars (DCTG).1) A DCTG is a logical
version of a context-free attribute grammar, which allows the complete syntax
and semantics of a language to be defined in a unified framework. DCTG-
GP is useful for these experiments because of the ease with which variations of
motif languages can be designed and implemented (see Section 5.2). The use of
grammars within GP also helps enhance search efficiency, by pruning the search
space into more sensible structures.

§5 Experiment

5.1 Protein Sequences
As discussed in Section 2, motif classification algorithms require the dis-

covery of an expression that recognizes positive protein sequence members, while
rejecting negative sequences. The positive examples used here comprise a set
of unaligned protein sequences. To generate this set, aligned protein sequences
were initially obtained from the SWISS-PROT and TrEMBL sequence databases
for the protein families listed in Table 1.12)∗2. For example, on August 9 2000,
seaching the expression “snake toxin” resulted in 176 instances in the SWISS-
∗2 Accessed between July and November 2000, at http://expasy.cbr.nrc.ca/sprot/
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Table 1 Protein families and related parameters

Protein (accession #) lab m p w s1 s2

Amino acid oxidase (PS00677) AAO 5 1e-12 19 8 −
Scorpion toxin (PS001138) ScT 5 1e-12 24 20 −
Zinc finger, C2H2 type (PS00028) ZF1 10 1e-13 25 29 678
Zinc finger, C3HC4 type (PS00518) ZF2 8 1e-13 10 21 168
Snake toxin (PS00272) SnT 5 1e-12 22 18 127
Kazal inhibitor (PS00282) KI 5 1e-12 24 24 125

PROT database, and an additional 98 examples from TrEMBL. Each example
in the database is a contribution by biologists, and contains a protein pattern
from various species and genome locations. Note that many sequences are dupli-
cated in the databases. In addition, the entire family of snake toxin patterns has
a reference PROSITE motif expression. This pattern is useful for comparison
with SRE-DNA motifs, as there are enough similarities in the PROSITE regular
expression language and SRE-DNA that similar patterns can often be detected
between them in many experiments.

The following is done to create a set of unaligned sequences from the
above aligned data. First, duplicate sequences are removed. Then the aligned
sequences are padded evenly on each side with randomly generated sequences of
amino acid codons. The length of unaligned sequences for all experiments is 150
codons. When possible, a subset of these unaligned sequences is used as training
data, and the remainder are testing data. Otherwise, in cases when there are
few examples, the entire set of sequences is used for training. Using artificial
sequences such as these has advantages and disadvantages. A possible disadvan-
tage is that, unlike real unaligned data, the synthesized unaligned data’s random
padding is unlikely to share subsequences outside of the functional domain of
the protein in question. This suggests that the unaligned sequences we are using
may be easier to process than what might be seen in a more realistic production
environment. On the other hand, an advantage in using them is that distract-
ing noise is being avoided. This permits the experiments to focus on the basic
problem of SRE-DNA motif synthesis, without becoming encumbered by noisy
instances of shared artifacts that arise in real unaligned sequences. In the future,
the problem of evolving SRE-DNA motifs in a noisy, more realistic environment
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should be addressed.
Negative examples are randomly-generated amino acid sequences, each

having a length approximately the size of the original aligned PROSITE data
(the window size). Again, this is not as realistic as is possible. A more chal-
lenging negative set would consist of a variety of real sequences, many of which
might be closely related to the family belonging to the positive training set. For
the purposes of this research, however, a randomly-generated negative set is ade-
quate for ensuring that evolved motif expressions are sufficiently discriminating.

Table 1 summarizes characteristics of the example protein sequences
used for the GP experiments. The amino acid oxidase and scorpion toxins were
chosen because the PROSITE source motifs were of intermediate complexity.
The zinc fingers, snake toxin, and kazal inhibitors were chosen in order to com-
pare the results to that of Hu.15) The protein names and PROSITE accession
numbers are in column 1. Column 2 (lab) contains a shorthand label used in
subsequent figures. The m column gives the maximum mask size permitted in
SRE-DNA expressions for that protein family. It is based on the maximum mask
size used in the PROSITE motif for that family, and is typically a little larger
than used by PROSITE in order to give motif evolution some extra freedom.
The minimum probability value (p) is the minimum computed probability re-
quired by an SRE-DNA expression to continue processing, before terminating
expression interpretation. The w value is the size of the window used for that
protein set, and is configured to be large enough to cover the largest aligned
sequence for the family as defined by its source PROSITE motif. Finally, s1 and
s2 are the sizes of the disjoint training and testing sets respectively.

5.2 SRE-DNA Definition
DCTG-GP was used to derive 3 restricted variations of SRE-DNA.

Grammars for these variants are shown in Figure 2. All the grammars offer
various levels of grammatical constraints on full SRE, while at the same time
use important SRE-DNA operations such as probabilistic skip and/or iteration.
The grammars also encode general characteristics similar to what are found in
established PROSITE motifs for protein families. In particular, the use of alter-
nating skip and mask expressions will be favoured in evolved solutions.

One motivation for using constrained SRE-DNA is the fact that unre-
stricted SRE-DNA will generally result in inefficient expressions. For example,
previous work25) established that SRE-DNA’s choice operator is distinctly un-
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G1 expr ::= guard | guard :expr | expr+p

guard ::= mask | mask :skip
skip ::= x+p

G2 expr ::= guard | guard :expr
guard ::= mask | mask :skip
skip ::= x∗p | x+p

G3 expr ::= gexpr | gexpr∗p | gexpr+p

gexpr ::= guard | guard :expr | expr :guard
guard ::= mask | mask :skip
skip ::= x∗p | x+p

Fig. 2 SRE-DNA Variations

desirable for denoting the types of sequences being analyzed here. The choice
operator promotes intron material in expressions, which is program code which
does not contribute meaningfully to computations. It was found that this op-
erator could be removed without any loss in expressiveness, at least with the
sequences studied here (its value as a nondeterministic operator is replaced by
mask terms). Likewise, totally unrestricted iteration tends to result in intron
material, as well as very inefficient expressions. Restricting iteration is therefore
practical.

Grammar 1 permits nested + iteration and + skip. Iteration is restricted
by the use of guard terms, which forces iteration to be applied to suffixes of
concatenated expressions. In other words, guards create a bias towards prefix
consumption, which promotes efficient sequence interpretation. Grammar 1 also
permits directly nested iteration. Nesting should not be common, however,
because nested iterative expressions usually have low probabilities, and hence
low fitness values. They therefore become extinct during evolution.

Grammar 2 is the only grammar without the iteration operator, and
is the language most similar to PROSITE’s motif language. Expressions in
grammar 2 will take the form of alternating masks and skips. Both * and + skip
are used.

Grammar 3 is the least-constrained grammar. Besides using both + and
* iteration, it permits a more symmetric distribution of iteration expressions on
either side of expressions (unlike grammar 1’s bias towards iteration on the right-
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side of expressions). Like grammar 2, both * and + skip are used. However,
unlike grammar 1, nested iteration is not allowed. This is done via the use of
the gexpr nonterminal.

The entire syntax and semantics of all the languages denoted in Figure 2
are implemented together in DCTG-GP. The semantic rules of the DCTG permit
various interpretation and analytical processing to be programmed within the
grammatical definitions. An advantage of this is that many grammatical devices
are concisely denoted with a DCTG. For example, the actual implementation
of grammar 3 does not use the distinct nonterminals expr and gexpr. Rather,
the semantics for expr are used to directly test whether expressions are iterative
or not, in order to ensure that iteration is not nested. Using these semantic
devices greatly reduces the complexity of the grammar, which in turn promotes
efficiency of the GP implementation.

Note that, although not encountered in the sequences studied here, SRE-
DNA’s iteration operators permit the denotation of protein repeats (eg. Hunt-
ington’s polyCAG pattern).

5.3 Fitness Evaluation
Practically speaking, regular motif languages such as PROSITE’s and

SRE-DNA are most suitable for relatively small sequences. Large sequences
require impractically large expressions, which in SRE-DNA’s case, yield very
small probabilities. The aligned segment of sequences shared by a family is but
a fraction of the overall unaligned sequence. Therefore, to make processing more
efficient, the GP system requires that the user supply a window size parameter,
which defines the length of the longest window or aligned sequence length of
interest. In addition, the SRE-DNA interpreter onlys succeeds in evaluating an
expression if the entire SRE-DNA expression is used. For example, in E:F (where
F does not recognize an empty string), if an input string is fully consumed by E,
then interpretation of the entire expression fails because F has not been used.
Taken together with the window length, the result is that successful SRE-DNA
expressions are ones that are used in their entirety in recognizing a complete
window from the unaligned sequence.

A candidate motif must recognize members of the protein family of in-
terest, while at the same time reject non-member sequences. Likewise, a fitness
measure must balance the acceptance and rejection characteristics of expressions.
Consider the formula,
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Fitness = N +NegFit− PosFit

NegTot and PosFit are the negative and positive training scores respectively, and
N is the number of positive (and negative) training sequences. A hypothetical
solution can yield a total PosFit score of N (N positive examples multiplied by
a score of 1 each, which is illustrated below). The NegFit score will be 0 for a
correct solution. Therefore, the value of Fitness in the above forula yields 0 for
a perfect solution. This is impossible to obtain in practice, because the values
represented by the PosTot term are usually small, due to the way probability
scores are used within them.

Positive scoring is performed on each positive example sequence. A
sequence is processed by extracting every consecutive window from it, and com-
puting a fitness Fit on each window. If a sequence ei has length |ei|, and the
window size is w (where w < |ei|), then there are |ei|−w+1 windows to process.
For example, the sequence abcdef has 4 windows of length 3: abc, bcd, cde, and
def. The positive fitness formula is then:

PosFit =
∑

ei∈Pos
maximum(Fit(winj(ei)))

where ei is a positive example sequence being processed, and winj is one of its
j windows. Here, for each positive sequence ei, each window winj is extracted
from it, and a positive score is obtained. The maximum of all the window scores
for a sequence is used for that sequence. Finally, all these maximal scores for all
the positive sequences in set Pos are summed together, giving an overall positive
score.

Positive fitness evaluation of a window incorporates two measurements:
the probability of recognizing the window, and the proportional amount of the
window recognized in terms of its length. Consider the formula,

Fit(win) =
1
2

(
Pr(smax) +

|smax|
|e|

)
Here, smax is the longest prefix recognized from some window win, and |smax|
is its length. The term Pr(smax) is the probability of recognizing smax. The
second term measures the proportion of the window recognized. The fitness
pressure introduced by this formula is to favour expressions that recognize entire
windows with high probabilities. In early generations, the window-length term
dominates the score, which forces fitness to favour expressions that recognize
large portions of windows. The probability term still comes into consideration,
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however, especially when the population converges to expressions that recognize
windows from a significant number of sequences. At that time, the probability
fitness measure favours expressions that yield high probabilities.

Negative fitness scoring is calculated as:

NegTot = maximum(Fit(ni)) ∗N

where ni ∈ Neg (negative examples). The highest obtained fitness value for any
recognized negative example suffix is used for the score. A discriminating expres-
sion will not normally recognize negative examples, however, and so Fit(ni) = 0
for most ni.

5.4 Genetic Programming Parameters

Table 2 GP Parameters

Parameter Value

GA type generational
Maximum generations 100
Maximum runs/experiment 6
Functions SRE-DNA variants
Terminals amino acid codons, probabilities
Population size (initial) 2000
Population size (culled) 1000
Unique population yes
Max. depth initial popn. 12
Max. depth offspring 24
Tournament size 7
Elite migration size 10
Retries for reproduction 3
Prob. crossover 0.90
Prob. mutation 0.10
Prob. internal crossover 0.90
Prob. terminal mutation 0.75
Prob. SRE crossover 0.25
Prob. SRE mutation 0.30
SRE mutation range 0.1
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Table 2 lists genetic programming parameters used for the experiments.
Generational evolution is performed, in which distinct populations are evolved
during each generation. Each population always consists of syntactically unique
expressions. The initial population size is 2000 individuals, which is gener-
ated using Koza’s ramped half-and-half tree generation scheme.18) Half the trees
generated are grow trees, in which a terminal or nonterminal can be randomly
selected as the root of each subtree, while the remaining half are full trees, in
which nonterminals are always selected so long as the tree depth limit is not ex-
ceeded. During tree generation, the tree depths are staggered (or ramped) from
depths 2 through 12. The result is a population of random expressions having
a fair distribution of varied tree shapes. This initial population is culled by se-
lecting the 1000 most fit individuals. This oversampling of the initial population
helps discard the weak expressions which commonly arise during random tree
generation.

Nonterminals and terminals are determined by the SRE-DNA grammar
variant used (Section 5.2). All the grammars use amino acid codons in mask
terms, as well as numeric fields for probabilities. Reproduction operations on
these fields work in a number of ways. Crossover and mutation are selected
with probabilities of 90% and 10% respectively. When one of these reproductive
operations is selected, either a conventional GP version or a hybrid SRE-DNA
version may be applied. For example, the table entry indicating the probability
of SRE crossover means that, when crossover is to be performed, there is a 25%
chance that SRE-DNA crossover is used. Conventional grammatical crossover
selects a subtree having the same nonterminal or terminal type of the grammar
in each parent, and swaps these subtrees, yielding the offspring. SRE-DNA
crossover works on masks: two mask fields are selected in the parents, and the
two offspring created are identical to each respective parent, but with the selected
masks a merge of the elements from the parent masks.

Conventional grammatical mutation takes a subtree, and replaces it with
a randomly generated subtree of the same nonterminal or terminal type. SRE-
DNA mutation can involve a number of special operations: (i) a numeric field is
perturbed ±10% of its original value; (ii) a mask has a random element inserted
into it; (iii) a mask has a random element removed from it; and (iv) a mask
element is randomly replaced.

5.5 Solution Refinement
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For each mask maski in expression expr:
For each element αj ∈ maski:

- Remove αj from maski, and call new expression expr′.
- If fitness expr′ > fitness expr

then expr ← expr′.

Fig. 3 Mask refinement

Often, an evolved solution motif can be further improved after the run
has terminated. Its overall performance as measured by its probability score on
recognized sequences can be increased by refining its mask terms. Many experi-
ments result in solution expressions that have unnecessarily large masks, which
yield smaller probabilities than optimally-sized ones. Although mask mutation
might occassionally delete extraneous mask codons, this occurs too infrequently
during evolution to prevent these bloated masks from appearing in solutions.

Mask refinement is performed on solution expressions by the procedure
in Figure 3. The procedure performs hill-climbing transformations on an expres-
sion, by deleting the mask elements whose removal improves overall fitness. The
algorithm is a greedy one, and it is not guaranteed to find the optimal refinement
for an expression. In other words, depending on the SRE-DNA grammar used,
some combinations of mask refinements might yield higher probabilities than
others. The algorithm used is adequate for the majority of expressions evolved
in this paper.

§6 Results
Table 3 summarizes the training and testing performance results for the

protein families in Table 1. Gi is the grammar used from Figure 2. The best
measure of a motif’s performance is to compute the average probability obtained
when recognizing positive example sequences. We call this value the probability
score, and denote it by pr. Then, “avg pr” is the average probability scores for
the best motifs for all six runs. Similarly, “best pr” is the probability score of
the overall best motif. Testing was performed on the best evolved motif for every
grammar (the motif used to obtain “best pr”). “%tp” is the percentage of true
positives obtained by the best motif on the testing set. “pr” is the probability
score obtained for the recognized testing sequences. This score is normalized for
the true positives recognized. The percentage of false negatives (positive test
cases yielding a probability of 0.0) is in column “%fn”, and is merely 100 - %tp.
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Table 3 Solution statistics for example proteins

Training Testing (best)
Family Gi avg pr best pr %tp pr %fn %fp

AAO G1 1.846e-4 8.565e-4
G2 5.306e-5 1.914e-4 − − − −
G3 5.414e-5 2.143e-4

ScT G1 1.312e-7 5.170e-7
G2 2.349e-8 5.537e-8 − − − −
G3 2.451e-5 1.469e-4

ZF1 G1 1.113e-11 2.898e-11 67.4 3.562e-11 32.6 0.0
G2 7.330e-11 4.128e-10 81.3 4.645e-10 18.7 0.0
G3 6.027e-11 3.374e-10 89.1 4.772e-10 10.9 0.0

ZF2 G1 9.614e-3 2.019e-2 100.0 1.959e-2 0.0 0.0
G2 1.278e-2 1.919e-2 100.0 1.953e-2 0.0 0.0
G3 1.415e-2 2.542e-2 100.0 2.410e-2 0.0 0.0

SnT G1 1.202e-7 2.398e-7 80.3 1.975e-7 19.7 0.0
G2 5.153e-8 1.633e-7 82.7 1.311e-8 17.3 0.0
G3 9.786e-8 1.857e-7 64.6 2.967e-7 35.4 0.0

KI G1 2.964e-9 5.461e-9 80.0 5.416e-9 20.0 0.0
G2 1.340e-8 3.772e-8 68.8 3.337e-8 31.2 0.0
G3 2.354e-8 4.546e-8 70.4 5.424e-8 29.6 0.0

Finally, false positives (erroneously identifying a negative example as a member
sequence) is in column “%fp”. The actual testing results for the Kazal inhibitor
(KI) experiments using all three grammars can be viewed on the web∗3.

Table 4 presents some additional testing results on the best solutions
tested in Table 3. False negative (FN) and false positive (FP) sequences were
obtained from the PROSITE database for four of the protein families. This data
represents sequences which either were missed by the original PROSITE motif
(FN), or were erroneously classified as belonging to the protein family (FP).
Not all the families have FN and FP available (the AAO and ScT proteins had
none, and are omitted). In the #FN column in Table 4, the first number repre-
sents the number of false negative sequences identified by the SRE-DNA motif.
The number in parentheses is the total number of FN sequences extracted from
PROSITE for that protein. In terms of matching false negative sequences, higher
∗3 http://www.cosc.brocku.ca/∼bross/research/kazal.html
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Table 4 Additional testing results

Family Gi #FN (tot) pr #FP (tot) pr

ZF1 G1 2 (3) 7.764e-12 12 (12) 3.882e-11
G2 1 1.925e-10 6 1.724e-10
G3 2 2.163e-11 7 1.829e-10

ZF2 G1 4 (12) 2.398e-2 5 (5) 1.918e-2
G2 4 2.398e-2 5 1.918e-2
G3 4 1.942e-2 5 1.831e-2

SnT G1 2 (10) 6.662e-8 (0) −
G2 2 3.707e-8 −
G3 0 0.0 −

KI G1 0 (1) 0.0 0 (2) 0.0
G2 0 0.0 1 8.569e-9
G3 0 0.0 1 4.371e-9

numbers in the FN column are preferred, as they indicate that the SRE-DNA
motif recognized candidate proteins that were missed by the original PROSITE
regular motif expression. The pr value is the normalized average probability of
recognizing the FN sequences. The next two columns are similar to the FN ones,
except that false positive sequences are tested. Here, lower numbers in the FP
column are preferred, since they mean that SRE-DNA motifs were more discrim-
inatory than the PROSITE motifs, correctly classifying non-member sequences
that PROSITE erroneously permitted.

Tables 5 and 6 list the best solutions for the different protein families
and SRE-DNA variations, along with the source PROSITE motif used to obtain
the example sequences. Note that the PROSITE motif language differs from
SRE-DNA (see Section 2.3).

§7 Discussion
Firstly, the quality of results is influenced by the level of precision of

the experimental parameters. For example, due to time constraints, only 6 runs
were undertaken per experiment, which is inadequate for statistically meaningful
conclusions to be drawn. Additionally, more precise SRE-DNA interpretation
will occur when lower minimal probabilities are used by the interpreter (see
Table 1). For example, early experiments suggested that the zinc finger C2H2
(ZF1) family required a smaller minimum probability in order to get meaningful
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Table 5 Best evolved motifs for protein families. The motif beside family label is the source

PROSITE motif.

AAO [ilmv](2) : h : [ahn] : y : g : x : [ags](2) : x : g : x(5) : g : x : a
G1 h : x+.1 : y : g : x+.17 : [gs] : x+.17 : g : x+.1 : [iqt] : x+.17 : [ghs] : x+.13

: g : x+.1 : a : x+.19

G2 h : x+.1 : y : x∗.11 : g : x+.19 : [gs] : x+.16 : g : x+.19 : [hst]
: x+.19 : g : x+.16 : a : x+.19

G3 h : x+.1 : y : g : x+.19 : [gs] : x+.19 : g : x+.19 : [hst] : x+.19

: g : x+.17 : a : x+.16

ScT c : x(3) : c : x(6, 9) : [ags] : k : c : [imqt] : x(3) : c : x : c
G1 c : x+.19 : ((([acg] : x+.12 : [cg] : x+.19 : k : x+.12 : [ct] : x+.11 : c

: x+.19)+.19)+.19)+.19

G2 c : x+.19 : [gkps] : x+.19 : [acgk] : x+.19 : [agn] : x+.19 : c : x+.19 : [gn]
: x+.19 : c : x+.1 : c : x+.19

G3 [ck] : x+.17 : c : x+.18 : k : x+.19 : (c : x∗.15 : k : x+.19 : a : x+.18 : m
: x+.15 : f : x+.1 : k : c : x+.1)∗.19 : [gn] : x+.18 : k : c : x+.18

ZF1 c : x(2, 4) : c : x(3) : [cfilmvwy] : x(8) : h : x(3, 5) : h
G1 [acfkr] : x+.19 : [acfsv] : x+.19 : [eklr] : x+.19 : [fklnst]

: x+.19 : [adklrt] : x+.19 : [hlnrsv] : x+.19 : [kr] : x+.19 : [hl]
: x+.19 : [filnrtvw] : x+.19

G2 c : x+.19 : c : x+.19 : [kqr] : x+.18 : [afklr] : x+.19 : [lqrs] : x+.19 : h
: x+.18 : [hklrt] : x+.19 : [acdhkt] : x+.19

G3 c : x+.19 : c : x+.19 : [hkr] : x+.19 : [afkqrsty] : x+.19 : [hlnstv] : x+.19

: [ahklnrst] : x+.19 : [hkr] : x+.19 : [hr] : x+.19

results. Using a low probability like this enhances precision, but at the expense
of computation time. If even smaller probability limits were used, both the
training and testing results may be improved, due to the increased likelihood of
recognizing some examples.

Other parameters, such as mask size, iteration ranges, window size, and
training set size, also affect results. Preliminary runs suggested that larger
masks, as used in the zinc finger cases, usually result in lower quality solutions.
This implies that small masks are more naturally suitable for SRE-DNA motifs,
in comparison to PROSITE’s motifs. Similarly, large iteration ranges greater
than 0.25 often resulted in the evolution of motifs that would tend to skip large
portions of relevant aligned subsequences. The value used in these experiments
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Table 6 Best evolved motifs for protein families (cont.).

ZF2 c : x : h : x : [filmvy] : c : x(2) : c : [ailmvy]
G1,2 c : x+.1 : h : x+.19 : c : x+.19 : c : x+.1

G3 c : x+.1 : h : x+.19 : (f : x∗.11)∗.19 : c : x+.19 : c : x+.1

SnT g : c : x(1, 3) : c : p : x(8, 10) : c : c : x(2) : [denp]
G1 g : c : x+.19 : c : x+.19 : [kps] : x+.19 : [klv] : x+.19 : c : c : x+.19

: [dt] : x+.19

G2 g : x∗.11 : c : x+.19 : c : x+.19 : [gks] : x+.19 : [dklv] : x+.19 : c : c : x+.19

: [dt] : x+.18

G3 ((((g : c : x+.19)+.1 : c)+.12 : p : x+.18 : [gkns] : x+.19 : [dgls] : x+.19

: [iklt] : x+.19)+.1 : c : x+.17)+.1 : [dt] : x+.19

KI c : x(7) : c : x(6) : y : x(3) : c : x(2, 3) : c
G1 [cv] : x+.19 : [elrvy] : x+.19 : ([cps] : x+.19 : [cgs] : x+.19 : [cty] : x+.19

: n : x+.11 : [ct] : x+.19 : [ct] : x+.17)+.1

G2 [ct] : x+.19 : [celr] : x+.19 : [elpqr] : x+.19 : [cgk] : x+.19 : [dgk] : x+.19

: [fty] : x+.18 : [dnr] : x+.18 : c : x+.19 : c : x+.18

G3 c : x+.19 : [eir] : x+.19 : [epr] : x+.19 : c : x+.19 : [dgks] : x+.19

: y : x+.19 : [cn] : x+.19 : c : x+.19

(0.19) resulted in the most interesting motifs.
With respect to the results in Table 3, the results obtained range from

acceptable (those with testing percentages less than 70%) to excellent. With
respect to the training results, the best SRE-DNA motif for each family was
produced twice by grammar 1, once by grammar 2, and three times by gram-
mar 3. Often, the difference in probabilities between best motifs by different
grammars was many orders of magnitude. For example, consider the scorpion
toxin experiment (ScT), in which the best grammar 3 solution had an average
probability over 280 times larger than the next best grammar 1 motif, and over
2600 times larger than the grammar 2 motif. Unfortunately, neither the ScT nor
AAO families had enough examples with which to perform testing.

The ZF1 runs were hindered by the small probabilities inherent with the
motifs. This seems to be a product of the large mask size (10) combined with
the large window size (25). It was observed that many recognized probabilities
for examples were in the 1e-12 range. Others may have been smaller than 1e-13,
which was beyond the probability limit for those runs, and thus would have been
terminated.
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In the ZF2 and KI cases, the observed pr for testing roughly correlate
with the best pr for training. The ZF2 motifs were simple, and runs often
converged to the identical motif.

The snake toxin testing for G3’s motif suggests that this particular motif
may be overtrained. Although it recognized all of the training cases, it could
only recognize 64% of the testing set.

The results in Table 4 indicate that SRE-DNA often performed better
than the PROSITE equivalents with respect to false negative and false positive
sequences. However, this must be considered in balance with the testing results
in Table 3.

Cyclic subsequences are not common in the protein sequences studied
here. This might imply that the iteration operator is detrimental for GP, and
that grammar G2 would be the most effective variation of SRE-DNA. The results
in Table 3, however, suggest otherwise. Iteration can be argued to be beneficial
for evolution, given the number of best solutions found with grammars G1 and
G3 (the grammars with iteration operators). One hypothesis for this is that
iteration aids evolution by allowing richer intermediate expressions to evolve,
because iteration permits the recognition of greater numbers of positive exam-
ple subsequences. This occurs because an SRE-DNA expression with iteration
recognizes more strings than one without it (ignoring the effects of skip terms,
which are controlled by the use of negative examples). Upon inspecting the
motifs in Tables 5 and 6, however, it is clear that iteration is not an important
factor with respect to the construction of final motifs. In 7 of the 12 experiments
using grammars with iteration (G1 and G3), the iteration operator did not arise
in the best motifs. In the remaining 5 motifs, iteration is incidental, and takes
the form of intron material to protect useful terms. An obvious example of this
is the G1 solution for ScT in Table 5. Iteration could be removed from these
expressions, resulting in motifs with higher probability performance.

Considering the structure of SRE-DNA expressions in Tables 5 and 6, it
is clear that majority of evolved solutions are much more complex than the source
PROSITE motifs. One reason for this complexity is the fact that expression size
was not accounted for in the fitness function. Expression parsimony could be
enhanced by incorporating a score for expression complexity, or reducing the
GP parameter limiting tree sizes. Furthermore, evolved GP programs are often
more complex than manually programmed ones.
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§8 Related work

8.1 Other representations: PROSITE, HMMs
SRE-DNA is similar to the regular expressions used by PROSITE and

related databases.6, 12) SRE-DNA is essentially a PROSITE-like language en-
hanced with a probability model. Not surprisingly, many evolved motifs in Fig-
ures 5 and 6 are similar to the PROSITE source motifs. Some of the SRE-DNA
motifs, however, vary substantially from their PROSITE equivalents. This is a
combined result of the methodology used during their acquisition with GP, such
as the fitness evaluation strategy and other GP parameters, and nuances in the
SRE-DNA grammar used.

SRE-DNA’s main expressive advantage over PROSITE’s language is its
probabilistic model. A SRE-DNA motif has associated with it a probability dis-
tribution, and each member sequence has a corresponding probability computed
with it. Non-member sequences have a zero probability. With PROSITE’s lan-
guage, there is no associated probability or scoring scheme; sequences are either
members or not members of the motif expression in question. Although the over-
all structure of the regular expression underlying an SRE-DNA motif is often
just as deterministic as with a PROSITE equivalent, the probability distribution
helps to numerically justify the strength of membership of sequences within a
family. For example, sequences that use longer gaps will have lower probabilities
than those with smaller gaps.

SRE-DNA is more expressive at denoting variable-length terms and gaps
than PROSITE motifs. In PROSITE, a numeric range such as “X(2, 4)” indi-
cates a variable gap between 2 and 4 codons. In SRE-DNA (as used in this
paper), a variable-length gap is expressed as a term like “x+.10”. Probabilistic
iteration can permit gaps of any potential length, but at a probabilistic cost,
since long gaps caused by highly-iterated terms have corresponding lower prob-
abilities. A motif that requires a large gap should use an iteration with a higher
iterative probability. SRE-DNA’s use of probabilistic choice also enhances its ex-
pressiveness over PROSITE’s motifs. Although choice was not used here, other
protein families may benefit by it.

A comparison of SRE-DNA with Hidden Markov Models (HMM’s) is
also useful.22) A HMM is a stochastic finite automata. In the HMM model of
Krogh et al., a target sequence of length k has associated with it an HMM
graph (automata) of approximately 3k nodes and 9k arcs. Nodes are either
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match states, insert states, or delete states. Match states arise when sequences
match codes of the sequence, delete states cause codes to be skipped, and insert
states introduce codes. Every transition between these states has associated
with it a probability. Codons themselves have specific probabilities when they
are seen when moving between states. All these probabilities can be determined
automatically via various training algorithms. Given a candidate sequence, the
codons invoke translations through the HMM, until the sequence terminates,
resulting in a probability score for that sequence.

HMM’s have shown good performance in protein classification, and have
performed well in comparison to PROSITE’s regular motifs.22) HMM’s are not
intended as user-level interfaces to protein databases, unlike SRE-DNA and
PROSITE motifs. HMM’s are much less rigid than regular pattern motifs, as
their architecture is designed to permit variations of sequence patterns within a
set window size. In comparison, PROSITE and SRE-DNA motifs specify fairly
rigid pattern matching criteria (although SRE-DNA motifs are somewhat more
relaxed due to probabilistic iteration). The fact that HMM’s are more forgiving
with sequence variations than regular pattern motifs is a mixed blessing. On one
hand, an HMM is able to represent a large assortment of structurally dissimilar
sequences, by fitting a probability distribution over them. The HMM archi-
tecture is fixed with respect to the maximum sequence size permitted. Should
the sequences be very dissimilar, however, the resulting information content en-
coded in the HMM’s probability distribution will become increasingly negligible.
PROSITE patterns have a similar ability to permit structure variation through
the use of variable gaps and codon choices. It treats sequence identification as
a boolean operation, and there is no probability associated with membership.
Although SRE-DNA expressions can denote dissimilar sequences with the choice
operator, the resulting motif will grow in size and complexity.

Reconciling the expressive differences between HMM’s, SRE-DNA, and
PROSITE expressions is not straight-forward. There is a 1-to-1 mapping be-
tween regular expressions and finite automata: each can be automatically com-
piled to the other.14) Similarly, there is a mapping between stochastic regular
expressions and stochastic finite automata. This implies that the languages de-
noted by PROSITE, SRE-DNA and HMM motifs are theoretically equivalent.
However, even though these models are inter-translatable, it does not imply
that given sets of protein sequences are always more conveniently denoted in
one model over another. It must be realized that all these motif models are
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simple structural characterizations of the real factor of importance – the 3D
topology of the protein.

8.2 Motifs and Genetic Programming
The first successful application of genetic programming towards evolv-

ing PROSITE-style motifs for unaligned biosequences is by Hu.15) There are
similarities and differences between Hu’s GP methodology and ours. Similar
to our experiments, Hu pre-specifies the maximum window length, maximum
gap length, and gap flexibility (ranges for variable gaps of the form “X(i, j)”).
Whereas we use amino acid codons, Hu uses a combination of nucleotide and
amino acid codons, as well as predefined codon subset codes. The use of pre-
defined subsets is interesting, as it uses domain knowledge to establish useful
combinations of possible codons for mask terms. Hu seeds the initial popula-
tion with substrings from the example set. Although our initial population was
randomly generated, in hindsight, seeding might prove advantageous.

One major difference between Hu’s approach and ours is his extensive
use of greedy local optimization to refine expressions during evolution. Firstly,
each pattern sub-term is replaced by a wildcard; if the fitness improves, the
wildcard is retained. Then all the legal values for each variable gap are iterated
through, to find the combination giving the highest fitness. Although Hu does
not specify the performance cost of this optimization procedure, it certainly must
be significant. SRE-DNA evolution circumvented the need for gap placement
and variable gap refinement, as the skip fields were automatically refined during
evolution. We applied greedy optimization to mask terms, but only on the best
solution at the end of a run.

Table 7 Comparison of PROSITE, Hu, and SRE-DNA motifs for snake toxin (SnT)

PROSITE: g : c : x(1, 3) : c : p : x(8, 10) : c : c : x(2) : [denp]
Hu #1: g : c : x(1, 3) : c : p
Hu #2: c : c : x(1, 2) : [denp]

SRE-DNA G2: g : x∗.11 : c : x+.19 : c : x+.19 : [gks] : x+.19 : [dklv] : x+.19

: c : c : x+.19 : [dt] : x+.18

A qualitative comparison of Hu’s results with ours is difficult, because of
the difference in motif languages, as well as Hu’s lack of any numerical analyses
of his results (eg. training and testing measurements). Hu investigated the same
ZF1, ZF2, SnT, and KI protein families that we did. Hu’s resulting motifs for
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ZF1 and KI are impressive, as they are nearly identical to the PROSITE motif
expressions. In other results, Hu’s motifs were simpler than the PROSITE ones.
For example, Table 7 compares the PROSITE, Hu, and SRE-DNA G2 motifs
for SnT. The Hu motifs are clearly too short, as they cover sequences between
4 and 7 codons long, which is far smaller than the maximum window size of 22
codons used in the PROSITE motif. In the G2 motif, the first 4 terms of the
PROSITE motif (up to “p”) are nearly identically covered, as is the “c:c” term
later in the sequence. The G2 motif needs to break up the long “x(8,10)” gap
with a series of iterations and masks, because the iteration limit of 0.19 prevents
a single skip expression from being applied too often (a skip of 0.19 iterated 10
times gives a probability of 5e-8).

The other GP work evolving regular expression motifs for unaligned
sequences is by Koza, Bennett, Andre and Keane.21) The 2 protein families
studied are the D-E-A-D box and manganese superoxide dismutase families.
The target language is a subset of the PROSITE motif language, in which gap
expressions (fixed or variable) are not used. They also use GP with ADF’s, which
enable the modularization of common subexpressions in evolved motifs. This is
advantageous for the protein families studied, which contain repetitive elements.
The two protein families investigated have very small window lengths, of length
8 and 9 respectively. This is considerably smaller than the lengths used in this
paper, which ranged up to 25 codons. They reported good results with their
work, as one of their evolved motifs improved upon an established PROSITE
source motif, due to its replacement of a PROSITE gap with an explicit choice
of amino acid codons.

Unlike ours or Hu’s work, Koza et al. did not need to supply preset
window limits. Although fewer user-specified parameters implies increased au-
tomation, which is always an ideal in machine learning, a preset window size
was used here out of necessity: an indeterminately large window results in long
interpretation times, especially when iteration is used. Given the complexity of
SRE-DNA and the lengths of the sequences studied here, it is unlikely that an
unspecified window would have been feasible.

§9 Conclusion
This is a first attempt at evolving SRE-DNA motifs for unaligned se-

quences, and the results are promising. The expressive characteristics of SRE-
DNA motifs are highly dependent upon language restrictions used, such as gram-
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matical restrictions, mask sizes, and iteration ranges. Some of these constraints
may be more suitable to particular protein families than others. Further reseach
is required to understand in more depth the effect of language constraints on
motifs, and which constraints are most practically applicable to the majority of
protein families.

One weakness in this paper’s application of SRE-DNA is that motifs
do not ensure fixed-size sequences for conserved regions. Conserved regions
rarely vary in size, since extra or missing amino acids will cause major changes
to functionality. GP usually evolves appropriate iteration values that produce
good results for the training set. These terms are not fixed in length, however,
if iterative gaps are embedded in them. An interesting direction to take in the
future is to use an enhanced SRE-DNA grammar that explicitly accounts for
conserved regions. For example, the grammar could generate motifs of the form,

< var. region > < conserved region > < var. region >

The grammar rules for the variable regions would use iterative probabilities as
is done currently, while the conserved region would forgo the use of all iteration
operators.

SRE-DNA is a new motif language for protein sequences. As with
PROSITE motifs, much of the characterisation of a family of proteins is inherent
in the structure of the SRE-DNA motif. Additionally, like HMM’s, an SRE-DNA
motif defines a probability distribution over the member sequences. In this two-
level approach to sequence representation, the more discriminating linguistic
level is the regular expression, since it implicitly defines which sequences belong
to the modeled family. The probability fields refine this representation by as-
cribing a probabiity distribution to member sequences. Like PROSITE’s motif
language, SRE-DNA motifs tend to grow in size in accordance with the com-
plexity and size of the sequences being characterized. GP tends to create larger
expressions as well, which can often be simplified afterwards. SRE-DNA’s motif
size contrasts to HMM motifs, whose structure is fixed for the maximum size of
sequences being represented. Unlike HMM’s, however, SRE-DNA is a relatively
user-friendly motif language, and can be used for interactive database access.

An empirical comparison of SRE-DNA and other representation models
would be interesting. Since these different motif representations can vary sub-
stantially, however, a direct comparison of them may not be too fruitful. It is
worth realizing that the biological functionality of proteins is entirely dependent
upon the 3D structure of the protein molecules. Motif representations such as
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SRE-DNA, HMM’s, regular expressions, and context-free languages, are crude
means for modeling characteristic features of proteins. Nevertheless, they are
widely used, because they are relatively concise, computationally efficient, and
amenable to automatic acquisition.

There are other directions for future investigations. Similar to the mask
refinement performed on the final solutions, additional refinement of probability
fields can be undertaken, which would improve the probability performance of
motifs. Future work will investigate using a fuller variant of SRE-DNA to model
sequences with repetitive elements and weighted choice. More sophisticated GP
approaches, for example, the use of multiple populations, may result in better
evolution performance. Finally, more runs should be undertaken to obtain more
meaningful statistical results. A practical limitation to this is the speed of runs,
which can be very slow when large masks and low probability limits are used.
Porting DCTG-GP to a faster, compiled language such as C would be useful in
this regard.

Our fitness scheme uses a strictly structural perspective of motif perfor-
mance: if a regular language can recognize the positive sequences in a family,
and reject sequences outside of it, then it is considered correct. This formal view
of motif performance is practical and adequate for many problems, and therefore
is adopted in most machine learning applications. On the other hand, such an
approach is inherently limited. For example, it cannot account for converged
functionality for distantly related proteins. Such real-world phenomena require
additional information (domain-specific knowledge about protein structure) be-
yond what can be modeled by first-order structural principles themselves.

A comparison of different motif learning techniques is worth undertaking
in the future. SRE-DNA motifs may be synthesizable by other machine learning
algorithms, many of which may yield superior performance over GP.
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