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Abstract. Imperative programs can be inverted directly from their forward–
directed program code with the use of logical inference. The relational semantics
of imperative computations treats programs as logical relations over the observ-
able state of the environment, which is taken to be the state of the variables in
memory. Program relations denote both forward and backward computations,
and the direction of the computation depends upon the instantiation pattern of
arguments in the relation. This view of inversion has practical applications when
the relational semantics is treated as a logic program. Depending on the logic
programming inference scheme used, execution of this relational program can
compute the inverse of the imperative program. A number of nontrivial impera-
tive computations can be inverted with minimal logic programming tools.

1. Introduction

This paper proposes that the inverse computations of imperative programs can
be obtained directly from their forward–directed source code with the use of
logical inference. It is well established in work in program semantics and veri-
fication that an imperative program can be modeled by a logical relation that
declaratively describes the computational behaviour with respect to the observ-
able environment. If the Horn clause subset of first-order logic is used as the
relational logic language, then a program’s logical semantics can be interpreted
as a logic program [Llo87, CvE81, Ros89]. Because logic programs have associ-
ated models of computation, the logic program model of the imperative program
may have an inference strategy applied to it, resulting in a simple interpreter
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for the language. The relevance of this to program inversion is that, if an ap-
propriate inference strategy is chosen, many non-trivial imperative algorithms
are readily inverted via inference on their relational semantics. Additionally, be-
cause logic programming semantics are inherently nondeterministic in nature,
nondeterministic inversions are handled as well.

A review of inversion, as well as relevant logic programming topics, is given in
section 2. Section 3 presents a means for computing imperative inversions using
logical programming inference. An example program inversion is given in section
4. A discussion concludes the paper in section 5.

2. Background

2.1. The inversion problem

Function inversion is the process of deriving for some one-to-one function f :
X → Y the inverse function f−1 : Y → X such that f−1(f(x)) = x. For
example, if f(x) = x2, then f−1(x) =

√
x. Because there are two values (±

√
x)

in this inverse, the inverse function is best denoted by a relation over the domain
and range. Even though the existence of f−1 may be certain, the derivation
of an effective computation procedure for any general f−1 can be difficult to
determine. The existence of a decision procedure for computing mathematical
inverses would enable the solution of many unsolved problems in mathematics.

Program inversion is similar to function inversion. Conventional computation
involves the calculation of result values σf given some initial data σi using a
program P :

P (σi)→ σf

We call such computations forward–directed. Computational inversion or reverse
computation is backward-directed computation.

Definition 2.1. Given a forward-directed program P such that P (σi)→ σf , an
inverted program P−1 is one that computes the inverse of P :

P−1(σf )→ σi

P−1’s computation is called an inverse computation of P .

Program inversion refers to computing inverse computations as well as to
deriving inverted programs from forward–directed source programs (ie. how to
derive P−1 from a given P ).

Work has been done on the formal derivation of inverted programs from
forward–directed programs [Dij82, Gri81, CU90, GvdS90, vW91, vdS93]. For ex-
ample, Von Wright suggests a set of converse commands that can be symbolically
applied to the constructs of a program to derive a specification requirement for
its inverse [vW91]. An example is the inversion of a single destructive assignment
statement which, if viewed outside of the context of other program components,
yields an indefinite number of prior states for the variable’s previous value. Von
Wright models this with:

(u := e)−1 =
∨
d

({u = e[d/u]}; < u := d >)

The value d that u contained prior to the assignment is determined using angelic
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nondeterminism [Hoa85]. As discussed above, because e may be a generalized
mathematical expression, computing its inverse may be difficult. The inverted
program is only implementable in a deterministic language when angelic nonde-
terminism is replaced with deterministic constructs, which can be a significant
challenge, and probably impossible for NP–complete problem instances. Since
most contemporary imperative languages used in industry (C, Fortran, Cobol)
are strictly deterministic, inverses of programs written in these languages using
the techniques of [Dij82, Gri81] et al are implementable in these same languages
only when the inverses are likewise deterministic.

Program version is an important and useful concept within different software
disciplines. Some representative theoretical papers on Turing machine inversion
and reversible cellular automata are [McC56, Ben73, Ben82, TN90]. Broy uses
program inverses to simplify the derivation of particular types of recursive struc-
tures during program synthesis [BKB80]. Inversion is used in functional pro-
gramming environments, such as Lisp [Kor81], fold and unfold transformation
systems [Dar81], and Hope+ [HH86]. Programming environments make use of
“undo” operations, which are inversions of atomic operations [Lee86].

2.2. Logic programming

We presume familiarity with classical first–order logic. A first–order theory is
defined by an alphabet, a first–order language, axioms, and inference rules. The
first–order theory of logic programming is defined as follows. See [Llo87] for a
detailed treatment.

The alphabet consists of variables, constants, function symbols of arity ≥ 1
(those of arity 0 are considered to be constants), predicate symbols of arity ≥ 0,
the standard logical connectives ∧, ∨, ← and ¬, logical quantifiers ∀ and ∃,
and punctuation symbols “(”, “)”, “.” and “,”. Terms are inductively defined:
a variable is a term; a constant is a term; and if f is a function of arity n and
t1,...,tn are terms, then f(t1, ..., tn) is a term. An atomic formula or atom is a
formula p(t1, ..., tn) where p is a predicate symbol of arity n and t1,...,tn are
terms.

The language of logic programs uses the Horn clause subset of first–order
logic, which is defined as follows.

Definition 2.2. A definite program clause is a first-order sentence of the form

∀(A ∨ ¬B1 ∨ · · · ∨ ¬Bn)

where A and Bi are atoms, n ≥ 0, and all the variables in the expression are
universally quantified. A is called the head and the Bi are the body. This is also
denoted by “A← B1, · · · , Bn.”.

Definition 2.3. A unit clause is a clause of the form “A←”, in which the body
is empty. This is also denoted by “A.”.

Definition 2.4. All the program clauses with the sam head M and arity n are
said to comprise predicate M of arity n.

Definition 2.5. A definite (program) query or definite goal is a clause of the
form

∀(¬B1 ∨ · · · ∨ ¬Bn) ≡ ¬∃(B1 ∧ · · · ∧Bn)
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It is also denoted by “← B1, · · · , Bn.”.

Definition 2.6. The empty clause, denoted by ε, has an empty head and body.
It represents a contradiction.

Definition 2.7. A Horn clause is either a definite program clause or a definite
goal.

Definition 2.8. A logic program is a set of Horn clauses.

Any goal clauses in a logic program represent queries to verify with respect
to the program theorems.

Definition 2.9. A variant of a clause C is a new clause C ′ obtained by renaming
all the variables in C. In logic programming, an infinite set of variable names is
presumed to exist for renaming purposes.

Definition 2.10. A ground term (atom) is a term that does not contain vari-
ables.

Definition 2.11. The Herbrand universe UP of a logic program P is the set of
all ground terms that can be formed from the constants and function symbols
appearing in P .

Definition 2.12. The Herbrand base BP of a logic program P is the set of all
ground atoms that can be formed from the predicate symbols in P with ground
terms from UP as arguments.

Definition 2.13. The Herbrand interpretation IP for a logic program P is a
logical interpretation in which: the domain is UP ; constants in P are assigned
themselves in UP ; for each n-ary function f in P , the mapping from (UL)n to
UL defined by (t1, ..., tn)→ f(t1, ..., tn) is assigned to f .

Definition 2.14. (SLD–resolution) Let the query G be← A1, ..., Am, ..., Ak and
program clause C be A← B1, ..., Bq. The resolvent G′ is derived from G and C
using mgu θ if the following hold:

1. Am is designated the selected atom in G.
2. θ is the most general unifier (mgu) of Am and A: it is a substitution of the

variables in Am and A such that Amθ and Aθ are equivalent. In addition,
for all such unifiers σ of Am and A, there exists a substitution γ such that
σ = θγ.

3. G′ is the goal ← (A1, ..., Am−1, B1, ..., Bq, Am+1, ..., Ak)θ.

Definition 2.15. An SLD–derivation of program P and goal G is a finite or
infinite sequence (G = G0, G1, ..., ) of goals derived through SLD–resolution: a
sequence C1, C2, ... of variants of clauses from P , and a sequence (θ1, θ2, ...) of
mgu’s such that Gi+1 is derived from Gi and Ci+1 using θi+1. The variants
are created so that clause Ci does not have any variables already used in the
derivation up to Gi−1.

Definition 2.16. An SLD–refutation of P and G is a finite SLD–derivation of
P and G that has the empty clause ε as the last goal in the derivation.

The premise behind SLD–derivations is the following. We wish to know the
validity of a conjunction of atoms ∃(A1 ∧ ...∧Ak). If SLD–derivation performed
on the negation of this expression derives ε, then it is equivalent to false, and so
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the original expression ∃(A1∧...∧Ak) is valid. which implies that there is a logical
contradiction, and so the original query ∃(A1 ∧ ... ∧ Ak) must be true. Hence,
this approach to inference is also termed SLD–refutation. The power of logic
programming is that, not only can the refutation be performed on the original
query, but the final mgu unifier θ of variable values for which the query is true
is computed as as well. Notationally,

P ∪G `SLD ε iff P |= Gθ

for some computed answer substitution θ. The intended interpretation I for the
right–hand expression is taken to be UP .

Theorem 2.1. (Soundness of SLD–resolution) If P is a logic program and
G a goal, then every computed answer substitution θ using SLD–resolution is a
correct answer for P and G.

Proof. See [Cla79, Llo87].

Theorem 2.2. (Completeness of SLD–resolution) For every correct answer
for P ∪ {G} there exists a computed answer for it via SLD–resolution.

Proof. See [Cla79, Llo87].

Theorem 2.3. (Semi–decidability of SLD–resolution) There is no decision
procedure for obtaining terminating inferences for general program goals and
programs.

Proof. Horn clause logic is Turing powerful. (See [Hog90].)

It is convenient to denote logic programs directly within predicate logic
derivations, without explicitly using the notation for SLD–resolution. The fol-
lowing definition denotes logic programs in such a form.

Definition 2.17. (program completion) The completion Comp(P) of a logic
program P is one in which:

1. Every clause p(t1, ..., tn)← L1, ..., Lm is transformed into

p(X1, ..., Xn)← ∃Y1...∃Yd : X1 = t1, ..., Xn = tn, L1, ..., Lm

where Xi are new logical variables, Yi are logical variables local to the body
goals L1, ...Lm, and = is an equality theory equivalent to that which yields
mgu’s under SLD–resolution (see [Llo87]).

2. For all clauses of a predicate,

p(X1, ..., Xn)← E1.
· · ·
p(X1, ..., Xn)← Ek.

transformed as in step 1 above, then the expression denoting this predicate
is

∀X1...∀Xn : (p(X1, ..., Xn)↔ E1 ∧ ... ∧ Ek)

The notation Comp(P ), for example Comp(while), refers to the completed trans-
formation of predicate P . It will usually be used when performing logical sub-
stitutions in derivations. Quantification and argument unification goals will be
relaxed if no confusion will arise.

Logic programming languages have characteristic inference strategies that
are determined by the following definitions.
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Definition 2.18. The computation rule (or selection rule) is the strategy used
for selecting the next goal within a query for resolution.

The independence of the computation rule says that all possible answers for
program P and goal G are obtainable using any computation rule.

Definition 2.19. The search rule is the criteria used for selecting the clause to
resolve with the selected goal.

Practically speaking, the search rule prioritizes the clauses to use during reso-
lution, which determines the ordering of answers obtained. Since some derivations
may be infinite, the search rule determines when non–terminating derivations are
encountered.

Definition 2.20. Backtracking is a mechanism by which the inference system
can revert back to a previous point in the SLD–derivation and perform another
alternative resolution step.

Actual implementations of logic programming languages such as Prolog [CM87]
use a restricted inference strategy that is efficiently implemented on conventional
hardware. Given a query “← B1, · · · , Bn”, Prolog’s computation rule selects the
first goal B1. Prolog’s search rule is to use the first clause that unifies with the
goal, where the order is determined by the textual order within the program file.
Prolog’s backtracking strategy is to revert to the last point in the derivation in
which a clause selection was made by the search rule and to try the next sub-
sequent clause that unifies with the selected goal. This backtracking is applied
exhaustively through the inference. The net effect of Prolog’s control strategy
is that the computation tree is searched depth–first and exhaustively. A disad-
vantage is that it is an incomplete strategy — inferences can easily dive down
nonterminating branches of the tree.

2.2.1. Logic program inversion

Logic programs inherently support inversion [Sic79, SM84]. The use of an appro-
priate inference procedure permits the determination of any relation represented
within the program’s declarative logical semantics. Consider the Prolog append
predicate:

append([ ], A,A).
append([A|B], C, [A|D]) ← append(B,C,D).

The goal

← append([a], [b, c], Z)

infers Z = [a, b, c], while the goal

← append(X, [b, c], [a, b, c])

infers A = [a]. Therefore the inferences of these two goals represent inverses
of one another. A suitably written logic program permits a variety of different
query forms as these, in fact, any query that can be instantiated by the program
relation. Thus no inherent direction is encoded within pure logic programs, and
program inversions are computed as a natural by–product of SLD–resolution’s
soundness and completeness.

As mentioned earlier, logic programming language implementations use in-
complete inference schemes, such as Prolog’s left–to–right depth–first control:
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not all valid solutions are necessarily computable, due to non–termination down
infinite branches of the computation tree. Consequently, Prolog predicates are
often directed — they expect particular instantiation patterns of arguments in
order to terminate, as well as to execute built–in predicates correctly. This is
akin to the direction encapsulated in imperative computations, although it is
not as acute, since a Prolog program usually has both deterministic and nonde-
terministic components. Shoham and McDermott made the notion of direction
more precise with the following definitions [SM84].

Definition 2.21. Let P be a logic program with Herbrand interpretation I,
R(X1,...,Xn) be a predicate of arity n from P , and let V be ∪Xi of variables
Xi. R is a function from V 1 to V 2 if < V 1, V 2 > is a partition of V , and for
all instantiations of V1, interpretating R with Prolog’s inference strategy will
generate all the solutions V 2 consistent with relation R wrt I.

Definition 2.22. A Prolog predicate R is D–directed if D is a set of variable
partition tuples {< V 1i, V 2i >} for R, and R is a function from V 1i to V 2i for
all i.

Definition 2.23. A Prolog predicate R is complete if it is D–directed for D, the
set of all variable partitions for R.

A complete predicate is therefore one that is fully invertible. Although pure
logic programs are conceptually complete in this sense, many predicates typically
are not when restricted inference strategies such as Prolog’s are considered.

2.3. Abductive Reasoning in Logic Programs

Abduction is a style of logical inference that first conjectures a particular hypoth-
esis and then attempts to establish its premises [HHNT86]. Abductive reasoning
can be applied to the program inversion problem if one considers inverted com-
putation in the following way. Consider execution of a program P :

σi = σ1 → σ2 → σ3 → · · · → σk = σf

Each transition represents an atomic alteration of the environment or store σ
with respect to the execution of P , and the final state σf is found after k − 1
transitions. To invert such a computation, the inverted program P−1 must treat
each σi as a state that must be logically consistent as a state following σi−1 with
respect to P . To invert P , an abductive approach would be to assert that some
σk is a conjectured final state and then establish the premise that σk−1 is a valid
state preceding σk. If this reasoning is repeatedly applied to all the intermediate
states σ1, ..., σk−1 leading up to σk, then an inversion has been determined for
that σk.

Section 3 will use abduction for inverting the while–loops of an imperative
language. The logical construction to be used was suggested by Brough and
Hogger [BH91]; it is based on the Greibach-Foster grammatical transformation.
Consider the following logic program predicate schema:

P (X)← R(X).
P (X)← P (Y ), Q(Z).

where X, Y and Z are arbitrary argument tuples. When executed with Prolog’s
left–to–right control rule, the goal “← P (X).” will often fall into an infinite loop
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with the second clause (and assuredly so if X are distinct variables). This is
because P (Y ) recurses before Q(Z) has a chance to establish additional com-
putational constraints on the inference. This is known as left–recursion in logic
programming. Brough and Hogger suggest the following transformation to re-
solve this problem.

Definition 2.24. (Forward–simulation transform, or FST) Given a pred-
icate matching the schema P ,

P1 : P (X)← R(X).
P2 : P (X)← P (Y ), Q(Z).

the FST for P , or FST(P ), is

C1 : P ′(T )← R(X ′), s(X ′, T ).
C2 : S(T, T ).
C3 : S(Y, T )← Q(Z), S(X,T ).

where X, Y and Z are identical to those in P , while S′ and T are mutually-
exclusive vectors of new and distinct variables.

The abductive reasoning behind the FST is as follows. In order for P to
have inferred a terminating solution, the goal R(X) must be applied as the final
goal: clause P1 is the only means for the inference of P to terminate. The FST
immediately establishes that R(X) is required as first premise in P ′(X) in clause
C1. Secondly, each recursive call to P in clause P2 must involve a successful
resolution of Q; should any call to Q fail, then the whole clause fails. The FST
makes this explicit by presupposing these successful resolutions of R before P is
recursively invoked (in clause C3). Finally, clause C2 denotes a termination of the
loop. The FST results in an inverted execution of P , by abductively starting with
the conditions necessary for a termination of the left–recursive loop a priori and
then iteratively unwrapping the loop until the loop is successfully inferred. Note
that the FST is generalizable by replacing R and Q with multiple conjunctions
of goals.

Theorem 2.4. (Correctness of FST) For predicates P and P ′ = FST (P ),
the relations defined by each are equivalent:

|= ∀(P ↔ P ′)

Proof. Induction on length of inference of P and P ′ (see [BH91]).

3. A Relational Semantics of Inverted Imperative
Computation

A simple imperative while–language L will be used (see Figure 1), due to its
conventionality with those in industry, as well as its computational equivalence
with primitive–recursive functions and hence Turing machines [HU79]. An oper-
ational semantics following one in [SA91] follows; see that source for additional
descriptions of this style of semantics.

Definition 3.1. (Operational semantics of L) Let α ∈ L be a program, and
σ be a state consisting of the valuations of all the program variables. An inter-
preter function IL : (α, σ)→ (α′, σ′) is defined as follows:
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Prog ::= program ([x̄]): {Statement}
Statement ::= Statement ; Statement

| x := e
| if (eb) then {Statement} else {Statement}
| while (eb) {Statement}
| ε

where e is an arithmetic expression
eb is a Boolean expression
x̄ is a list of program variables

Fig. 1. Syntax of L

IL(program(x̄) : {A}, σ) = IL(A, σ)

IL(ε, σ) = (ε, σ)

IL(x := t;A2; ...;An, σ) = IL(A2; ...;An, σ(x/V alσ(t)))

IL(if(eb)then{A1}else{A2};A3; ...;An, σ) ={
IL(A1;A3; ...;An, σ) : if V alσ(eb) = true
IL(A2;A3; ...;An, σ) : if V alσ(eb) = false

IL(while(eb){A1};A2; ...;An, σ) ={
IL(A1;while(eb){A1};A2; ...;An, σ) : if V alσ(eb) = true
IL(A2; ...;An, σ) : if V alσ(eb) = false

In the above, function V alσ evaluates L–terms with respect to the current state
σ, and Ai is a statement of L. The notation x/V alσ(t) denotes a new state σ′ in
which variable x’s value is replaced with the valuation of t wrt σ.

The operational semantics takes the form of a stack machine, in which pro-
gram code is saved in the first argument of the tuple (A, σ) and the current
variable values are in the second argument. It is assumed that all expressions
in assignments and boolean tests are well–defined — there is a computable so-
lution for every expression and state. Note that nontermination may arise with
while statements, while a terminated computation occurs only when the code
argument reduces to ε.

A translation between L source code and its relational semanticsR is in figure
2. The R semantics defines a logic program. The same set of logical connectives
and syntax as described in section 2.2 is used. Function terms are translated
in an obvious way from the arithmetic and boolean expressions used in P . All
the predicates are of arity 2, and the predicate names used in Figure 2 are
freely indexed so that each program construct is modeled by a unique predicate.
(Identical program constructs can be modeled by the same predicate if desired).
A relation asgn eq is also introduced, and is described below.
R defines input–output relations over the environment σ for all program con-

structs. For all relations R(σi, σf ) for L constructs A (other than s used in (vi)),
the initial state upon executing A is σi, and the state upon terminating execution
is σf . As with the operational semantics, all assignment and boolean expressions
are presumed to be well–defined. Briefly, (ii) defines the main predicate for a
program. Sequenced statements are modeled in (iii) by linking the input–output
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(i) Empty:

ε
def= |= σi = σf (≡ true)

(ii) Programs:

program(x̄) : { A } def= |= program([x̄i], [x̄f ])← A([x̄i], [x̄f ]).

(iii) Chains:
S1;S2; ...;Sk (≡ A) def= |= S1(σi, σ2) ∧ S2(σ2, σ3) ∧ ... ∧ Sk(σk, σf )

(≡ A(σi, σf ))

(iv) Assignment:

x := e
def= |= asgn eq(σi, xf , e, σf )

(v) Tests:
if (eb) then { A1 }

def= |= ifj(σi, σf )← eb ∧A1(σi, σf ).
else { A2 } ∧ ifj(σi, σf )← ¬eb ∧A2(σi, σf ).

(vi) While loops:

while (eb) { A }
def= |= (whilej(σi, σf )← ¬eb(σf ) ∧ sj(σf , σi)).

∧ sj(σi, σf )← σi = σf .
∧( sj(σf , σi)← A(σ1, σf ) ∧ eb(σ1) ∧ sj(σ1, σi)).

Fig. 2. Relational semantics R

relations for the chained statement relations: the output state for a statement’s
relation is the input state for the following statement’s relation. A test is mod-
eled in (v) by a unique predicate with two clauses, where each clause accounts
for the separate test cases.

In (iv), asgn eq is an arithmetic equality relation with respect to the intended
Herbrand interpretation IP being used by the logic program. In asgn eq(σi, xf ,
e, σf ), the final value xf ∈ σf of variable x is the value of expression e with
respect to I and the state σi at the commencement of the assignment. The
reference to x’s initial value xi, lost after the assignment, is referenced within
σi, and possibly within e and other relations within the predicate in question.
It is important to note that the invertibility of a given assignment expression
is not guaranteed: although asgn eq may denote it, its computability might not
be possible during an inference proof (see section 2.1). The computability of all
expression inverses are dependent upon the problem at hand.

Finally, while–loops are modeled in (vi). This predicate uses the forward–
simulation transform of section 2.3, applied to a predicate modeling forward–
directed while–loop “while (eb) { A }”:

|= whilej(σi, σf )← eb(σi) ∧A(σi, σ2) ∧ whilej(σ2, σf ).
∧ whilej(σi, σi)← ¬eb(σi).

This relation matches the schema required by the FST, and by theorem 2.4, it is
logically equivalent to the transformation used in (vi) in Figure 2. The rationale
for using the FST is an operational one: the control introduced by the FST
abductively inverts forward–directed while–loops. Basically, the inverted while
presumes that the loop terminates (the negated test) and then iteratively inverts
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the loop body’s execution with the s predicate. Note that the first abductive s
clause can be abbreviated “sj(σ, σ).”, denoting that the initial and final states
are identical. We call s(σ, σ) the base clause, and the other the iterative clause.

In logical derivations to follow, each step’s comments describe the operation
performed to derive that exprssion. If necessary, the term to be expanded in the
next step is underlined. It is assumed that |= is with respect to the Herbrand
interpretation of the logic program P , and ` is with respect to logic program
P . `SLD denotes the use of SLD–resolution as the inference rule, while ` alone
denotes a general logical derivation step.

Theorem 3.1. (Equivalence of relational and operational semantics)
Let P be an L–program, and R(P ) = P (σi, σf ) its relational semantics. Then
for all states σi:

1. If |= ∃σf : P (σi, σf ), then IL(P, σi) derives (ε, σf ) in a finite number of steps.

2. If 6|= ∃σf : P (σi, σf ), then IL(P, σi) never derives a pair (ε, σx) for any σx.

Proof. 1. The correspondence between R(P ) and IL(P, σ) is straight–forward
for program headers (which define the initial state) and assignments. For while
loops, the proof uses induction on the size of the inference corresponding to
completed resolutions of while loop iterations.

The base case is when the loop test is initially false, and 0 iterations occur
of the loop body. The relational derivation of this is as follows.

|= ∃σf : while(σi, σf ) : assumption
` ∃σf : ¬e(σf ) ∧ s(σf , σi) : subst. Comp(while)
` ∃σf : ¬e(σf ) ∧ (σi = σf ∨ (A(σ1, σf )

∧e(σ1) ∧ s(σ1, σi))) : subst. Comp(s)
` ∃σf : ¬e(σf ) ∧ (σi = σf ∨ false) : assume 0 iterations, simplify
` ¬e(σi) : simplify

The corresponding derivation of IL is:

IL(while(e){A}, σi) = (ε, σi)

where V alσi(e) = false in order for 0 iterations of the loop. This correlates with
the relational semantics, and is derived in 1 step.

Assuming the hypothesis holds for k − 1 iterations of the loop (k > 1), then
for k iterations, the relational inference is:

|= ∃σf : while(σi, σf )
` ∃σf : ¬e(σf ) ∧A(σ1, σf ) ∧ e(σ1) ∧ s(σ1, σi) : (1)
` · · ·
` ∃σf : ¬e(σf ) ∧A(σ1, σf ) ∧ e(σ1) ∧A(σ2, σ1) ∧ e(σ2) ∧ ...

∧e(σk−1) ∧A(σk, σk−1) ∧ e(σk) ∧ s(σk, σi) : (2)
` ∃σf : ¬e(σf ) ∧ ... ∧A(σk, σk−1) ∧ e(σk) ∧ σk = σi : (3)
` ∃σf : ¬e(σf ) ∧A(σ1, σf ) ∧ e(σ1) ∧ ...

∧A(σk−1, σk−2) ∧ e(σk−1) ∧A(σi, σk−1) ∧ e(σi) : (4)
` ∃σf : while(σk−1, σf )︸ ︷︷ ︸

(†)

∧A(σi, σk−1) ∧ e(σi)︸ ︷︷ ︸
(‡)

: (5)

Descriptions of the steps in the above proof are as follows.
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(1) Substitute Comp(while), simplify using iterative clause, since k > 0.
(2) Repeat above k times.
(3) Substitute base clause of Comp(s).
(4) Simplify.
(5) Fold with while.

IL derives the following:

IL(while(e){A}, σi)
= IL(A;while(e){A}, σi) : presumption k > 0, so V alσi(e) = true
= IL(while(e){A}, σk−1) : IL(A, σi) = (ε, σk−1) by ind. hyp. and (‡)
= (ε, σf ) : ind. hyp. and (†)

By the induction hypothesis, each of IL(A, σi) and IL(while(e){A}, σk−1) are
derived in a finite number of steps, and hence so is the entire derivation.

Similar reasoning applies to chains and test statements, and is omitted.
2. Since all assignment and boolean expressions are well–defined, the only

way in which an L–relation can be undefined is if a non–terminating while–loop
is being modelled. Consider the relation for a non–satisfiable while relation:

6|= ∀σi∃σf : while(σi, σf )
` ¬∀σi∃σf : while(σi, σf )
` ¬∀σi∃σf : (¬e(σf ) ∧ s(σf , σi)) : subst. Comp(while)
` ∃σi∀σf : ¬(¬e(σf ) ∧ s(σf , σi)) : distr. ¬ through ∀, ∃
` ∃σi∀σf : (e(σf ) ∨ ¬s(σf , σi)) : distr. ¬
` ∃σi : (∀σf : e(σf )) ∨ (∀σf : ¬s(σf , σi)) : distr. ∀
` (∀σf : e(σf )) ∨ (∃σi∀σf : ¬s(σf , σi)) : distr. ∃, simplify
` (∀σf : e(σf )) ∨ false : since |= ∀σf : s(σf , σf )

using base clause of s
` ∀σf : e(σf ) : simplify

Next, assume that IL(while(e){A}, σi) derives (ε, σf ) in a finite number of steps.
To have terminated with this result, the step IL(while(e){A}, σf ) = (ε, σf ) must
have been taken, implying that V alσf (e) = false was determined. This contra-
dicts the above relational result, and so IL cannot terminate.

Theorem 3.2. (Computability of L inversions) Let P be an L–program,
andR(P ) = P (σi, σf ). For some final state σf , if |= ∃σi : P (σi, σf ), then `SLD←
P (σi, σf ).

Proof. Theorem 2.2.

Theorem 3.2 states that if an inverse exists for a particular program with a
given final state, then SLD–resolution will infer it from the programs relational
semantics. This is due to the completeness of SLD–resolution.

Theorem 3.3. (Verifiability of R relations)

|= P (σi, σf ) iff `SLD← P (σi, σf )

Proof. Theorems 2.1 and 2.2.

Theorem 3.3 is a very powerful result, as will be seen in section 4. It is
essentially a product of the central tenet of the theory of logic programming. It
is important from the context of imperative program analysis, however, since it
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implies that SLD–resolution can be used to verify the input–output relations of
imperative programs.

Finally, the following theorem is a reminder that, although the previous re-
sults have practical importance in inferring imperative program inversions, we
must nevertheless reconcile ourselves with fundamental computability limita-
tions.

Theorem 3.4. (Undecidability of inferring L inversions) There is no de-
cision procedure for solving generalized `SLD← P (σi, σf ).

Proof. Theorem 2.3 states that SLD–resolution is semi–decidable. This carries
over to the restricted logic programs that arise with the R semantics of L pro-
grams, because the while programs encodable in L are Turing powerful [HU79].

4. Example Inversion

power([y, x, n]) : {
y := 1;
while ( n > 0 ) {
while ( even(n) ) {
n := n/2;
x := x ∗ x

};
n := n− 1;
y := y ∗ x

}
}

Fig. 3. Binary powers

Consider program power in Figure 3, and its inverse relation in Figure 4.
Power uses a binary powers algorithm which, given integer inputs x and n, effi-
ciently computes y = xn. Most of the code is straight forward. Forward execution
with the input [y =?, x = 2, n = 2] computes a final state [y = 4, x = 4, n = 0].

The relational semantics of power in Figure 3 correspond to the imperative
source code and are automatically compilable from the source. The state com-
prises the values of the three variables y, x and n. Using standard Prolog notation
[CM87], constants are denoted by lower–case literals, while logical variables are
upper–case. Variable Env conveniently denotes an entire state in which indi-
vidual state values are not referenced. There are two unique while predicates
corresponding to each while–loop. The chains in Figure 3 exploit the transi-
tivity of conjunction by reversing the order of goals from their corresponding
statements in the source program. Although any permutation of conjunctions
is logically equivalent, this particular ordering will have ramifications on Prolog
interpretation, as will be discussed below.

Before proceeding with some SLD inferences, it must be pointed out that
expressions used within the asgn eq relation in this example are assumed to be
invertible. The integer arithmetic expressions used are: (i) N2 = N/2; (ii)
X2 = X ∗X; (iii) N2 = N − 1; and (iv) Y 2 = Y ∗X. These expressions are
fully invertible: (i) is invertible for N when N2 contains a value, and similarly



Running Programs Backwards: the Logical Inversion of Imperative Computation 15

c1 : power([Y 1, X1, N1], Env) ←
while2([Y 2, X1, N1], Env),
asgn eq([Y 1, X1, N1], Y 2, 1, [Y 2, X1, N1]).

c2 : while2(Env, [Y 2, X2, N2]) ←
¬N2 > 0,
s2([Y 2, X2, N2], Env).

c3 : s2(Env, Env).
c4 : s2([Y 3, X2, N3], Env) ←

asgn eq([Y 2, X2, N3], Y 3, Y 2 ∗X2, [Y 3, X2, N3]),
asgn eq([Y 2, X2, N2], N3, N2− 1, [Y 2, X2, N3]),
while1([Y 1, X1, N1], [Y 2, X2, N2]),
N1 > 0,
s2([Y 1, X1, N1], Env).

c5 : while1(Env, [Y 2, X2, N2]) ←
¬even(N2),
s1([Y 2, X2, N2], Env).

c6 : s1(Env, Env).
c7 : s1([Y 1, X2, N2], Env) ←

asgn eq([Y 1, X1, N2], X2, X1 ∗X1, [Y 1, X2, N2]),
asgn eq([Y 1, X1, N1], N2, N1/2, [Y 1, X1, N2]),
even(N1),
s1([Y 1, X1, N1], Env).

Fig. 4. Binary powers inverse relation

for (ii) and (iii); and (iv) is invertible for either Y (or X) when Y 2 and X (or
Y 2 and Y ) have values. The arithmetic theories and corresponding computation
schemes used to compute these inversions should be obvious, and details are
omitted without distracting from the main focus of interest — the inversion of
imperative control.

One SLD–inference is the following. Each line of the inference represents the
current goal. To simplify the derivation, fresh logical variables are indexed as
needed, and unifying substitutions are applied immediately. Underbraced letters
temporarily denote terms.
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1 : ← power(Start, [4, 4, 0]). : initial query
2 : ← while2([Y2, X,N ], [4, 4, 0]),

asgn eq([Y,X,N ], Y2, 1, [Y2, X,N ])︸ ︷︷ ︸
A

. : c1, Start = [Y,X,N ],

Env = [4, 4, 0]
3 : ← ¬0 > 0, s2([4, 4, 0], Env2), A. : c2, Env2 = [Y2, X,N ]
4 : ← s2([4, 4, 0], Env2), A. : ¬0 > 0 ` true
5 : ← asgn eq([Y4, 4, 0], 4, Y4 ∗ 4, [4, 4, 0]),

asgn eq([Y4, 4, N4]0, N4 − 1, [Y4, 4, 0]),
while1([Y5, X5, N5], [Y4, 4, N4]),
N5 > 0, s2([Y5, X5, N5], Env2)︸ ︷︷ ︸

B

, A. : c4

6 : ← while1([Y5, X5, N5], [Y4, 4, N4]), B, A. : 4 = Y4 ∗ 4 ` Y4 = 1,
0 = N4 − 1 ` N4 = 1

7 : ← ¬even(1), s1([1, 4, 1], Env3), B, A. : c5, Env3 = [Y5, X5, N5]
8 : ← s1([1, 4, 1], Env3), B, A. : ¬even(1) ` true
9 : ← 1 > 0, s2([1, 4, 1], Env2), A. : c6, Env3 = [1, 4, 1]

10 : ← s2([1, 4, 1], Env2), A. : 1 > 0 ` true
11 : ← asgn eq([Y, 4, 1], 1, 1, [1, X,N ]). : c3, Env2 = [1, 4, 1]
12 : ← ε : 1 = 1 ` true

Carrying through the unifying substitutions to the original argument, the result
Start = [Y, 4, 1], or xn = 41 = 4, is inferred.

Another inference is possible. Continuing the above derivation from step 8:

8 : ← s1([1, 4, 1], Env3), B, A. : from above
9′ : ← asgn eq([1, X6, 1], 4, X6 ∗X6, [1, 4, 1]),

asgn eq([1, X6, N6], 1, N6/2, [1, X6, 1]),
even(N6), s1([1, X6, N6], Env3), B, A. : c7

10′ : ← even(2), s1([1, 2, 2], Env3), B, A.
: 4 = X6 ∗X6 ` X6 = 2, 1 = N6/2 ` N6 = 2

11′ : ← s1([1, 2, 2], Env3), B, A. : even(2) ` true
12′ : ← 2 > 0, s2([1, 2, 2], Env2), A. : c6, Env3 = [1, 2, 2]
13′ : ← s2([1, 2, 2], Env2), A. : 2 > 0 ` true
14′ : ← asgn eq([Y, 2, 2], 1, 1, [1, 2, 2]). : c3, Env2 = [1, 2, 2]
14′ : ← ε : 1 = 1 ` true

This infers the inverted computation Start = [Y, 2, 2], or xn = 22 = 4.
Yet one more inference is possible from step 10′ above, when 4 = X6 ∗X6 `

X6 = −2 is inferred. The rest of this inference (omitted) computes the inverted
computation Start = [Y,−2, 2], or xn = (−2)2 = 4.

Note that the above derivations imitate Prolog’s computation strategy. Clauses
are selected for unification in the order they reside in the translation in Fig. 3,
and goals are selected for resolution from left to right. Indeed, the above inver-
sions are automatically obtained using a standard Prolog interpreter [CM87].
The ordering of goals in the logic program in Fig. 3 permits inverted control and
the asgn eq and boolean test relations to be executed under Prolog’s depth–
first–left–first control strategy. The query “← power(StartEnv, [4, 4, 0])” auto-
matically infers the above three inverted results. Prolog’s backtracking mecha-
nism recovers from failed branches of the inference tree. Backtracking searches
alternative nondeterministic branches as generated by the nondeterministic com-
putations from asgn eq, which yields both positive and negative integral square
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roots, as well as abductive unwinding of the loops. In addition, the query “←
power([Y, 2, 2], [4, 4, 0])” returns true from the interpreter, confirming that this
is a valid relation for power. Prolog can also perform some tests of negative
relations. For example, “← power(StartEnv, [4, 4, 1])” returns false: abductive
reasoning for the outer while–loop stipulates that ¬N > 0 in order for the loop
to have terminated, which N = 1 in this query clearly violates. Finally, the query
“← power([Y,X, 3], [4, 4, 0])” also returns false, as an initial value of N = 3 will
not correspond to the final values Y = 4 and X = 4 in this program relation.

5. Conclusion

The feasibility of computing the inversions of imperative programs using logic
programming techniques has been shown. Correctness of inversions is guaranteed.
Assuming that the logical semantics for the imperative language are sound, the
translational semantics of the source program defines a theory of its behaviour.
Since SLD resolution is sound, the inversions are sound logical inferences of
the source program’s logical semantics. Another advantage is the ability to ob-
tain nondeterministic inversions. The logic programming model permits multiple
initial values to be obtained for a given final value. Mixed forward and inverted
computation is also conceivable. The approach is conducive to semi–automation,
since logical predicates are compiled directly from the source program. Inferring
an inverse from these predicates is the responsibility of the logic programming
system. Finally, the approach permits interactive program analysis to be per-
formed. An inverse relation permits interactive inspection of the input–output
behaviour of the source program. As shown in section 4, this is a powerful ana-
lytical tool.

This paper’s inversion technique has some advantages over formal derivation
techniques in [Dij82, Gri81]. Logically inferred inversions are compiled automat-
ically from the source program, and complex derivation proofs are unnecessary.
These inversions are not restricted to deterministic target languages (although
Dijkstra’s guarded language has nondeterministic constructs). Unlike logical in-
versions, derived inverted programs are usually guaranteed to terminate. Es-
tablishing this, however, requires significant effort during their derivation. The
completeness of our inversions depends entirely on the robustness of the inference
system.

The tools used to invert the example in section 4 — standard Prolog control,
abduction, and arithmetic equality — are capable of inverting some imperative
algorithms, but are inadequate for most general cases. In fact, the abductive
modeling of while–loops is only an aid in inverting loops and is not strictly re-
quired. Other imperative algorithms, including Fibonacci numbers, bubble sort,
and Knuth’s Algorithm P [Knu81], have been successfully inverted with the use
of more advanced logic programming control strategies. Abstract interpretation,
dynamic control mechanisms such as coroutining and intelligent backtracking,
and search heuristics are very useful in this regard.

One promising avenue being investigated is the application of constraint logic
programming (CLP) [vH90] towards imperative program inversion. Constraints
are inequalities over domains such as arithmetic. This paper’s asgn eq relation
is a rudimentary equality constraint. CLP permits arithmetic reasoning on con-
straints — reasoning that is not at all incorporated into the basic logic program-
ming paradigm. In the program
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b := 0; c := 0;
if ( a ≥ 0 ) b := 1;
if ( a ≤ 0 ) c := 1;

the tests in the if statements are regarded as constraints in a CLP system. Given
a final state with b = c = 1, both constraints a ≥ 0 and a ≤ 0 will be valid, and
the constraint solver deduces that a = 0.

Inversion computability is not guaranteed, even if sophisticated inference sys-
tems are used. Some inversions are unknown, while others are undecidable (Halt-
ing Problem). The complexity of mathematical primitives also influences com-
putability. For example, higher-order polynomials are more difficult to invert
than the simple arithmetic used in this paper. These realities shouldn’t discour-
age the analysis of tractable inversions. One reasonable strategy to consider is the
supplementing of inverted predicates with problem-specific information [TJ85].
Invariant relations can be added to program predicates to prevent inference down
fruitless, nonterminating directions. As theorem proving and logic programming
advance, the need for programmer intervention will diminish.

In conclusion, the application of logic programming technology towards the
analysis of imperative computations is worth further investigation. Other work
in this direction includes consequence verification of imperative control [CvE81]
and partial evaluation transformations [Ros89].
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