
A π–calculus Semantics of
Logical Variables and Unification∗

Brian J. Ross
Department of Computer Science

Brock University
St. Catharines, Ontario, Canada L2S 3A1

bross@cosc.brocku.ca

Abstract

A π–calculus semantics of terms and logical variables, environment
creation visavis term copying and variable refreshing, and sequential
unification is presented. The π–calculus’s object–oriented approach
to modelling evolving communication structures is used to model the
evolving communication environment found in concurrent logic pro-
gram computations. The novelty of this semantics is that it explicitly
models logic variables as active channels. These channels are referenced
by π–calculus channel labels, and when used in concert with the ν re-
striction operator, model variable scopes and environments. Sequential
unification without occurs check is modelled by traversing term expres-
sions, and binding variables to terms as appropriate. The π–calculus is
well-suited for this, as its object–oriented view of concurrency permits
the modelling of the object passing and variable redirection that occurs
during unification. This semantics is a central component of a more
comprehensive operational semantics of concurrent logic programming
languages currently being developed.

1 Introduction

The π–calculus is a process algebra suitable for modelling concurrent net-
works with evolving communicative structures [MPW89a, MPW89b, Mil91].
The π–calculus is similar to Milner’s earlier CCS [Mil89], except that it is
embellished with channel-label passing, which gives an object–oriented view
of concurrency. The ability to treat channels as objects greatly enriches the
descriptive power of the formalism, which can be seen by its modelling of
the λ–calculus in [MPW89a].
∗In First North American Process Algebra Workshop, Springer-Verlag, 1993, S. Pu-

rushothaman and A. Zwarico (eds.), pp. 216-230.

1

This paper introduces a π–calculus semantics of logical variables and
unification. The π–calculus is ideal for modelling concurrent logic program-
ming languages. Concurrent logic programs are characterised as networks
of concurrent processes which communicate with one another using shared
logical variables. As computations proceed, the unification procedure binds
logical variables to various term structures. These bindings alter the com-
munication environment on which the interacting processes depend. The
π–calculus concept of dynamic communication topologies is used to model
the evolving communication environment found in concurrent logic program
computations. This model serves as a basis on which more complex concur-
rent logic program control semantics can be built upon.

Section 2 reviews the logic programming domain being modelled in
the paper, as well as some basic ideas behind the π–calculus. A π–calculus
semantics of terms and logical variables, environments, and sequential uni-
fication is given in section 3. Some examples are in section 4. A discussion
concludes the paper in section 5.

2 Review

2.1 Some logic programming concepts

The semantics in this paper models the data domain used in logic program-
ming and term rewriting. This section will briefly review the essentials
needed for developing an intuition of the domain being modelled. The fol-
lowing is found in greater depth in [Llo84].

Terms are defined recursively as follows: (i) a variable is a term; (ii)
a constant is a term; (iii) if f is an n-ary function, and t1, ..., tn are terms,
then f(t1, ..., tn) is a term. Constants are often considered to be functions
of arity 0. Variables are written in upper-case, and constants and functions
in lower-case. A shorthand notation for a term of arity > 0 is f(t̃). The
variables in a term t̃ are denoted V ars(t̃).

A substitution θ is a finite set of the form {v1 ← t1, ..., vn ← tn},
where the vi’s are distinct variables and the ti’s are terms. Each vi ← ti is
called a binding for vi. If E is a term, then Eθ is the term obtained from
E by simultaneously replacing each occurence of the variable vi in E by the
term ti as found in θ. A variable-pure substitution is one where all the ti’s
are variables.

Let θ = {u1 ← si, ..., um ← sm} and σ = {v1 ← ti, ..., vm ← tm}.

2

The composition θσ is the substitution obtained from the set

{u1 ← s1σ, ..., um ← smσ, v1 ← t1, ..., vn ← tn}
by deleting any binding ui ← siσ for which ui = siσ and deleting any
binding vj ← tj for which vj ∈ {u1, ..., um}.

Let E be a term and V be the set of variables occurring in E. A re-
naming substitution for E is a variable-pure substitution {x1 ← y1, ..., xn ←
yn} such that {x1, ..., xn} ⊆ V , the variables yi are distinct, and (V −
{x1, ..., xn}) ∩ {y1, ..., yn} = ∅.

Let S be a finite set of terms. A substitution θ is called a unifier
for S if Sθ is a singleton. A unifier θ for S is called a most general unifier
(mgu) for S if, for each unifier σ of S, there exists a substitution γ such that
σ = θγ. For example, letting X,Y be variables, {p(f(X), Z), p(Y, a)} has
the mgu θ = {Y ← f(X), Z ← a}, and their common instance is p(f(X), a).
On the other hand, {p(f(X), a), p(Y, f(c))} is not unifiable, as the second
arguments cannot unify.

When computing a unifier for a set S, the disagreement set of S
is computed in the following way. Locate the leftmost symbol position at
which not all expressions in S have the same symbol, and extract from each
expression in S the subexpression beginning at that symbol. The set of all
such subexpressions is the disagreement set.

An algorithm for determining the most general unifier is the follow-
ing. S denotes a finite set of terms.

1. Put k = 0 and σ0 = ε (the empty subsitution).

2. If Sσk is a singleton, then stop with σk as the mgu of S. Otherwise
find the disagreement set Dk of Sσk.

3. If there exist v and t in Dk such that v is a variable that does not
occur in t, then put σk+1 = σk{v ← t}, increment k, and go to step 2.
Otherwise S is not unifiable, so stop.

The test in step 3 for occurence of a variable v in the term t is called an occur
check. This step is necessary for preserving the soundness of unification.
However, it is computationally expensive, and is normally ignored in Prolog
[CM81].

2.2 The π–calculus

The monadic π–calculus of [MPW89a, MPW89b] will be used. We will
embellish it with some devices from a later incarnation in [Mil91], and with

3

Comm : (· · ·+ x(y).P) | (· · ·+ xz.Q)→ P{z/y} | Q

Par :
P → P ′

P |Q → P ′|Q Res :
P → P ′

(νx)P → (νx)P ′

Struct :
Q ≡ P P → P ′ P ′ ≡ Q′

Q→ Q′

Figure 1: Reduction and inference rules for π–calculus

some notational conveniences from CCS [Mil89]. The reader is referred to
these sources for detailed treatments.

Like CCS, the π–calculus is a process algebra which models concur-
rency via interleaving. The π–calculus differs from CCS in its ability to
pass labels as objects along specified channels. These labels can be either
constants or other channel labels; the π–calculus does not distinguish label
usage. For example, the expression

(νs) s(x).P | sy.Q
passes label y (on the right) through channel s to the prefix of P . After
applying a reduction rule (described below), the expression reduces to:

(νs) P{y/x} | Q
The label y replaces x in the expression P . The ν term hides s in the
expression. The power of the π–calculus comes from the ability to pass
channels themselves. For example, the expression

(νs y) s(x).xz.P | sy.Q | y(w).R (1)
reduces to (νs y) yz.P ′ | Q | y(w).R (2)
and then to (νs y) P ′ | Q | R′

where R′ ≡ R{z/w}. This represents the passing of channel label y as an
object in (1), and then using it to transfer label z in (2).

The basic syntax and semantics of the π–calculus is as follows. Let
the names x, y... ∈ X , the agents P,Q, ... ∈ P, and K range over agent
identifiers. Then an agent P is inductively defined by

P ::=
∑

i∈I
πi.Pi | P | Q | !P | (νx)P | [x = y]P | K(ỹ)

4

[Mil91] defines a transition relation → using one reduction rule and three
inference rules (figure 1). This lean semantic definition is made possible by
using a structural congruence relation ≡ over expressions. Some examples
of ≡ are

!P ≡ P | !P
(νx) 0 ≡ 0

(νx) (νy) P ≡ (νy) (νx) P
(νx) (P | Q) ≡ P | (νx) Q : if x not free in P

A detailed semantic account of these π–calculus operators is beyond the
scope of this review. An informal description follows.

A summation expression
∑

i∈I πi.Pi denotes a choice of possible be-
haviours in an expression. For example, in P+Q, both P and Q are alternate
behaviors. I is a finite indexing set. If I = ∅, then the sum is 0, which is
the empty process denoting inactivity. The term π is an atomic action, and
has one of two forms:

x(y) binds the input from link x to y
xy output y on link x

Channel communications which contain empty data result in CCS–style ac-
tions. For example, in

x.P | x.Q
the action x is treated as a channel communication having no object. The |
operator denotes concurrent composition, and it models interleaved streams
with message passing as generated by its constituent agent arguments. As
with CCS, a hidden τ action denotes a handshake between two processes
whose matching π prefixes are of opposite polarities. The semantics of |
accounts for the passing of labels on channels within π atoms. Infinite
replication is denoted by !P . This expression denotes the infinite generation
of P:

!P = P | P | · · · | P | !P
Label restriction is denoted by (νx), where x is one or more label names.
Matching is denoted by [x = y]P . The agent P proceeds only as long as the
labels contained in x and y are identical. A useful abbreviation for a set of
matches is:

x : [y1 ⇒ A, y2 ⇒ B, ..., else⇒ Z] ≡ [x = y1]A | [x = y2]B |
· · · | ∀i[x 6= yi]Z

5

where all yi are unique. An agent definition is invoked via the expression
K(ỹ), where K ranges over agent labels. Associated with each agent iden-
tifier K is an expression

K(x1, ..., xk)
def= E

where the xi labels are distinct.
A notational convenience is the use of a CCS–style action renaming

function. This can be implemented in the π–calculus as:

A[x/y] ≡ (νy) (A | !(y(w).xw))

In addition, some useful abbreviations are:

π ≡ π.0
x(y1 · · · yn) ≡ x(w).w(y1). · · · .w(yn)
xy1 · · · yn ≡ (νw) xw.wy1. · · · .wyn

Finally, two sequencing operators will be used in the paper:

P Before Q
def= (ν d) (P [d/done] | d.Q)

P •Q def= (ν t′) (P [t′/t] | t′.Q)

In Before (used in the appendix), P must produce the action done as the
last action before it terminates, which triggersQ’s execution. The • operator
is like Before, but sequences on t.

3 Semantics

3.1 Terms

Conceptually, the labels used by the semantics fall into one of three cate-
gories:

(i) User–defined constants C
(ii) Reserved constants R = {φ, ξ, t, f, get, free}

(iii) Channel labels X
The set of user-defined constants C is a finite predefined set built from the
constants in a logic program. The reserved labels R are distinguished labels,
and can be considered to be uniquely coloured to separate them from the

6

elements of C. The φ label is an argument tuple delimiter, and ξ is used
in the definition of logical variables. The labels t and f denote logical true
and false respectively, and in the context of this paper can be taken to mean
success and failure. get and free are semaphore signals. Channel names are
generic labels. Labels are often indexed (eg. u2, t′).

The denotation of terms and data structures is similar to that used
in [MPW89a], except that, instead of using a Lisp–style list structure, a flat
static–length graph data structure is adopted. This static structure suffices
because pure logic program terms have static arities. Letting k ∈ C, ti be
terms, x be a logical variable term, and [[]]t be a term translation function,
then terms are recursively modelled in figure 2. The u argument is used as
a channel on which to transmit the term structure. The communication of
φ delimits the end of the term. The replication “!” is used so that terms
can be repeatedly read by other expressions; otherwise, it is ephemerally
read once. The figure shows a partial translation of logical variables that is
completed in section 3.2.

Let E be an agent identifier, and let the term t be an intended
argument. The following abbreviation is convenient.

E(..., t, ...) ≡ (νu) E(..., u, ...) | [[t]]t(u) for some new u

3.2 Logical Variables and Environments

An environment is a collection of computational mechanisms which
affect the course of a computation. In this paper, an environment incor-
porates two aspects: (i) general computational mechanisms (processes, pro-
grams), and (ii) the context within which logical variables are defined. En-

[[k(t1, ..., tn)]]t(u) = (νvx1...xn) !uv | !v kx1...xnφ | [[t1]]t(x1) |
· · · | [[tn]]t(xn) (n > 0)

where xi ≡
{
new label vi : ti is non− variable term
ti : ti is a variable

[[k]]t(u) = (νv) ! uv | !v kφ
[[x]]t(u) =

{
NewV ar(x) : variable x not translated yet
(nothing) : otherwise

Figure 2: Term translation

7

NewV ar(x) def= (νw) V ar(x,w) | !wξ
V ar(x, y) def= xy.V ar(x, y) + x(w).w(z).z : [ξ ⇒ V ar(x,w),

else⇒ Set(x,w)]
Set(x, y) def= xy.Set(x, y)

Figure 3: Logic variable channels

vironments therefore include a representation of process memory, and deter-
mine the scope or communication limits of logical variables. Semantically,
an environment is an expression which contains logical variable definitions
and their scopes, as well as any other mechanisms which can access these
variables.

The view taken here is that logical variables are channels on which
reading and writing can take place. These communications are restrained
according to the state of the variable, and variables are considered to be
“write–once”. If one reads from an unbound logical variable, then some sort
of communication will be given by the variable to indicate its unbound state.
On the other hand, once a variable is bound to a term, then reading from
it results in a communication of that term. Similarly, writing a term to an
unbound variable results in its being bound to it. Such a term can be a
data structure or another variable, and if the latter, a notion of memory or
structure sharing is required.

A logical variable has two states, unbound and bound, which cor-
respond respectively to the two agents V ar and Set in figure 3. Variable
channels define an active environment, in the sense that they actively com-
municate with other mechanisms. Variables are initialized in the V ar state,
which occurs with the use of NewV ar during the environment definition.
They stay in V ar until they are bound to a non–variable term, at which
time they are managed by Set. In both states, the label x is a bidirectional
channel. Reading from the channel will result in either the “unbound” signal
ξ being emitted in V ar, or the term structure being communicated in Set.
When in the V ar state, a variable can be reset to another unbound variable
an indefinite number of times. It can only be set to a non–variable term
structure once. This can be seen in the definition of Set, which disallows any
further writing. An important feature of the denotation of logical variables
is that the variable channels indirectly point to their bound structures. This

8

will be the basis for unification in section 3.3.
When translating a term, each logical variable will have a unique

bidirectional channel defined for it, which is denoted a private channel label.
Each of these channels has an associated agent expression which suitably
defines the communication characteristics of logical variables in the language
being modelled. Consider a term k(t̃) that contains within it a set of logical
variables {v1, ..., vn}. The semantic translation of k(t̃) is:

[[k(t̃)]](u) = (νv1...vn) [[k(t̃)]]t(u) | NewV ar(v1) | · · · | NewV ar(vn)

NewV ar (see figure 3) initializes a new logical variable. In NewV ar(vi),
the label vi denotes the variable channel used to access the logical variable,
and will initially communicate ξ, which denotes its being uninitialized. The
restriction operator ν directly denotes variable scope, thereby defining a
local environment. If this restriction is removed, then these variables can
communicate outside of this expression.

Multiple environments are easily represented. Two terms t(u) resi-
dent in separate environments are denoted:

((νu) [[t(u)]]t | E1) | ((νu) [[t(u)]]t | E2)

Restriction delimits the scope as expected, and recursive definition of such
terms within agent expressions are handled by label renaming in the π–
calculus.

Environments are normally defined by the structure of a program.
When defining the semantics of utilities such as unification, however, it is
useful to be able to control the creation of environments to some extent. In
particular, the ability to rename variables is useful, as it permits tentative
operations to be performed on terms without destroying the originals. This
is akin to creating temporary local memory, and copying desired terms into
it for manipulation and testing. A term copying operator ; is defined for
this purpose. Letting t̃ range over term expressions, then

Copy u ; v | [[t̃]]t(u) | E τ→ [[t̃]]t(u) | [[t̃]]t(v) | E

Here, u is a channel which communicates some term to be copied, and v
is to be a channel on which the copied term is to be communicated. After
the transition, the environment is supplemented by the definition of a copy
of this term on channel v, which uses fresh variables as part of the term
retranslation. The net result is that a new term is output on channel v,

9

which is identical to the original term on channel u, except that it refers to
a structure with new variables.

The intuitive definition of ; in Copy above is an abstract account
of its behavior. The ; operator is in fact modellable in the π–calculus, and
one possible definition for it is in appendix A. (This definition of ; is not
particularly pleasing, however, and a more aesthetic definition is desirable.)
The idea behind any implemenation of term copying is to recursively traverse
the term as translated in section 3.1, and while doing so, communicate a
copy which reflects the original term’s structure, while generating refreshed
variables.

3.3 Unsafe sequential unification

The theoretical elegance of unification belies the complex procedural con-
siderations encountered when deriving an operational semantics for it. An
= agent performs sequential term unification without occurs check. It takes
two terms as arguments, and attempts to unify them in three steps:

1. The argument structures are copied into “safe” private memory.

2. Unification is attempted on the private copies.

3. If step 2 is successful, the original structures are unified. Otherwise,
the whole unification step fails.

Given that logic variables are modelled as non-invertable channels, bindings
to them are permanent. We do not want to bind logic variables unless it
is certain that doing so is indeed desired. Therefore, in step 2, copies of
the terms are first unified, which is a conditional pre–unification performed
before the actual one.

The intended behaviour of = is defined by these operator–level tran-
sitions:

Unify : t̃1 = t̃2 | E τ.t−→ Eθ Fail : t̃1 = t̃2 | E τ.f−→ E

E is the environment containing all the other logical variables executing
concurrently with the unification operation. Unify models the case when
the terms unify, in which case t denoting success is first transmitted, followed
by the incorporation of the unifying substitution θ into the environment.
Failure does not change E , and is denoted by f .

10

u = v
def= (νu′v′t′) u ; u′ | v ; v′ | u′ 2= v′ [t′/t] | t′.t.(u 2= v)

u
2= v

def= u(x).v(y).x : [y ⇒ t,
else⇒ x(a).y(b).a : [ξ ⇒ uy.t,

α⇒ b : [ξ ⇒ vx.t,

α⇒ (x r= y),
else⇒ f],

φ⇒ b : [φ⇒ t, else⇒ f]]
a
r= b

def= a(x).b(y).x : [φ⇒ y : [φ⇒ t, else⇒ f],
else⇒ y : [φ⇒ f, else⇒ (x 2= y) • (a r= b)]]

Figure 4: Unification

The = definition is in figure 4. The terms referenced by u and v are
first copied with ;, and these copies are unified using 2=, which does the
actual term traversing and binding of logical variables. If this conditional
unification succeeds, then the original terms are unified. Otherwise, the
terms are not unifiable, and the unification step ends in failure. In 2=, α
ranges over C. The 2= operator performs a unification check on one level of
the term structures of the arguments in u and v. Firstly, if x and y (the
memory references) are the same, then unification holds trivially. Otherwise,
the terms are read, and unification proceeds on the structures. For example,
the first ξ ⇒ uy.t expression means that the term at u is unbound, and
therefore unifies with the other term; the other term is written to the channel
u, thus unifying them. The rest of 2= unifies the terms in a case-by-case
fashion, and is fairly self-explanatory. The r= operator recursively applies 2=
to the non–empty tuples of arguments for each term. This is only done if
both u and v have the same function name α, which ranges over program
constants C. Arity discrepancies result in failure. The correctness of the
definitions in figure 4 can be verified by structural induction over terms to
be unified.

Note that the recursive expression (x 2= y)•(a r= b) in r= is sequential.
This could be made parallel if more sophisticated environment contention
schemes are modelled.

11

3.4 Atomic (safe) unification

u
s= v

def= (νt′f ′) get.(u = v [t′/t, f ′/f] | f ′.f .free + t′.t.free)

Figure 5: Atomic Unification

The definition of = in section 3.3 is not safe. Problems arise when more
than one mechanism tries to access and alter the environment simultane-
ously. This is because the accessing of terms requires traversal of the term
structures and accessing of logical variable channels, which are not instrin-
sically atomic operations.

A safe atomic unification operator s= is defined in figure 5. This op-
erator uses two semaphore signals, get and free, which permit the locking
of the environment during the unification of terms by =. The following
semaphore can be used in concert with agents which are performing concur-
rent unifications on the same environment:

Semaphore
def= get.free.Semaphore

An example of semaphore usage is in section 4.2.

4 Examples

4.1 Single unification call

Given two terms to be unified, if either term contains a variable reference,
then the variable channel is defined in the environment E . During unifica-
tion, when a variable is bound to a new term, its variable channel is set to
communicate this bound object. E will contain channel agents for all the
logic variables which, after a successful unification step, will be adjusted to
communicate their newly bound objects. To see the results of unification,
one inspects the states of these channels by reading from them.

The following is an example of how unification affects the environ-
ment. Consider the unification of t(X, b(Y), a(c)) and t(Z,W, a(Z)). This
is denoted:

t(x, b(y), a(c)) = t(z, w, a(z)) | NewV ar(x) | NewV ar(y) |
NewV ar(w) | NewV ar(z) | E (†)

12

where E are other various agents in the environment. Before unification,
querying any of the channels {x, y, w, z} results in the broadcast of the
variable’s current state. For example, querying x with the expression

x(a).a(b).outb | NewV ar(x)

results in ξ being broadcast on out. During unification, = binds the variable
agents to their unifying terms. Given that the binding substitution for the
above is θ = {X ← Z, W ← b(Y), Z ← c}, then the new environment after
unification is:

(†) τ.t→ Set(x, z) | NewV ar(y) | Set(w, b(y)) | Set(z, c) | E
Conceptually, this is equivalent to a new environment E ′, that has incorpo-
rated within it Eθ.

4.2 Concurrently competing unifications

The s= agent incorporates a simple semaphore mechanism for synchronizing
unifications which might compete to unify shared variables. Two semaphore
signals, get and free, are defined within s=, and the following semaphore can
be used in conjunction with a call to it:

Semaphore
def= get.free.Semaphore

Now s= will only proceed to unify two terms when access is permitted using
get. Consider the expression:

(ν get free) t(X) s= t(c) | s(X) s= s(d) | Semaphore | E (‡)
Both these unifications refer to the same X in the environment E . If a
contention scheme is not implemented, then it is possible for X to be simul-
taneously bound to conflicting terms. With a semaphore, only one of the
two unifications will be allowed to access E at one instant in time. Assuming
that X is uninitialized, then expanding (‡):

(‡) = (ν get free) (Eθ1 | Semaphore) + (Eθ2 | Semaphore)
where θ1 = X ← c and θ2 = X ← d.

When using multiple environments, separate unifications can be de-
noted in a single expression:

(ν get free V1)(s̃1 = s̃2 | s̃3 = s̃4 | Semaphore | E1) |
(ν get free V2)(t̃1 = t̃2 | t̃3 = t̃4 | Semaphore | E2)

13

where Vi = V ars(Ei). Having separate restrictions on the Vi means that
they are mutually exclusive sets of variables (V1 ∩ V2 = ∅).

4.3 Merging streams

Parallel logic programs often use logical variables to implement streams (eg.
[Sha87], volume 1, part III). This example shows how the π–calculus model
of logical variables represent streams, and how two streams can be merged.

Consider the following logic program clause:

p([1|W]) : − p(W).

Without going into details of the operational semantics of logic programs,
when clause p is queried with an unbound logic variable, an infinite stream
of 1’s is generated on W . For example, the query “? − p(X).” results in
the infinite list [1, 1, 1, 1, ...] being bound onto X. This occurs because the
expression p(W) is a recursive call to p which binds W to the term [1|W ′]
in the recursive call, and this carries on ad infinitum1.

A π–calculus translation of p is

P (u) def= (νw) s = [1, w] | P (w) | NewV ar(w)

which is invoked by a query expression,

P (s) | NewV ar(s)
Each invocation of agent P results in a new environment containing a fresh
variable w. The query expression evolves as follows:

(νtf) P (s) | NewV ar(s)
= (νtfw) s = [1, w] | P (w) | NewV ar(w) | NewV ar(s)
τ→ (νtfw) P (w) | NewV ar(w) | Set(s, [1, w])
τ→ (νtfww′) P (w′) | NewV ar(w′) | Set(w, [1, w′]) | Set(s, [1, w])
τ→ (νtfww′w′′) P (w′′) | NewV ar(w′′) | Set(w′, [1, w′′]) |

Set(w, [1, w′]) | Set(s, [1, w])
τ→ · · ·

The environment being built reflects the binding {S ← [1, 1, 1, ...]}.
1The notation [X|Y] is a standard logic program abbreviation for ′.′(X,Y), where ’.’

is a list constructor functor, X is a list element, Y is the tail, and ∅ is a null list. Thus,
[1, 2, 3] ≡′ .′(1,′ .′(2,′ .′(3, ∅))).

14

Consider two streams as above, where P generates an infinite number
of 1’s, and Q an infinite number of 2’s. The task is to nondeterministically
merge these streams into a stream w,

(νtfuv) P (u) | Q(v) | Merge(u, v, w) | E0

where E0 defines u, v, and w. One model for Merge is:

Merge(u, v, w) def= (νt1t2fxaz)!Nonvar(u)[t1/t] | !Nonvar(v)[t2/t] |
(t1.(u = [x|a] | w = [x|z] |Merge(a, v, z))
+ t2.(v = [x|a] | w = [x|z] |Merge(u, a, z))) | E1

where E1 defines x, a, and z, and

Nonvar(u) def= u(x).x(y).y : [ξ ⇒ f, else⇒ t]

The complication in merging these two streams arises from the fact that
the stream variables from P and Q might remain unbound when Merge
is invoked. This is because P , Q, and Merge execute in parallel, with no
ordering implicit in their communication to one another. Merge is therefore
designed so that it only merges bound streams, which is the case when u
or v are bound. This is determined by Nonvar. The merged stream on w
is built iteratively, by nondeterministically choosing bound stream elements
from P and Q, and inserting them to the front of w.

5 Discussion

This π–calculus semantics is a central component of a fuller semantics of con-
current logic program languages currently being developed [Ros92a]. The
motivation for using the π–calculus is to investigate its appropriateness a
kernel language for modelling a wide variety of concurrent logic program
phenomena. We plan to use this semantics to refine efficient implementa-
tions of concurrent logic languages. So far, the active environment model
of this paper is useful for modelling the communication which occurs be-
tween processes and logic variables. In addition, the π–calculus can model
the control constructs of these languages, a flavour of which can be seen in
the merge example of section 4.3. Another avenue being investigated is the
modelling of various parallel unification algorithms, rather than the sequen-
tial unification done here. To do this, a more detailed contention scheme
is necessary. One possibility is to put semaphores around individual logical
variables, instead of entire local environments.

15

The domain modelled here is a simple one, and actual implementa-
tions of concurrent logic languages are considerably more complex due to
efficiency considerations. For example, many committed logic languages use
various variable protection schemes, such as in GHC [Ued86], which does not
permit variables to be instantiated in the guard. This could be modelled in
the π–calculus by redefining the semantics of logical variable channels, and
requires an appropriately redefined unification algorithm. The semantics
given here could be refined into more sophisticated models which are more
amenable to efficient implementation on particular hardware. Given that
the π–calculus has a well–founded semantics, encoding abstract machines in
it can permit formal analyses of language design. Abstract machines such
as that in [Lin84] shares similarities with ours, and could be encoded in the
π–calculus if desired.

Two other process algebra models of concurrent logic programs are
by Belmesk and Habbas [BH92] and de Boer and Palamidessi [dBP92], and
a related approach is by Saraswat and Rinard [SR90]. All these papers
take the Herbrand domain and unification to be abstract concepts which
are used directly in semantic axioms. This paper differs by modelling terms
and unification at the lower level of terms using a kernel of basic π–calculus
operators, while still permitting their level of abstraction if desired. Such
a level of description is needed when modelling operational characteristics
of concurrent languages such as memory contention – concepts which are
transparent when too abstract a view is taken.

Beckman uses CCS to model concurrent logic languages [Bec87], and
Ross applies CCS to sequential Prolog [Ros92b]. In both these papers, CCS’s
value passing is not rich enough for directly modelling logical variables. As
a result, Beckman redefines the composition “|” operator so that binding
substitutions are automatically distributed to the entire environment. This
paper shows how such a data domain can be implemented in a concurrent
environment. One other related work is by Walker [Wal90], who uses the π–
calculus for modelling imperative object–oriented programming languages.

Acknowledgements: Thanks to Robin Milner for hints on how to model log-
ical variables, and to Robert Scott for his helpful advice on concurrent
logic programming. This research was done at the University of Victoria
(Canada).

16

References

[Bec87] L. Beckman. Towards an Operational Semantics for Concurrent
Logic Programming Languages. PhD thesis, Uppsala University,
1987.

[BH92] M. Belmesk and Z. Habbas. A Process Calculus with Shared
Variables. Journal of Computers and Artificial Intelligence,
1992.

[CM81] W.F. Clocksin and C.S. Mellish. Programming in Prolog.
Springer-Verlag, 1981.

[dBP92] F. S. de Boer and C. Palamidessi. A Process Algebra of Con-
current Constraint Programming. In Joint International Con-
ference & Symposium on Logic Programming, Washington, DC,
1992. MIT Press.

[Lin84] G. Lindstrom. OR-parallelism on applicative architectures.
In 2nd International Logic Programming Conference, Uppsala,
1984.

[Llo84] J.W. Lloyd. Foundations of Logic Programming. Springer-
Verlag, 1984.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[Mil91] R. Milner. The Polyadic π-Calculus: A Tutorial. Technical
Report ECS-LFCS-91-180, LFCS, U. of Edinburgh, 1991.

[MPW89a] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile
Processes, Part I. Technical Report ECS-LFCS-89-85, LFCS,
U. of Edinburgh, 1989.

[MPW89b] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile
Processes, Part II. Technical Report ECS-LFCS-89-86, LFCS,
U. of Edinburgh, 1989.

[Ros92a] B.J. Ross. A π–calculus Semantics of Committed Logic Program
Control, 1992. In preparation.

17

[Ros92b] B.J. Ross. An Algebraic Semantics of Prolog Control. PhD
thesis, University of Edinburgh, Scotland, 1992.

[Sha87] E.Y. Shapiro. Concurrent Prolog vol. 1 and 2. MIT Press, 1987.

[SR90] V. Saraswat and M. Rinard. Concurrent Constraint Program-
ming. In Proceedings 17th Principles of Programming Lan-
guages, pages 232–245, San Francisco, 1990.

[Ued86] K. Ueda. Guarded Horn Clauses. PhD thesis, University of
Tokyo, 1986.

[Wal90] D. Walker. π-calculus Semantics of Object-Oriented Program-
ming Languages. Technical Report ECS-LFCS-90-122, LFCS,
U. of Edinburgh, 1990.

18

A Implementation of ;

Figure 6 contains one possible π–calculus implementation of ;, which uses
some list processing utilities in figure 7. In ;, the 2

; operator traverses
the term to be copied, and echoes new instances of term components. Fresh
channels and logic variables are generated during the traversal. However,
a record must be kept of any new logical variable channels created, since
multiple instances of a variable in a term should be denoted by the same
fresh copy. Therefore, a list is checked via mem whether a variable has
already been renamed. If not, then a new variable is created, and the old
and new variable labels are saved in the list (via add). Otherwise, it has been
renamed already, and the new variable created previously is used instead.
The r

; operator recurs on the term arguments.

u ; v
def= (ν done add mem m) u 2

; v | List
u

2
; v

def= u(x).x(y).y : [ξ ⇒ memx | m(a).a : [φ⇒ (νw) V ar(v, w) | !wξ | addxw,
else⇒ va],

else⇒ (νw) Set(v, w) | !(wy.done Before x r
; w)]

x
r
; w

def= x(z).z : [φ⇒ wφ, else⇒ (νa) z 2
; a | wa.done Before x r

; w]

Figure 6: Term copying

List
def= (νx) xφ | L(x)

L(x) def= (νz) add(y1, y2).(L(z) | zy1y2x)
+ mem(y).(L(x) |Member(y, x))

Member(v, x) def= x(a, b).a : [φ⇒ mφ, v ⇒ mb,
else⇒ x(z).Member(v, z)]

Figure 7: List utilities

19

