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Abstract. Automatic mineral identification using evolution-
ary computation technology is discussed. Thin sections of
mineral samples are photographed digitally using a compu-
ter-controlled rotating polarizer stage on a petrographic mi-
croscope. A suite of image processing functions is applied to
the images. Filtered image data for identified mineral grains
is then selected for use as training data for a genetic program-
ming system, which automatically synthesizes computer pro-
grams that identify these grains. The evolved programs use a
decision-tree structure that compares the mineral image val-
ues with one other, resulting in a thresholding analysis of the
multi-dimensional colour and textural space of the mineral
images.
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1 Introduction

Most rocks are composed of microscopic-sized minerals that
can be identified by a variety of methods. The most common
method of manual mineral identification involves mounting
a thin-section, 30-µm-thick slice of the rock on a plate of
glass, and viewing under a specialized microscope. At that
sample thickness, light will pass through the rock and a geol-
ogist can examine the minerals under different lighting con-
ditions, involving one or two polarizing filters. Competent
mineral identification is a task that usually requires years of
experience. An expert will use various visual cues; for exam-
ple, colour, texture and the interaction of the crystal lattice
with different directions of polarized light. A geologist ex-
perienced in microscopic mineral identification can identify
grains fairly accurately. While a number of other techniques
for mineral identification are available (e.g. microprobe and
x-ray diffraction), the manual use of thin sections is still in
many cases the fastest and cheapest method available.

Given the challenges inherent in mineral identification,
the use of computer-aided tools for automatic mineral iden-
tification is worth consideration. This paper illustrates how
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computer vision and artificial intelligence technologies can
be used to identify mineral grains automatically from digital
images.

Automatic mineral identification is a multiple-stage pro-
cess. Thin sections of mineral samples are photographed
digitally using a computer-controlled rotating-polarizer pet-
rographic microscope. These images are processed through
a series of image processing filters, which results in a set
of filtered images that encapsulate the original image fea-
tures in more compact and convenient representations. One
of these filtered images consists of grain edges, in which
a graphical border surrounds each grain. When these grain
boundaries are overlaid onto the other filtered images, it is
immediately apparent that identifiable combinations of fil-
tered image features characterize particular types of mineral
specimens. These features are similar to those used by ge-
ologists when manually identifying a mineral in a thin sec-
tion. Therefore, once the image features are obtained for the
grains in a sample, that information should be sufficient for
identifying the type of minerals comprising those grains.

Once the image data for a set of mineral images is ex-
tracted and filtered, it is put into a database of grain spec-
imens. The problem then becomes one of characterizing
minerals based on their data within this database. This is
a classical problem for artificial intelligence, and a variety
of artificial intelligence technologies are pertinent to its so-
lution. First, it can be viewed as a classification problem,
in which the features of a presented object are examined
and used to assign the object to one of a predefined set
of classes (Berry and Linoff 1997). Classification problems
typically use well-defined descriptions of the classes, and
a training set of examples of these classes. A set of grain
data from the database can be used to derive descriptions of
grain characteristics for use in deriving a model for mineral
identification.

The problem can also be viewed as one in inductive
concept learning, in which a generalization is derived from
a finite set of examples (Luger and Stubblefield 1998). The
task for inductive learning algorithms is to derive useful gen-
eralizations from the training examples. Over-generalization
means that imprecise and inaccurate descriptions will result,
while under-generalization will derive models that are too
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tightly bound to the training set’s idiosyncrasies to be of gen-
eral use for other types of mineral. Considerable machine-
learning research has been undertaken in inductive learning,
the most famous example being Quinlan’s ID3 inductive
learning algorithm (Quinlan 1986).

Another pertinent machine-learning paradigm is evolu-
tionary computation (Holland 1992; Bäck 1996; Michalewicz
1996; Mitchell 1996; B̈ack et al. 1997). Machine learning
problems are characterizable as search problems, in which
a possibly infinite space of model descriptions is searched
in an attempt to find a description that best characterizes a
set of training data. The evolutionary computation approach
to machine learning uses a simulation of natural Darwinian
evolution to search a space of model descriptions in the quest
for one that satisfies the problem requirements.

This research solves the mineral identification prob-
lem using a specialized branch of evolutionary computation
called genetic programming (GP) (Koza 1992). GP evolves
a collection of data structures that can be interpreted as com-
puter programs. As the search proceeds, increasingly more
useful programs are built, until hopefully one evolves that
solves the problem specification to a desired level of perfor-
mance.

In this paper, GP is used to automatically synthesize
computer programs that identify minerals from their grain
features. The programs to be evolved take as input the fil-
tered image data for a grain, examine and process that data,
and respond with an identification of the mineral represented
by that grain data. More precisely, each program synthesized
is specialized for identifying one specific mineral that can
appear in a thin-section sample. When one of these pro-
grams is supplied a set of data for a grain, it will determine
if that grain corresponds to the mineral that the program is
engineered to recognize. Therefore, all the grains in a thin
section can be identified if the grain data is given to each
identification program in succession.

An outline of the paper is as follows. Section 2 is a
background discussion of the mineral identification prob-
lem and the rotating polarizer stage microscope. Section 3
discusses the image processing performed on the polarized
images. The essentials of GP are reviewed in Sect. 4. The
application of GP to mineral identification is discussed in
Sect. 5. This includes a discussion of evolutionary strategies
and the parameters used, and the results obtained. A critical
discussion concludes the paper in Sect. 6, which includes a
comparison with other research employing neural networks
(NNs) for mineral identification.

2 Mineral identification

The petrographic microscope is a commonly used tool for
manual mineral identification in thin sections; however, its
use for image processing has been limited (Fabbri 1984;
Petruk 1989; Launeau et al. 1990; Pfleiderer et al. 1992;
Starkey and Samantary 1993). Minerals are observed primar-
ily under two different lighting conditions. In plane-polarized
light, a single polarizing filter is placed below the thin sec-
tion, while under cross-polarized illumination, one polarizer
is placed above and one below the sample, with their po-
larizing directions at 90◦ to each other. While a number of

specialized tests can be performed on the sample, an expe-
rienced operator can often identify minerals by the nature
of the change in appearance of the mineral as the sample
is rotated with respect to the fixed polarizers. The use of
optical automated mineral identification systems has been
limited by several problems. In plane-polarized light, many
minerals are colourless, which makes it impossible to dis-
tinguish grain boundaries between two adjacent colourless
grains. Similarly, in cross-polarized light, the colour – re-
ferred to as interference colour – displayed depends on the
mineral type, the orientation of the crystal lattice of the grain
with respect to the polarizers and the thickness of the thin
section. Hence, the appearance of a single grain may vary
from black to brightly coloured, depending on the orienta-
tion of its lattice to the polarizers. This problem is over-
come by rotating the microscope stage with respect to the
fixed polarizers and observing the full range of colours that
a grain undergoes. The human brain and vision system have
no problem keeping track of individual grains as they rotate
around the field of view. Unfortunately this procedure is a
major obstacle for an image processing system, as the com-
puter has to track the behaviour of a point within a grain
in colour space, as well as the motion of that point as the
thin section is rotated. Hence automated mineral identifica-
tion systems (Launeau et al. 1994; Marschallinger 1997) are
based on scanned images and use the natural colour of the
mineral.

The rotating-polarizer microscope stage (Fueten 1997)
was designed specifically as an addition to the standard
petrographic microscope, to overcome some of its inher-
ent problems. The stage works in conjunction with a video
capture board and allows the thin section to remain fixed
while the polarizers are rotated. This greatly enhances the
usage of standard image processing techniques on thin sec-
tions for the segmentation, measurement and identification
of the mineral.

3 Image processing of polarized thin-section images

Sampling of minerals is performed by repeatedly grabbing a
frame, extracting data and rotating the polarizers. The normal
sampling procedure rotates the polarizers from 0◦ to 180◦
in 0.9◦ increments (200 steps) under both plane- and cross-
polarized light. A composite data set is then constructed from
this information. An example thin-section image is shown in
Fig. 1, which has the maximum plane intensity for a speci-
men.

3.1 Data collected using cross-polarized light

The maximum intensity image contains the maximum inten-
sity values as defined in hue, saturation and intensity (HSI)
space. These correspond to the maximum interference colour
that every pixel attained during a 180◦ rotation of the polar-
izers. Intensity variations are related directly to the orienta-
tion of the crystal lattice with respect to the plane of the thin
section. Variations in intensity due to the orientation of the
polarizers, which are seen in single images, are eliminated
by the sampling procedure. The maximum position image
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Fig. 1. Maximum plane intensity

is a greyscale image (with a 0–200 intensity range) indicat-
ing that the polarizer position at which each pixel reached
the maximum intensity. Position values record the orien-
tation of the polarizing filters (i.e. the step number) when
a pixel reaches its maximum value. The gradient image is
a representation of the accumulated sum of the maximum
difference in intensity between the horizontal and vertical
directions. The image is then rescaled to a 0–255 range (for
display purposes) and serves as the input of the segmentation
routine as presented by Goodchild and Fueten (1998).

3.2 Data collected using plane-polarized light

A maximum intensity image is obtained under plane-po-
larized light. In addition, a minimum intensity image and
a minimum position image are constructed similarly to
the maximum intensity and position images under cross-
polarized light. The advantage in having both maximum and
minimum intensity images is that they can be used to obtain
a measure of pleochroism, which is the variation in colour
of a mineral during rotation under plane-polarized light.

3.3 Parameter extraction

It is relatively easy for the human brain to distinguish be-
tween different minerals by looking at qualitative features,
but it is not obvious which numerical measurements can ac-
complish the same task. While their shape can be used to
identify minerals, this is not generally the case. Hence it
was decided that identification should restrict itself to visual
parameters, such as colour and texture that can be extracted
from each mineral. Mineral identification has to proceed on
a grain-by-grain rather than a pixel-by-pixel basis, hence the
images were segmented and the parameters were calculated
on the basis of the pixels contained within a grain. A va-
riety of colour and texture parameters were computed from
the data set.

3.3.1 Colour parameters

Each image is captured using red, green and blue (RGB)
components. However, experimentation determined the RGB

colour model was very sensitive to fluctuations of the light
source. Converting the RGB components to HSI space de-
taches the intensity component from the colour information
and reduces the effects of variable lighting. The hue com-
ponent provides a measurement that directly determines the
colour of the grain, while the saturation yields the depth of
that colour.

Pleochroism is a fundamental mineral characteristic that
provides important information during manual mineral iden-
tification. Hence, a pleochroism parameter was defined as the
difference between the modes of the intensity of the maxi-
mum intensity and the minimum intensity of the plane light
images. For simplicity, any changes in the hue or saturation
between the two plane-polarized-light intensity images were
ignored.

3.3.2 Texture parameters

Colour is not a uniquely identifying characteristic of miner-
als. Several characteristics of minerals require special tests,
which involve the insertion of a special lens or filter. How-
ever, an experienced petrologist can in many cases identify
minerals using subtle colour-independent features such as
undulatory extinction or small amounts of alteration without
having to resort to specialized tests. Undulatory extinction,
which results from a bend lattice and produces a series of
dark bands crossing the crystal during rotation, would not
manifest itself in colour images but would appear in position
images and can be quantified by textural parameters. Autio
et al. (1999) and Thompson et al. (2001) successfully used
texture parameters to classify rock textures for a variety of
purposes.

The intensity component of the colour images and the
values of position images were used to calculate four
standard texture parameters. Texture parameters are calcu-
lated using a co-occurrence matrix that is calculated for
each grain. A co-occurrence matrix, representing a two-
dimensional histogram, defines a P [i, j] value which corre-
sponds to the number of pixels with the values i and j sep-
arated by the displacement vector (1,1). This displacement
expressed as an image mask is the 2×2 identity matrix. Us-
ing this normalized matrix (P ) the following measurements
are calculated (Jain et al. 1995):

Contrast = ΣΣ(i − j)2P[i, j]

Entropy = −ΣΣP[i, j] log(P[i, j])

Energy = ΣΣP2[i, j]

Homogeneity = ΣΣP[i, j]/(1 + |i − j|)
A total of 35 colour and texture parameters (Table 1)

were extracted from the data set.

4 Genetic programming

Genetic programming (Koza 1992; Banzhaf et al. 1998;
Whitley 2000) is an evolutionary computation paradigm in
which programs are evolved using a genetic algorithm (GA).
The basic GA is given in Fig. 2. GA and GP are character-
ized by the following:
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Table 1. Image parameters ( crossed, cross-polarized light; plane, plane-
polarized light)

Maximum crossed intensity: Maximum crossed position:

p1. Hue p22. Contrast

p2. Saturation p23. Entropy

p3. Intensity p24. Energy

p4. Contrast p25. Homogeneity

p5. Entropy

p6. Energy Minimum plane position:

p7. Homogeneity p26. Contrast

p27. Entropy

Maximum plane intensity: p28. Energy

p8. Hue p29. Homogeneity

p9. Saturation

p10. Intensity Gradient:

p11. Contrast p30. Intensity

p12. Entropy p31. Contrast

p13. Energy p32. Entropy

p14. Homogeneity p33. Energy

p34. Homogeneity

Minimum plane intensity:

p15. Hue Pleochroism:

p16. Saturation p35. Pleochroism

p17. Intensity

p18. Contrast

p19. Entropy

p20. Energy

p21. Homogeneity

1. Initialize: Generate initial population. 
2. Evolution:  
Loop while current generation < maximum generations 
 and fitness of best individual not considered a solution { 
 Loop while new population size < maximum population size {
  - Select a genetic operation probabilistically: 
  --> Crossover: 
   - Select two individuals based on fitness. 
   - Perform crossover. 
   - Evaluate the fitness of the offspring. 
   - Add offspring to new population. 
  --> Mutation: 
   - Select one individual based on fitness. 
   - Perform mutation. 
   - Evaluate the fitness of the offspring. 
   - Add offspring to new population. 

 } 

 - Increment generation counter. 
} 
3. Output: Print best solution obtained.  

Fig. 2. Genetic algorithm

1. An initial population of random individuals, which in the
case of GP are randomly constructed programs.

2. A finite number of generations, each of which results in
a new or replenished population of individuals.

3. A problem-dependent fitness function, which takes an
individual and gives it a numeric score indicative of that
individual’s ability to solve a problem at hand.

4. A fitness-proportional selection scheme, in which pro-
grams are selected for reproduction in proportion to their
fitness.

5. Reproduction operations, usually the crossover and mu-
tation operations, which take selected program(s) and
generate offspring for the next generation.

The essential difference between GP and GA is the de-
notation of individuals in the population. A pure GA uses
genotypes that are fixed-length bit strings, and which must
be decoded into a phenotype for the problem being solved.
A GP uses a variable-length computer program genotype,
which is directly executable by some interpreter (typically
LISP). The use of programming code as the genotype has
been found to be a robust and powerful means of solving
many problems (e.g. Whitley 2000).

The two main reproduction operators used in GP are
crossover and mutation. Crossover permits the genetic com-
bination of program code from programs into their offspring,
and hence acts as the means for inheritance of desirable traits
during evolution. Crossover takes two selected programs,
finds a random crossover point in each program’s internal
representation (normally a parse tree), and swaps the sub-
trees at those crossover points. The crossover points must be
selected so that the resulting offspring are syntactically cor-
rect. With the program structure in Koza (1992), this means
that if a subtree with a non-terminal root (function label) is
selected in one program, it is swapped with a subtree with
a non-terminal root from the other program.

To perform mutation, a random mutation point is found
in a selected program, and the subtree at that node is re-
placed with a new, randomly generated tree. This is the
means by which new genetic traits can be introduced into the
population during evolution. Although crossover and muta-
tion preserve the grammatical integrity of programs, the user
must ensure closure that the resulting programs are always
executable. So long as closure is maintained, all programs
derivable by the GP system will be executable by the fitness
function, and hence their fitness will be ascertainable.

5 Evolution of mineral identification programs

5.1 Data preparation

As discussed in Sect. 3, the raw polarized images from the
rotating-polarizer stage microscope are processed through a
number of filters, resulting in a set of 35 distinct data param-
eters. These parameters are computed for grain within the
images. In order to extract the training data, a geologist man-
ually inspected and identified a series of minerals from a set
of thin sections. The data vectors of different minerals and
their identification are then saved in a grain database. This
information is used by the GP-fitness evaluation procedure.

The grain data were taken from a set of 44 petrographic
thin sections. Some of the sparser minerals on the thin sec-
tions could not be used, since there were not enough ex-
amples to process by the GP system. The minerals species
and number of examples of each mineral examined here
were: quartz (575), K-spar (369), plag (358), biotite (74),
muscovite (36), hornblende (86), CPX (81), olivine (685),
garnet (311), calcite (520) and opaque (189). The number
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L1: Bool  ::= if Param < Param then Bool else Bool | Param < Param 
    | true | false 
Param  ::= p1 | p2 | ... | p35 | <ephemeral const> 

L2: Bool ::= if Bool then Bool else Bool | Bool and Bool | Bool or Bool 
   | not Bool | E BoolRel E | true | false 
BoolRel ::= < | <= | > | >= | = 
E ::=  E Op E | max(E1, E2) | min(E1, E2) | Param 
Op  ::= + | - | / | * 
Param ::= p1 | p2 | ... | p35| <ephemeral const> 

Fig. 3. Grammar of the GP languages

of example grains varied in these minerals. This affects the
ability to run the GP system on them for larger sets of train-
ing examples.

5.2 Target languages

An important preparation step for GP is to identify a suit-
able target language in which to evolve programs. The suc-
cess of evolution is dependent upon the use of a language
that can adequately represent a solution to the problem be-
ing solved; should an inadequate language be used, there
will be no means for the GP system to evolve a solution.
In addition, higher-level languages can sometimes enhance
evolution efficiency, since higher-level features can promote
faster evolution of better quality programs. This must be
balanced with efficiency of execution, however, since high-
level functions may produce a computational overhead that
will slow the GP system considerably.

Two different languages were used for evolving min-
eral identification programs. The Backus-Naur grammar for
the languages is in Fig. 3. This grammar is translated into a
LISP-like notation for use by the GP system. The first lan-
guage, L1, is a nested decision tree language, consisting of
nestable If-Then statements, a relational operator “<” over
the 34 parameter values and the logical constants True and
False. Both conditional If and relational “<” statements are
used since the latter permits decision trees to be leaner in
size than if only nested “ If”s were allowed. As can be seen
in the grammar, an L1 program will performing a relational
test on the parameter data, and will return a logical value as
a result. The intention is for a mineral identification program
written in L1 to return True if the grain parameters being
analyzed conform to the particular mineral that that program
is designed to identify, and False otherwise.

The second language, L2, is more complex. It is a su-
perset of L1, introducing mathematical expressions over pa-
rameter values. Most of L2 is self-explanatory. The Min
and Max operators return the minimal and maximal value of
their pairs of arguments. All equality tests within relational
expressions work with a degree of error within 10% of the
left-hand parameter. For example, in the expression “a = b” ,
if b is within 10% of a’s value, the expression returns True.
All the operators must observe closure, by executing with
any possible argument value. The only operator this affects
is the “ /” division operator, which must handle zero-value
denominators. It is coded to return “0” in these instances.
Ephemeral constants are floating-point numbers between 0.0
and 1.0, which are initially generated with a random num-

ber generator, but thereafter retain their initialized values
throughout their existence.

5.3 Fitness strategy

Each program to be evolved is to identify one of the mineral
types resident on the thin-section images. Let this mineral
be designated as mineral M. Once a mineral is selected as a
goal for evolution, the grain database is segregated into two
sets of data: training and testing. Training data are the grain
feature vectors (henceforth called “grains” ), which will be
used during GP evolution by the fitness evaluator. Let N be
the total number of minerals. The training set for a mineral
consists of a random selection of K grains corresponding to
the mineral being identified, plus a random selection of K
grains for each of the other minerals. This yields a total of
N × K grains to be used as training examples.

The fitness function used during evolution is the follow-
ing:

1
2

(
# hits correct

K
+

# misses correct
(N − 1)K

)

A hit is when the program-identifying mineral M identifies
a grain as belonging to M, or in other words, the program
returns True. Similarly, a miss is when the program returns
False. This formula therefore computes the percentage of
correctly identified grains of mineral M, and the percent-
age of grains correctly identified as not being mineral M.
The sum of these terms is scaled by 1/2, to keep the range
of values between 0 and 1. This implies that a value of 1
means that a program has perfectly identified all the grains in
the training set, while 0 implies that no grains were correctly
identified. Note that the equation is weighted towards award-
ing correct hits. This is because there are far fewer positive
examples than negative examples in the training set. Other-
wise, if all the grains were evaluated with the same weight,
a program that returned False for all grains would have a rel-
atively high score of (N − 1)/N percent, which negatively
affects evolution.

The testing set is used to measure the performance of
programs on new data not seen during training. The testing
set is a good way to ensure that a program has not been
over-trained to recognize only its training data, and also to
verify that the training data is representative of the problem
at hand. The testing set is defined to be the rest of the grain
database not used for training. The testing formula is similar
to the fitness formula:

1
2

(
# hits correct

P
+

# misses correct
Q

)

where P is the total number of grains for mineral M in the
testing set, and Q is the total number of other grains. Again,
this formula is weighted towards favouring correct hits, be-
cause there may be fewer grains for M than the rest of the
minerals. Also note that the testing set does not necessar-
ily have a balanced number of grains for different minerals,
since it is defined to be whatever is left in the database after
the training set has been extracted. Since some mineral spec-
imens are far rarer than others, the testing measurements for
various minerals should not be directly compared with one
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Table 2. GP parameters

Parameter Value

Terminals, non-terminals (see Fig. 3)

Fitness function Number of correct identifications

Training set size (i) 34+, 340− (ii) 70+, 420−
Generation type Generational

Selection scheme Tournament, size = 7

Population size 500

Maximum generations 50

Runs per experiment 20

Initial population tree size Ramped half and half, 2 ≤ size ≤
Maximum tree size 17

Probability crossover 0.95

Probability mutation 0.05

Probability internal

(external) crossover 0.1 (0.9)

another. The important relationship to note is how well the
testing and training values correlate with each another.

5.4 Other experimental details

Table 2 lists other parameters for the GP experiments. Most
of these parameters are well known from the GP literature,
and will not be discussed further. The terminals and non-
terminals depend upon whether language L1 or L2 is used
(see Fig. 3).

Two sets of experiments were undertaken. The first set
of runs evolved identification programs for all the minerals,
and used a minimal training set of 34 positive examples
and 340 negative examples per run. A set of training data
for a single run was extracted pseudo-randomly from the
database. The second set of runs doubled the number of
positive examples to 70. In doing this, four of the eleven
minerals (biotite, muscovite, hornblende and CPX) had to
be excluded, because they provided insufficient numbers of
positive examples in the grain database to permit accurate
training and testing.

The GP system used is the lil-gp 1.1 system (Zongker
and Punch 1995). The version used is a patched one by
Sean Luke, which adds strong typing. Typing permits a more
constrained search during evolution, as well as less stringent
requirements for closure for languages L1 and L2 (Montana
1995). The system is compiled with GNU C on the Silicon
Graphics IRIX 6.3 operating system. This C implementation
of GP was chosen for its efficiency when processing the
large example sets in this application.

5.5 Results

Table 3 shows the final results of the GP runs. For compar-
ison, the results of testing performance values for the same
data by an NN (Thompson et al. 2001) are given in the last
column.

The more complex language L2, with its additional
floating-point arithmetic, did not lend any great advantages
to the quality of solutions evolved in the simpler decision
language L1. Although 7 of the best mineral identifiers in
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Fig. 4. Opaque evolution L2, K = 34, av. 20 runs

the table are written in L2, their scores are not outstandingly
better than the equivalent L1 solutions. L2 was in fact more
expensive to use during the GP runs, as floating-point arith-
metic is computationally more expensive to execute. Hence
L2 runs took between two to three times longer to execute
than L1 runs.

Using more positive grain examples was normally advan-
tageous to the average quality of solutions obtained. How-
ever, in most of the cases for L1, the solutions obtained for
K = 34 were marginally better than those for K = 70. This
is probably a combination of the particular samples of grain
used in these cases, being more reflective of the entire grain
set as a whole, as well as inherent statistical margins of er-
ror. This phenomenon did not occur with L2. In any case,
the differences in errors between the values for K = 34 and
K = 70 are not exceptional, which implies that the examples
selected for K = 34 were representative of the database as
a whole.

Another factor affecting the overall performance is that
the grain database itself had errors. A geologist manually
identified the thousands of grains in this database, and some
grains may have been misidentified. When such an erro-
neous grain happens to be selected for training, it can in-
troduce noise into the evolution process. This is especially
acute when such a misidentified grain is blatantly different in
visual characteristics to the rest of the mineral to which that
grain belongs. Obviously, this problem is more pronounced
when smaller training sets are used.

One phenomenon observed was that the runs using
K = 34 often suffered from over-training effects. In Fig. 4
it can be seen that the testing fitness declines after approx-
imately generation 15, while the training fitness continues
to improve. This implies that the population is not correctly
generalizing from the training set. Over-training did not oc-
cur for the runs with K = 70.

A variety of different styles of programs were evolved.
One example L2 program (K = 70) that identified garnet
with a testing performance of 97.6% is the following simple
program:

p3 < (p16-p21)*p16

This program has 7 nodes and a depth of 3 (see Table 1
for the parameters denoted in the expression). This program
is unusually concise compared to others in the runs for this
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Table 3. Results (values are percentages; NN, neural network)

L1 L2 NN

K = 34 K = 70 K = 34 K = 70 K = 74

Mineral Test Train Test Train Test Train Test Train Test

Quartz Best: 90.2 94.6 92.2 93.8 93.5 97.5 97.8 96.1 96.5

Av.: 84.7 90.9 85.7 88.9 88.3 93.7 90.1 92.5

K-spar Best: 94.2 97.8 93.9 96.0 93.8 99.0 93.4 96.9 88.6

Av.: 89.7 95.9 91.0 93.5 90.7 97.8 90.8 93.9

Plag Best: 86.2 91.8 84.7 93.8 83.3 95.7 85.4 94.3 89.1

Av.: 75.9 88.0 78.9 88.9 78.6 91.8 80.2 91.0

Biotite Best: 98.1 98.1 96.6 99.4 97.3

Av.: 93.7 96.4 91.7 98.0

Muscovite Best: 98.3 96.6 97.6 99.9

Av.: 74.8 94.1 78.0 97.9

Hornblende Best: 91.4 97.7 92.8 98.5 95.4

Av.: 86.8 94.7 86.1 95.8

CPX Best: 90.3 96.5 93.8 98.5 97.5

Av.: 81.0 88.1 84.9 92.8

Olivine Best: 90.0 94.4 89.9 93.8 91.4 96.6 93.2 98.1 92.8

Av.: 83.0 88.6 86.6 90.0 84.4 92.6 89.4 95.1

Garnet Best: 98.2 99.7 98.9 99.6 97.8 100 99.4 99.8 97.4

Av.: 96.0 98.3 97.6 98.1 95.8 98.9 97.1 98.6

Calcite Best: 92.1 97.4 91.8 95.2 92.8 99.0 95.1 98.2 96.0

Av.: 84.4 93.6 88.5 93.0 86.2 96.3 91.2 95.9

Opaque Best: 97.7 99.9 97.7 99.9 98.3 100 98.1 100 95.2

Av.: 93.6 98.9 96.6 99.4 95.2 99.3 96.5 99.7

set of experiments, which normally had tree sizes averaging
222 nodes (the largest tree had 500 nodes). For example,
another program in this set of runs with 93 nodes and a
testing performance of 98.0% is:

if ((((0.71899/p35)-(0.71899/p35)) < (p16*p14+p21))
and ((p3+p17) < (p16*p14+max(p25,p32)))

and ((p5+p10) < (max(p26,p7)-(p34-p23)))
or (not (False or True)))

then (max((min((p10-p26),(p3+p10+min(p2,p26)))
+(p5+p10)*p6*p6),

min(p24,p12)) > p8)
and (min(p2,p26) < min(p9,p8))

else (((p3+p10+min(p2,p26))-(p26*p6*p6))
< (p33/p7))}

As is often to be expected with GP results, it is difficult to
intuit the logic used in this program. However, human com-
prehension of a program is not a necessary condition for
judging a program’s merit or quality. Also note that there is
some intron material (“ junk DNA” ) that can be simplified.
For example, the expression “ (not (or False True))” simpli-
fies to “False” , which in turn can be used to simplify its
parent expression.

Intron material is often prevalent in some solutions,
which is evident when a superfluous number of unneces-
sary tests and terms exist. Consider the 57-node L1 solution,
shown at the top of the next page, for identifying K-spar
(K = 34, testing fitness 90.1%). Removing redundant tests

and simplifying expressions can remove 34 nodes from this
solution:

if p3 < p2
then (p21 < p33)
else if p25 < p2

then False
else if p23 < p2

then False
else if p2 < p26

then (p6 < p24)
else (p9 < p21)

It is possible to implement an automatic simplifier that does
the above transformation.

6 Discussion

The research reported in this paper successfully used GP to
evolve mineral identification programs for use with images
obtained with the rotating-polarizer microscope. The over-
all performance of the best mineral identifiers ranged from
86% to 98%. These programs will be incorporated into an in-
teractive workstation environment, which will automatically
identify grains as selected by the user.

The GP performance is comparable to that obtained with
a NN for mineral identification (Thompson et al. 2001).
A direct comparison of these two different approaches is
difficult to do, given the differences inherent between NNs
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if p3 < p2
then if p3 < p2

then (p21 < p33)
else if p26 < p26

then (p2 < p25)
else (p21 < p33)

else if p25 < p2
then False
else if p23 < p2

then (if p4 < p16 then False else False)
else if p3 < p2

then (p9 < p21)
else if p2 < p26

then if p26 < p26
then (p19 < p14)
else if p24 < p6

then False
else if p25 < p2

then False
else True

else (p9 < p21)

and genetic programs. The GP identifiers are specialized for
each mineral, and hence are evolved separately. On the other
hand, the NN is trained to identify all the minerals with one
single network. The NN takes the 35 image parameters as
input, as well as a code that identifies the mineral specimen
for that grain. It also has 16 outputs, with one output per
mineral specimen. The weights generated on these outputs
identify the type of mineral corresponding to the input pat-
tern. Hence the neural network is a “universal identifier” for
the entire set of minerals.

To determine whether a universal mineral identifier could
be evolved with GP, another GP experiment was undertaken.
Rather than generate a logical True or False if a grain pa-
rameter matches a particular mineral, as was done earlier,
these new programs would generate a label corresponding
to the mineral matching the parameter data. A set of termi-
nals corresponding to the set of mineral names was given to
the system, and a training strategy similar to that used be-
fore was tried. These runs were unsuccessful in producing
good quality identifiers, and the best solution obtained had
a testing performance of 56.4% (training = 46.5%). This is
still better than the performance expected from a random
identifier (testing = 9%), but it is not nearly as accurate as
the dedicated mineral identifiers. Part of the problem with
this “universal identifier” approach is that it is difficult for
evolution to ensure that all the mineral labels themselves
are retained in the single program. During many runs, many
mineral labels were lost throughout the population, which
automatically prohibited the identification of those minerals
by the programs in later generations. When this is added to
the basic problem of evolving a useful identification strategy,
the search becomes too challenging for GP. Hence the strat-
egy undertaken in this paper of evolving individual mineral
identifiers is the most sensible one for GP.

This is the first attempt at using evolutionary compu-
tation to identify minerals. The use of an NN for mineral
identification has been described previously (Thompson et
al. 2001). There are many examples of work elsewhere ap-
plying GP to pattern classification (Abramson and Hunter

1996; Gray et al. 1996; Ryu and Eick 1996; Zhao et al.
1996) and inductive learning (Siegel 1994; Freitas 1997).

Acknowledgements. This research was supported by NSERC operating
grants 138467 and 0046210, and an NSERC undergraduate research grant.

References

Abramson M, Hunter L (1996) Classification using cultural co-evolution
and genetic programming. In: Koza JR, Goldberg D, Fogel D, Riolo R
(eds) Genetic Programming 1996: Proceedings of the First Annual Con-
ference. MIT Press, Cambridge, Mass., pp 249–254

Autio J, Rantanen L, Visa A, Lukkarinen S (1999) The classification and
characterisation of rock using texture analysis by co-occurrence matri-
ces and the Hough transform. In: Proceedings Geovision 99: Interna-
tional Symposium on Imaging Applications in Geology, University of
Liege, Belgium, May 6–7, 1999 pp 5–8

Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford Uni-
versity Press, New York
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