
USER-GUIDED EVOLUTION OF GRANULAR SYNTHESIS

Corrado Coia, Brian J. Ross

Brock University
Dept. of Computer Science, St. Catharines, ON, Canada
corrado.coia@gmail.com, bross@brocku.ca

ABSTRACT

An innovative user interface for an audio plugin is presented.
The system features an interactive genetic algorithm, for
user exploration of granular synthesis parameter settings.
The interface design is motivated to allow the user to intu-
itively and efficiently audition and evaluate parameter sets.
This is particularly important with granular delay effects,
since many parameter combinations will be undesirable to
most listeners. The interface uses a minimalist 3-value eval-
uation scheme, which lets the user protect, use, or delete
candidate parameter combinations. This permits parameters
to be auditioned in a matter of a few seconds or less. The in-
terface also lets the user directly edit parameters, for further
use in evolutionary exploration, or for final music produc-
tion. This style of evolutionary interface should be easily
adapted to other musical applications in the future, for ex-
ample, generalized synthesis engines.

1. INTRODUCTION

Genetic algorithms have a proven track record for finding
acceptable solutions to complex problems [7]. The appli-
cation of genetic algorithms in music composition is also
well established [5]. They have been used towards creating
musical scores, as well as processing or synthesizing audio
signals. For example, evolution can be used to produce a
synthesizer or sound source that generates output matching
characteristics of an example sound sample [8] [11] [12].
These techniques use automatic fitness evaluation, to deter-
mine the closeness of match between candidate and target
sound data.

An alternative approach is to use interactive genetic al-
gorithms (IGA), in which the user interacts with the genetic
algorithm to explore variations of sounds. IGAs are use-
ful when there is no known computable evaluation function,
for example, when subjective musical taste is of concern,
and the criteria are too complex to formalize [2]. In such
cases, the user auditions a candidate solution, and assigns it
a score manually, according to its suitability. Johnson uses a
mutation-based IGA to explore different granular synthesis
settings [9]. Mandelis describes an IGA for the exploration
of synthesis parameters [10]. The system makes use of vari-

ous crossover operators, and a real-time interface controlled
by a data glove. Dahlstedt uses an IGA to explore synthesis
parameters [6].

Unfortunately, user evaluation of populations is the bot-
tleneck in interactive evolution, due to user fatigue when
having to manually evaluate hundreds of possibly unimpres-
sive individuals. The problem is compounded with music
and audio applications, because the user must invest time to
hear an audio signal. This contrasts to visual art applica-
tions, in which the time invested is the significantly shorter
duration it takes to glance at and evaluate an image.

EGDE (Evolutionary Granular Delay Environment) is a
granular delay system1. Granular delay is a type of granular
synthesis technique [15]. Sampled grains of an input sig-
nal are fed back into the output stream with some temporal
delay. As is typical with granular synthesis, many parame-
ters can be used to control the process, for example, dura-
tion of grains, frequency of creation, delay time, play-back
pitch, forward or reverse direction, and synchronization in-
tervals. These parameters interact in complex, often unex-
pected ways. This makes granular effects somewhat chal-
lenging to set up, especially when many parameter combi-
nations results in extreme cacophony. This suggests that an
IGA is worth considering.

EGDE’s uses interactive evolution to let a user explore
different parameter sets, in order to discover new and inter-
esting effects from the wide variety possible. To help ad-
dress the problem of user-exhaustion when using the IGA,
EGDE’s interface is designed to promote fast and effective
auditioning of candidate effects. We have tried to make
EGDE’s interface nearly as efficient as IGA interfaces for
graphical applications. To do this, EGDE uses an innova-
tive ternary evaluation scheme, in which parameter sets are
evaluated as one of delete, use, or hold. Knowing that many
granular delay effects will not be useful to a user during
early generations, our interface lets users immediately hear
an effect, and just as quickly ignore it. When an effect is
of more interest, rather than assign a score (which takes a
certain amount of effort to determine, and is probably an
arbitrary value anyway), the user merely flags it for further

1Download at http://www.cosc.brocku.ca/∼bross/
EGDE/.

mailto:corrado.coia@gmail.com
mailto:bross@brocku.ca
http://www.cosc.brocku.ca/~bross/EGDE/
http://www.cosc.brocku.ca/~bross/EGDE/

reproduction. If the effect is even more preferable, it can be
protected. And finally, the best effects can be saved, and of
course, used in the main host application as desired.

The implementation of the granular delay engine is de-
scribed in Section 2. The design of the IGA interface is
discussed in Section 3. A walk-through of using EGDE is
in Section 4. Conclusions, comparisons with related work,
and future directions are given in Section 5.

2. GRANULAR DELAY ENGINE

Granular synthesis is a well-known audio synthesis tech-
nique in which audio is comprised of grains having dura-
tions between 5 to 100 milliseconds [14] [15]. The power
of granular synthesis stems from its ability to combine and
manipulate grains in countless creative ways. For example,
CSound’s granule operator has 22 parameters for control-
ling grain generation [4].

Granular delay is a variant of granular synthesis, in which
grains are created from a finite-duration buffer of a (real-
time) audio signal. These grains are mixed in with the cur-
rent audio signal. The result combines characteristics of tra-
ditional “tape loop” delay, with the unique qualities of gran-
ular synthesis. An example of granular delay in a commer-
cial product is Ableton Live [1]. Since Ableton is designed
towards rhythmic music and real-time playback, its granular
delay can be synchronized to the source audio’s tempo.

Our granular delay effect is inspired by that in Ableton
Live [1]. Along with many of the parameters used by Able-
ton’s effect, our engine additionally permits tempo-synchronized
parameter changes, which are described below.

EGDE’s granular delay engine uses the following pa-
rameters, most of which are common with Ableton’s gran-
ular delay: grain density, pitch, delay, feedback, granular
spray, and reversal probability. Most of these settings in-
clude an offset parameter, which determines the range of val-
ues to be selected from. Similar to Ableton Live, EDGE can
synchronize grain delays with a tempo. Parameter changes
can occur at three levels of synchronization:

1. Cloud: A cloud is a duration of time in which all the
parameters are locked together. If cloud duration is
activated, then all parameter changes occur together
within the cloud duration. They will only change in
unison at the beginning of the next cloud.

2. Beat synchronization: If the parameter is set to syn-
chronize on beats, it will do so with respect to k quarter-
notes. Various parameters can synchronize at differ-
ent note rates, which can result in complex rhythmic
effects.

3. Unsynchronized: A parameter change can occur asyn-
chronously, irrespective of the host clock.

With the above, activated cloud synchronization pre-empts
beat synchronization and unsynchronized changes. Like-
wise, if clouds are not used, then beat synchronization pre-
empts unsynchronized changes.

EGDE is implemented as a VST plug-in [16]. It relies
on a host application from which to read and write audio
signals, clock tempo information, and other information.

3. INTERACTIVE GENETIC ALGORITHM
INTERFACE

Figure 1 shows EGDE’s user interface. The population is on
the left, the granular delay parameters on the top-right, and
evolution controls on the bottom-right.

The population consists of 16 individuals. Each individ-
ual contains rating controls, an age indicator, and a “sam-
ple” audition button. The following tri-state rating scheme
is used:

1. Hold (highest score): Clone this parameter set into the
next generation, and also use it for reproduction.

2. Use: Use this set for reproduction, but do not clone it.

3. Delete (lowest score): Do not use this set at all.

Clicking a sample button will activate that individual. When
sample is activated, the parameter set is loaded into the host,
as well as the top-right parameter control section. It will
then immediately process the audio, which will be heard by
the user.

The crossover/mutation balance control determines the
probability that crossover is selected for reproduction, verses
mutation. If the user would rather use mutation exclusively,
then this control should be set to 100. One-point crossover
tends to preserve recognizable groupings of parameters, while
N-point results in more varied permutations of parameter
settings. The Mutate % of the effects control determines
the probability that each parameter will undergo a mutation,
should mutation have been chosen to perform reproduction.
Mutation occurs on a gene by perturbing its current value,
by the range specified by the % mutation variance control.
Setting the variance low will result in a small tweak of a
value, while a high value may result in a drastic alteration.
Next generation will create a new population of parameter
sets, using the current population ratings.

The parameter control section shows the parameter val-
ues (described in Section 2). They permit direct user edit-
ing of parameter values within the active chromosome, and
result in immediate audio feedback of edited changes. Pa-
rameters can be frozen, and no longer subject to mutation.
Freezing parameters stops the introduction of new values
into designated parameter fields.

Figure 1. Granular delay interface.

4. USING THE SYSTEM

Many granular delay parameter combinations create dras-
tic distortions of the audio, and most will likely be unde-
sirable. A main goal of EGDE is to let the user quickly
and effectively evaluate the population. First, a looped au-
dio clip should be played by the host, which is immediately
processed through EGDE’s granular delay. The currently
activated population member (parameter set) will be the one
that processes the audio signal. The user merely clicks each
sample button to immediately hear that parameter set. De-
pending on the duration of the loop being processed, an ef-
fect may be auditioned within seconds (or less, if the effect
is clearly horrible), and hence the entire population in per-
haps 20 to 30 seconds.

Evaluating individuals is performed quickly. The user
decides if an individual should be held (protected), used,
or deleted. To promote efficiency, individuals set to hold
are kept on a hold state for subsequent generations. Oth-
erwise, the automatically pre-set rating for non-held indi-
viduals is delete. Therefore, users will often only hit the
sample button to hear an effect, and move on to the next
individual, knowing that that effect will be deleted automat-
ically. When an effect is considered interesting, then its rat-
ing may be changed to use or hold. This tri-state evaluation
is a natural and intuitive fitness scale for interactive appli-

cations such as this, in which the user must make a series
of reactive aesthetic judgements. The alternative, more con-
ventional approach of evaluating each individual on a scale
of (say) 1 through 10, is arguably less useful, since numeric
evaluations have less intuitive meaning to the user. Numeric
scores are not useful to the genetic algorithm anyway, given
the small population being processed.

The interface is flexible with regards to the style of in-
teractive evolution used. During the start of a session, the
user is recommended to use a roughly equal combination
of crossover and mutation. The mutation perturbation rate
should be set high as well. As the user samples different in-
dividuals, many initial results will be deemed unacceptable,
and will be pruned from the population. Interesting effects
will be retained. As generations progress, a particular effect
may be especially pleasing to the user. This parameter set
may be set on hold; the crossover rate can be reduced, as
can the mutation rate. Then evolution will be used to tweak
the effect, until a final desired version is found. At any time,
the user is free to directly edit granular parameters. This
will directly alter chromosomes, and user changes will be
available for use during subsequent evolution.

Exclusively mutation-directed evolution is possible as
well, by turning the crossover rate to zero. As usual, the
mutation perturbation rate can be fine tuned as generations
progress. Mutation-based evolution can be used on multi-

ple individuals, or (more sensibly) just one individual set to
hold. Of course, in the case of multiple individuals being
mutated, the lack of crossover prevent shared characteristics
from appearing in offspring.

The VST interface permits the user to save a selected pa-
rameter set as a parameter file. This can be loaded and used
by the granular delay engine at any time. It can also be read
and used outside the interactive genetic algorithm interface,
since the granular delay engine can be used independently
of the genetic algorithm interface. The user will therefore
save favourite effects in a library, for future reference.

5. CONCLUSIONS

Our use of an IGA differs from the approach of Johnson
[9]. His system uses mutation exclusively, applies numeric
evaluation of individuals, and keeps the granular synthesis
parameters hidden from user inspection and editing. The
use of IGA’s with general synthesis systems in [6] and [10]
is comparable to our approach, although our IGA interface
design is motivated for fast sample evaluation. The EGDE
approach should be readily adaptable to other synthesis and
effects technologies. Although work using other techniques
towards granular synthesis, such as swarms [3] and cellu-
lar automata [13], is technically different than genetic algo-
rithms, all share the goal of helping the user navigate the
complex parameter space of granular synthesis.

Future revisions of EGDE are being considered. The
granular synthesis engine could be enhanced with additional
parameters, for example, parameter acceleration, inter-grain
spacing, envelope control, panning, amplitude, and others.
We are also considering the idea of having some sort of vi-
sualization for IGA population members, to give the user
a visual representation of a parameter set. This would al-
low the user to see how generated parameters relate to their
parents, which might be of use during auditioning and eval-
uation. Finally, more population editing controls for sharing
parameters amongst the population members, and perhaps
removing parameters from evolution entirely, are being con-
sidered.

Acknowledgements: The authors thank Michael Winter
and Beatrice Ombuki-Berman for helpful comments. Re-
search partially supported by NSERC Operating Grant 138467.

6. REFERENCES

[1] Ableton, “Ableton live,” last accessed Mar 15, 2010.
[Online]. Available: http://www.ableton.com/

[2] P. Bentley and D. Corne, Creative Evolutionary Sys-
tems. Morgan Kaufmann, 2002.

[3] T. Blackwell, “Swarm Granulation,” in The Art of Ar-
tificial Evolution, J. Romero and P. Machado, Eds.
Springer, 2008, pp. 103–122.

[4] R. Boulanger, The CSound Book. MIT Press, 2000.

[5] A. Burton and T. Vladimirova, “Generation of musical
sequences with genetic techniques,” Computer Music
Journal, vol. 23, no. 4, pp. 59–73, Winter 1999.

[6] P. Dahlstedt, “Creating and Exploring the Huge Space
Called Sound: Interactive Evolution as a Composition
Tool,” in ICMC 2001, 2001, pp. 235–242.

[7] D. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison Wesley, 1989.

[8] A. Horner, J. Beauchamp, and L. Haken, “Machine
tongues XVI: Genetic algorithms and their application
to FM matching synthesis,” Computer Music Journal,
vol. 17, no. 4, pp. 17–29, 1993.

[9] C. Johnson, “Exploring Sound-Space with Interactive
Genetic Algorithms,” Leonardo, vol. 36, no. 1, pp. 51–
54, 2003.

[10] J. Mandelis, “Genophone: An Evolutionary Approach
to Sound Synthesis and Performance,” in EvoWork-
Shops, 2003, pp. 535–546.

[11] J. Manzolli, A. M. Jr., J. Fomari, and F. Damiani, “The
Evolutionary Sound Synthesis Method,” in MM’01,
2001, pp. 585–587.

[12] J. McDermott, N. Griffith, and M. O’Neill, “Evo-
lutionary Computation Applied to Sound Synthesis,”
in The Art of Artificial Evolution, J. Romero and
P. Machado, Eds. Springer, 2008, pp. 81–101.

[13] E. Miranda, “On the Origins and Evolution of Music
in Virtual Worlds,” in Creative Evolutionary Systems,
P. Bentley and D. Corne, Eds. Morgan Kaufmann,
2002, pp. 189–203.

[14] C. Roads, The Computer Music Tutorial. MIT Press,
1996.

[15] ——, Microsound. MIT Press, 2001.

[16] Steinberg, “Cubase,” last accessed Mar 15, 2010.
[Online]. Available: http://www.steinberg.net/

http://www.ableton.com/
http://www.steinberg.net/

	1 Introduction
	2 Granular Delay Engine
	3 Interactive Genetic Algorithm Interface
	4 Using the System
	5 Conclusions
	6 References

