
Procedural 3D Texture Synthesis Using

Genetic Programming

Adam Hewgill Brian J. Ross 1

Brock University, Dept. of Computer Science
St. Catharines, Ontario, Canada L2S 3A1

Abstract

The automatic synthesis of procedural textures for 3D surfaces using genetic pro-
gramming is investigated. Genetic algorithms employ a search strategy inspired by
Darwinian natural evolution. Genetic programming uses genetic algorithms on tree
structures, which are interpretable as computer programs or mathematical formu-
lae. We define a texture generation language in the genetic programming system,
which is then used to evolve textures having particular characteristics of interest.
The texture generation language used here includes operators useful for texture cre-
ation, for example, mathematical operators, colour functions and noise functions.
In order to be practical for 3D model rendering, the language includes primitives
that access surface information for the point being rendered, such as coordinates
values, normal vectors, and surface gradients. A variety of experiments successfully
generated procedural textures that displayed visual characteristics similar to the
target textures used during training.

Key words: procedural textures, evolution, genetic programming

1 INTRODUCTION

Procedural textures are an integral part of contemporary rendering technology
[5] [29]. Procedural textures can convincingly model a variety of natural phe-
nomena, such as wood, stone, and terrain, as well as innumerable unnatural
effects. Moreover, procedural textures apply rendered results seamlessly over

Email addresses: ahewgill@hotmail.com (Adam Hewgill),
bross@cosc.brocku.ca (Brian J. Ross).

URL: http://www.cosc.brocku.ca/∼bross/ (Brian J. Ross).
1 Corresponding author. Equal authorship implied.

Preprint submitted to Elsevier Science 26 January 2004

surfaces, without tiling or other repetitive artifacts. This makes them ideal for
photorealistic rendering.

One disadvantage of procedural textures is their technical complexity. Mathe-
matical and procedural models of well-known effects, such as stone, wood, and
terrain, have been carefully engineered and hand-crafted. Typically, parame-
terized versions of these pre-defined effects are included in rendering tools,
along with suitable interfaces for user-manipulation of the parameters. The
derivation of a new procedural texture can be a challenging task. If the user
has a visual effect in mind, the derivation of a corresponding procedural tex-
ture that produces this effect will depend upon the user’s proficiency and ex-
perience in mathematical texture modeling. Even for experts, trial-and-error
will be the norm. Hence, the invention of computer-based tools which can
automatically derive procedural textures is a worthy goal.

This paper investigates the automatic derivation of procedural textures for
3D surfaces using genetic programming technology. Genetic programming is
a machine learning paradigm inspired by Darwinian evolution. Populations of
computer programs are bred until a program solving some problem of interest
is eventually evolved. We use genetic programming to evolve populations of 3D
texture formulae. The approach is similar to previous work in automated 2D
procedural texture evolution [1][10][15][22][31]. The main enhancement neces-
sary for evolving effective 3D textures is to incorporate surface information
into texture formulae. Our texture language includes provision for surface co-
ordinates, surface orientation (normal direction), and surface gradient (normal
deviation). As in 2D texture evolution, a target texture is used for training
purposes. Surface points on an example model rendered with the target tex-
ture are manually sampled. These sample points are then used as a training
set by the genetic programming system. The goal is to evolve a 3D texture
whose colour rendering on 3D surface components is as similar as possible to
that in the target texture.

Section 2 reviews relevant work in texture evolution. An overview of genetic
algorithms and genetic programming is given in Section 3. System and exper-
imental details are discussed in Section 4. Some results are given in Section 5.
Section 6 gives some concluding discussion.

2 Texture Evolution

Evolutionary algorithms have been widely used in graphics and design [2]
[3]. Examples applications range from texture generation (discussed below),
graphic design [6] [8], image processing [7] [20] [16], model morphology [26],
animation [25] [27] [28], visualization [11], and ray tracing [13]. A number of

2

commercial products for texture generation have used evolutionary algorithms,
for example, Kai’s Power Tools and Alien Skin Textureshop. The field has
matured to the point that it has attracted artistic critiques [4] [30].

This paper is primarily concerned with procedural texture evolution. A pro-
cedural texture may be defined as being one in which individual pixel RGB
values are computed by algorithms and/or mathematical formulae. For 2D
textures, texture formulae have the form:

f : (X, Y)→ (R,G,B)

where (X,Y) are the pixel coordinates, and (R,G,B) is the computed colour.
Evolutionary algorithms such as genetic programming [12] are then used to
derive an appropriate formula for f . The formula f is equivalent to the genetic
material or genotype found in natural biology, while the rendered texture is the
phenotype or realization of the genotype in physical form. The evaluation of a
texture is performed by inspection of the set of (R,G,B) values for all pixels
coloured, or in other words, the texture phenotype. The actual composition
of formula f is not inspected; it is evaluated only in terms of what texture it
produces.

Typically, texture evolution systems are supervised, and rely on the user to in-
teractively participate in the evolution process [14] [21] [23] [24]. A population
of candidate textures is displayed to the user. He or she selects the texture(s)
of interest, to be mutated or recombined into the next set of textures. The
user also controls a mutation rate parameter, which determines the degree to
which new textures differ from current textures. The mutation rate is usually
large at the beginning of a session, and then is gradually reduced when a tex-
ture of interest is discovered. In essence, the user becomes an oracle or “fitness
evaluation function” for the duration of the search. Although this procedure
is a useful interactive tool for texture exploration, a disadvantage is that it
is not automated – the user plays the pivotal role in guiding evolution at all
stages. The user will suffer fatigue if he or she must evaluate many hundreds
of textures.

Unsupervised, fully automated texture evolution has been investigated [1]
[10][15][22][31]. In order to automate the search, genetic algorithms must se-
lect candidate solutions based upon their fitness scores, which are indications
of how well the textures conform to some set of desired visual characteristics.
Derive an effective fitness function to rank candidate textures based on their
visual characteristics is challenging, since in-depth analyses cannot be used
due to their computational burden on the evolutionary search. Typically, a
suite of feature tests are used, which rate rudimentary visual characteristics
of a texture, such as colour distribution, luminosity, and shape. Although each
feature test by itself is a crude measurement of an image’s characteristics, they

3

often produce useful evaluations of textures when combined together. During
a session, the feature test scores are compared to the corresponding feature
scores of a target texture image. The goal for evolution is to derive a proce-
dural texture whose visual characteristics closely match those of the target
texture image, as indicated by the proximity of feature test scores between
the target and candidate textures. It is not realistic, nor necessarily desirable,
for the genetic algorithm to derive a texture identical to the target texture,
but rather, to evolve one that is similar in flavour to the target.

The majority of work in texture evolution has concentrated on 2D textures.
This is largely because 2D textures are easily analysed with well-known im-
age processing techniques. Although 2D textures can be extended onto 3D
surfaces, the results are usually unsatisfactory, since such textures do not con-
sider morphological features of the surface, lights, or viewer. This results in
surface textures which are uniform across the entire 3D surface, and which do
not react to surface characteristics such as location or orientation in 3-space.

Evolutionary computation has been used to evolve textures suitable for 3D
graphics. Ibrahim’s Genshade system evolves Renderman shaders [10]. High-
level Renderman shader expressions are denoted as dataflow graphs. Feature
tests such as luminosity (brightness), chromaticity (colour), and wavelet anal-
ysis (shape) are performed. Evolution can proceed interactive with user guid-
ance, or automatically with feature test evaluation. Multiple target textures
can be used as well. The results show effective evolution of Renderman shaders
that match target textures generated by Renderman itself. Automated evalu-
ation of textures is performed on 2D renditions of shader. These shaders may
be applied to 3D object renderings, which in turn can be presented to the user
during interactive evaluation. Lewis also evolves shaders for the Houdini sys-
tem [14]. Like Genshade, data flow networks of shader primitives are evolved.
Evolution is strictly interactive, and the user is shown 3D renditions of the
shaders. Neither of these systems explicitly account for 3D morphology dur-
ing texture generation and analysis, other than rendering the textures onto
3D objects to display to the user during interactive evaluation.

3 Evolutionary Computation

3.1 Genetic algorithms

Evolutionary algorithms are statistical search techniques inspired by Dar-
winian evolution. One such evolutionary algorithm is the genetic algorithm
(GA), invented by John Holland in the 1970’s [9]. The GA has proven very
successful in finding good solutions for difficult real-world problems [17]. GA

4

are often very effective for applications that have appropriate structure (al-
though the exact form of this “structure” is not well understood at present).
GA’s are relatively general algorithms that often require only modest special-
ization to new applications. This can be contrasted to algorithms that must
be engineered from scratch for particular problem specifications.

Figure 1 outlines a basic GA. In a GA, a population of candidate solutions is
maintained. Each individual in the population is represented by a chromosome,
which encodes some candidate solution to the problem at hand. Chromosomes
in basic GA’s take the form of bit strings. Fields in these strings will map to
various values and parameters of a candidate solution to a problem that is
being solved. Furthermore, each individual is assigned a fitness score, which
measures the quality of the solution encoded by the individual. A “perfect”
fitness score will signal when a solution has been found. Otherwise, the fit-
ness scores can be used to track the relative performance of individuals in the
population, as well as the population collectively. Fitness scores also play a
key role in the algorithm during the selection of individuals for modification
(steps a and b). Fitness values are used to probabilistically select individu-
als for reproduction, in the sense that fitter individuals will be more likely
to be selected than those less fit. This parallels Darwinian evolution’s “sur-
vival of the fittest”, in that fit individuals survive and procreate, while weak
individuals die off and become extinct.

A defining characteristic of a genetic algorithm is the means by which new
candidate solutions are generated. The most important reproduction oper-
ation in a GA is crossover. Crossover is inspired by sexual reproduction in
nature, and is the means by which parental traits are inherited by offspring.
To perform crossover, two parents are selected based on their fitness, and their
chromosomes are randomly split and merged together to form two offspring.
For example, consider two individuals with chromosomes ABCDEFG and tu-
vwxyz respectively. A single-point crossover operation finds some random split
point in the 7-gene chromosome. If this point is 3, then the offspring become:

ABCDEFG

tuvwxyz
=⇒

tuvDEFG

ABCwxyz

The other genetic reproduction operator is mutation. This involves randomly
changing some random gene in a chromosome. For example, the individual
ABCDEFG may become ABxDEFG by a random mutation of the gene C to
x. Typically, mutation plays a lesser role than crossover in GA’s, and is used
more sparingly.

It is worth reiterating the importance of fitness-based selection in the above
discussion. In order for a genetic algorithm to be successful, individuals used
for reproduction must be selected based upon their relative fitness or strength

5

in solving some problem of interest. There are a number of schemes for imple-
menting fitness-based selection. The one used here is the tournament selection.
Here, a fixed number of individuals are randomly selected from the popula-
tion. Then the individual with the highest fitness score in this set is retained
as a parent for reproduction. This tournament selection is performed once for
mutation, and twice for crossover (once for each parent).

3.2 Genetic programming

Genetic programming (GP) is a specialized class of genetic algorithm, in which
individuals in the population are interpretable as computer programs [12]. The
salient difference between GA’s and GP’s is that a GP chromosome translates
to a computer program, while a GA chromosome translates to a vector of
values. One of GP’s strengths as a paradigm of evolutionary computation is its
applicability to a wide variety of problems. Any application that is best solved
via an algorithm or mathematical formula is a good candidate for genetic
programming. This differs from a vanilla genetic algorithm that uses bitstrings
as chromosomes, which might require sophisticated coding schemes in order to
be applied to problems with complex or dynamically changing requirements.

Most GP applications use a tree-based representation of programs. In this
representation, internal nodes denote function calls, and nodes below them
denote arguments (Figure 2). In order for this representation to be usable, it
must be ensured that all trees processed are both syntactically correct, and
executable without errors. Executability or closure is maintained by ensuring
that every function used in the program will execute error-free on any supplied
input data. For example, a closed division operator will not invoke an error
condition if a division by zero is attempted, but instead will return some
predefined value as an answer.

Syntactic correctness of programs is required if programs are to execute in a
correct and predictable fashion. Firstly, random trees as created in the initial
population must be syntactically sound. To do this, the random tree generator
must supply any function in a tree with its required arguments. Reproduction
must also maintain syntactic correctness. After two parents are selected for
crossover, random nodes are selected in each parents tree (the highlighted
subtrees in Figure 3). The subtrees defined at these nodes are then swapped
to create the offspring (bottom trees in Figure 3). This maintains syntactic
correctness. Mutation involves either replacing a randomly selected subtree
with a randomly generated subtree, or replacing a selected terminal node with
a random terminal. A result of these tree-based reproduction operators is that
chromosomes are variable-sized, and can grow to unbounded proportions if
not checked. Therefore, tree-depth limits are typically used in GP runs.

6

1. Initialize the population with random chromosomes.

Rate the fitness of the individuals in the initial population.

2. Repeat until solution found OR maximum generation reached:

i) Repeat until new population generated:

a) P_1\% of the time: Select 2 individuals based on their

fitness, and apply crossover to generate two offspring.

Add them to new population.

b) P_2\% of the time: Select an individual based on fitness,

and apply mutation.

Add result to new population.

ii) Rate the fitness of individuals in new population.

Fig. 1. Example genetic algorithm

Fig. 2. Example tree and corresponding expression

Fig. 3. Tree-based GP crossover

7

4 Experiment

4.1 Graphics environment

A fundamental characteristic of procedural textures is that they define a colour
for all points in the coordinate space. This makes them ideal for ray-tracers,
in which textures can be calculated for all visible hit points on model surfaces.
On the other hand, they are less useful for rasterized graphics, in which light-
ing is computed for vertices only, and polygon surface shading is interpolated
via Gouraud or Phong shading, mixed perhaps with texture maps. As a conse-
quence, a ray-tracing environment is used in this research. The intention is for
the evolved procedural texture formulae to be supplied to a ray-tracer for ren-
dering purposes. However, actual rendering is not performed during texture
evolution, but rather, texture formulae will be evaluated for defined sets of
example points. Other well-known ray-tracer effects, such as local lighting, re-
flection, transmission, and shadows, are not considered nor implemented here.
They could easily be incorporated with the textures we evolve.

Theoretically, any surface texture is definable by some suitable procedural
texture. Naturally, the complexity of the corresponding texture formula or
algorithm can vary considerably, depending on the match between texture
primitives and the target texture desired. At a minimum, a 3-D texture re-
quires the XYZ coordinates of a surface point in order to calculate that point’s
RGB value:

f : (X, Y, Z) → (R,G,B)

Such textures are defined entirely by the position of surface points in the coor-
dinate space. For some textures, such as stone and marble, this is satisfactory
and adequate. More complex effects, such as the natural rendering of a moun-
tain surface, with a snow-capped peak, rocky cliff, and green base, can also be
handled to an extent by these formulae. To do so, the height of the model is
influential in producing the appropriate effect as seen in the model’s altitude.
Often, however, we require textures that conform to additional local shape
characteristics of a model. For example, a mountain surface might turn rocky
wherever there is a steep cliff, which might occur at various altitudes. The
steepness of the cliff might be modeled as a function of the surface normal. In
other instances, we might like a texture which changes when there are abrupt
discontinuities or creases on a surface. Such features are readily denoted via
gradients (the degree to which the surface normal changes).

8

We used the following model surface information in various experiments:

• X, Y, Z coordinate: This will be the coordinate of the hit point on the model
surface as computed during ray-tracing.
• Surface normal: the normal of a hit point.
• Interpolated mesh normal: This is Phong-style normal interpolation on a

polygonal mesh. Shared vertex normals are interpolated from surrounding
polygons. Then a hit point normal is interpolated from the surrounding
vertex normals.
• Surface gradient: This is a scalar value representing the degree to which

normals on a local area of a surface are changing. First, the interpolated
mesh normal N i for a hit point is calculated. Then the difference in unsigned
magnitude between it and the real surface normal N of the plane on which
it resides is found. These differences are then averaged:

(|N i
x −Nx|+ |N i

y −Ny|+ |N i
z −Nz|)/3

The above surface parameter definitions are used for generating training data
for target textures. An interactive texture sampling editor is used for this
purpose. A 3-D model with an applied bitmapped texture is read into the
system. The user then manually selects surface points to be used as training
data. For all points selected, a record of the above surface information is
generated and saved in a table, along with the corresponding RGB colour
used to render that sample. This table is saved in a text file, for use by the
genetic programming system.

The inclusion of normals and gradients in textures results in considerable
differences in texture characteristics. Without normals and gradients, surface
detail disappears for all but the simplest models (Figure 4a). Adding normals
into texture formulae permits surface detail to arise without the use of lighting
(Figure 4b), and gradients introduce an additional dimension of surface detail
(Figure 4c). Gradient-based textures create shiny, (false) specular highlights,
and are often metallic and iridescent in appearance.

4.2 Evaluation strategy

Once a training set of texture information is sampled by the user, we wish to
evolve a procedural texture that exhibits the texture characteristics as encoded
in the training set. Given a candidate texture formula, a requirement will be
to evaluate how well its rendered texture corresponds to the sampled target
texture. Such evaluations take the form of fitness scores, in which a high score
means a good match, and hence strong fitness.

A simple evaluation strategy will be used to determine the fitness score of a

9

texture formula. The surface parameters of each sample point in the training
file will be made available to the procedural texture. The texture formula is
then interpreted on a training sample. It will make free use of the example sur-
face parameters whenever they are required. Eventually, the formula computes
an RGB colour for that point. The distance in RGB space between the actual
rendered colour RGBa and the sampled target colour RGBs is determined.
This distance is then tallied for all k samples in the test set:

Fitness =
k∑
i=1

dist(RGBa, RGBs)

where

dist(RGBa, RGBb) =
√

(Ra −Rb)2 + (Ba −Bb)2 + (Ga −Gb)2.

An alternative metric is to use discrete hits and miss frequencies as measured
against the input example set. Precise hit tallying in this application is not
practical, since it is nearly impossible for any texture to precisely generate
the RGB colours residing on a target texture. Our RGB distance relaxes the
evaluation criteria, by considering colour proximity, rather than precise colour
matches. Nevertheless, tallied hit scores are generated during runs, in order
to provide a more intuitive indication of a run’s performance. To do this, if
a texture’s generated colour at a particular sample point is within 0.10 RGB
distance of the corresponding target colour, it is counted as a hit. These hit
scores are not used by the GP system during fitness evaluation.

4.3 Texture language

The genetic programming system used here is based on Koza’s Lisp-based
genetic programming model, in which programs take the form of symbolic
expressions or s-expressions [12]. An s-expression is a list or atom in the Lisp
language. An example expression in Lisp notation is:

(/ (+ 6 6) 4)

This denotes the arithmetic expression (6 + 6)/4. The mapping between s-
expressions and trees is straight-forward: the first element in a list is the
function (subtree root), its arguments are branches, and atoms are leaves.

The strongly-typed lilGP 1.1 system is used as the GP platform for the experi-
ments [32]. This is a C-based GP system, which implements Koza’s tree-based

10

GP paradigm. It is embellished with strong-typing, which means that expres-
sions can be assigned to return designated data types [18].

Figure 5 shows a Backus-Naur Form grammar of the texture language. Note
that expressions are denoted in standard algebraic notation, rather than as
Lisp s-expressions. There are two data types in the language – rgb vectors
(RGB) and floating point values (F). The RGB operators consist of either the
current 3-D coordinate of the point being rendered, the current surface normal
of the point being rendered, or an RGB vector rgbvec constructed from the
values of three floating point expressions. Note that the RGB-space is modeled
with clamped floating-point values between 0.0 and 1.0.

The rest of the grammar defines floating point expressions. Floating point
terminals can be basic surface information for the point being rendered, such as
one of its coordinate values (X, Y, Z), normal directions (Nx, Ny, Nz) or surface
gradient (diff). The other floating point terminal, ephem, is an ephemeral
random constant. This is a constant value that is initialized with a random
value between 0.0 and 1.0, but then retains its initialized value throughout its
lifetime during the evolution process. In other words, it does not denote a call
to a random number generator.

The floating point functions include sine, cosine, minimum, maximum, and
conventional arithmetic operators. The divide operator was omitted, due to
its tendency to create extremely large or small values, which in turn nullify
the utility of many formula. The avg function finds the average between two
expressions, while lum finds the luminosity (average channel value) of an RGB
vector. The if expression interprets its first floating point argument. If that
expression is greater than 0.5 in value, then the value of the second argument is
computed and returned as a result. Otherwise the value of the third argument
is returned. Finally, noise generates Perlin noise computed to the 4th harmonic
[19].

Because the texture language is strongly typed, tree generation and reproduc-
tion will maintain legal data typing at all times. During random tree genera-
tion, trees must adhere to the typing conventions of each function shown in the
grammar in Figure 5. For example, if a function requires an RGB argument,
then an RGB function or terminal will be randomly selected. When applying
crossover, the data type of the root of each subtree to be swapped must also
match.

4.4 GP parameters

Table 1 lists the genetic programming parameters common to all the experi-
ments. All the experiments used a population of size 1000 running for at least

11

200 generations. This was done for 10 runs per experiment, where each run
has a different random number seed. Therefore, each run processes at least
200,000 textures, and each experiment at least 2 million textures. This pro-
cessing was greatly aided by the use of a 16-CPU Silicon Graphics Origin 2000
server, which permits 10 runs to execute concurrently.

A run begins by first generating a new population with randomly-formed trees.
This initial randomized population is created using Koza’s ramped half&half
tree generation strategy from [12], whose intension is to generate a set of
random trees having a variety of sizes and shapes. Half the trees are grow
trees, in which each randomly generated node has an equal chance of being a
function (internal node) or terminal (leaf), up to a maximum depth for the
tree. The other trees are full trees, where nodes are leaf nodes only when the
maximum depth of the tree has been reached. Hence grow trees tend to be
asymmetric and smaller in size than the larger, bushier full trees. The idea of
ramping means that maximum tree sizes are iterated between 5 to 10 levels
deep for both grow and full trees. Ramped tree generation proceeds until the
population is filled.

During evolution, crossover is used to create 90% of a new population, and
mutation is used for the remaining 10%. Trees can never exceed a maximum
depth of 17 levels. If they do, the reproduction operator is tried again with new
parents. Parent(s) are selected using a tournament selection with a tourna-
ment size of 5. This tournament size creates a fairly strong selection pressure,
compared to weaker tournaments of, say size 2.

5 Results

Details of specific experiments are discussed in the subsections to follow. A
summary of performance for the experiments is given in Table 2. Some pa-
rameters different from the common ones in Table 1, such as total generations
and training set size, are included here. The performance results (fitness and
hits) are averaged over the 10 runs done per experiment. In the summary, the
population fitness is the mean fitness of the final population. Similarly, the
best fitness refers to the best solution in the run. Because raw fitness scores as
described in Section 4.2 correlate with the size of the training set, the fitness
values reported here are normalized with respect to the training set size, in
order to make better comparisons between the experiments. The RGB space
ranges from 0.0 to 1.0 on each channel, and the maximum RGB distance pos-
sible is between 2 opposite corners of the RGB cube:

√
3 = 1.73. The fitness

12

values in the table are computed with the following:

fitness = 1−
∑N
i=1 disti

N
√

3

where disti is the RGB distance for each example, and N is the total number
of examples. The result of this is that a texture that precisely matches a target
texture will have a fitness score of 100%, while the worst score obtained would
be 0%. The hits column refers to the percentage of training points having an
RGB distance value less than 0.10. It is important to realize, however, that
even after this normalization of scores, experiments will differ widely with
respect to the complexity of training samples due to the combined interaction
of surface characteristics, colours, and example set size.

Examining Table 2, the primary colour cube and normal gradient experiments
were the most successful in terms of performance scores. The clothing exper-
iment’s fitness value is close to the hit boundary of 0.10, showing that that
experiment was fairly successful in ensuring that lots of computed texture
colours were close to their training values. As expected, the best fitness is
always better than the mean population fitness. The difference between the
best fitness and population fitness is typically small, which implies that there
is a good deal of convergence in the population, and hence a multiplicity
of similarly performing textures. The tournament selection we used, with its
tournament size of 5, is known for causing high convergence. In addition, we
permit fairly large texture formula (maximum tree depth of 17), which also
promotes convergence. Another indication of convergence will be seen later
when looking at a performance graph of a run.

In the remainder of the section, alternate models are rendered with solution
textures by rescaling their coordinate extents to be those of the original train-
ing model. These alternate models are equivalent to testing performance indi-
cators. We did not use a quantitative measurement of testing performance in
our experiments. To do so, a texture would be scored against examples which
were not used during training. Since procedural textures can be applied to a
wide variety of models for which the notion of testing samples does not really
apply, we opt to subjectively evaluate the application of textures onto new
models by inspecting the rendered result.

5.1 Primary Colour Cube

This first example uses a simple training set (Figure 6). Six sample points are
selected from centers of sides of a cube. These points are assigned the colours
red, green, blue, grey, white, and yellow. The gradient and noise primitives

13

were removed from the texture language for this run. As is done in all exper-
iments, the fitness function evaluates how closely a texture formula renders
these points with colours near their sampled target colours. This does not
imply that the entire side of the cube will necessarily be that colour, but only
the single center point sampled for training. This indeed can be seen in the
cube images in the figure. All the solutions obtained, including the 3 shown,
performed with nearly 100% accuracy on the training set.

Figure 7 shows the evolved texture formula used in column 3 of Figure 6.
The size and complexity of this formula is a fairly typical result from genetic
programming. There is room for simplification in the formula. For example,
the term (min 0.36341 0.13969) found 15 times in the formula can be replaced
with the constant 0.13969. Such extraneous expressions are called intron code
or program bloat, and have no deleterious effect on the quality of a solution,
other than making interpretation slower than necessary.

5.2 Terrain Texture

Figure 8 shows some results of evolved textures suitable for a mountainous
landscape. The training model (top row) consists of 97 points sampled from a
polygonal mesh mountain. The intension is for the mountain to have a white
snowcap, grey cliffs, and a green base. The three solutions shown have training
hit scores of approximately 33%. As shown in Figure 2, the terrain textures
had some problems getting high training scores. This could be due to the fairly
noisy nature of the training set.

5.3 Clothing Texture

Next, a female figure is used as a surface for training (Figure 9). A total of
1327 sampled points are used. The idea is that the procedural texture will
colour the woman by giving her blonde hair, a green tank-top shirt, purple
pants, black shoes, and pink face and arms. This is a complex task for a math-
ematical texture formula, given that the training file does not have high-level
information about model components (arms, legs,...), but only the coordinate,
normal, and gradient information of each sample point. The results after 600
generations are shown in Figure 10. The hit scores for these solutions are
(clockwise from top left) 63%, 38%, 74% and 36%. The high training score of
74% for this last solution can be seen in the image (row 2, column 2), as the
model is rendered closely to the training specification. The terrain images is
rendered with this best texture.

Figure 11 shows the fitness progress of the run that evolved the texture in row

14

2, column 2 of Figure 10. The fitness of the best individual and population
average shows steady progress through the entire 600 generations of the run.
This shows that 600 generations is not excessive. In fact, additional generations
would likely give further progress, based on the trend in this graph. This
performance graph is also somewhat unusual for many applications, as it is
odd to see a steady increase in both population and best performances for so
long. The reason this is occurring here is due to the high degree of convergence
in the population. As is seen in Table 2, the population and best scores are
very close, and indicates that the population is highly dominated by textures
that are very similar to the best solution. As discussed earlier, this is a product
of the high selective pressure of the tournament selection scheme (tournament
size 5), and the large texture formula trees permitted (depth 17).

5.4 Normal and Gradient Specialized Texture

Figure 12 shows the evolution of a texture that captures a particular surface
orientation and shape for a model. The training model (column 1) consists of
5 steep hills on a flat surface. The tip of each hill is to be coloured red. The
tip area has a high gradient, and variable normal. The rest of the hill below
the tip is green. The flat base from which the hills rise is white. A total of
115 training points were used. The shown solutions (in order) have hit scores
of 91%, 90%, 96% and 97%. Furthermore, the second solution has an average
(normalized) distance score of 95.7%, which is less fit than the other solutions.
This is evident in the rendered image, as the purple colour is further away than
the desired red. The last solution’s normalized distance of 97.8% is closer to
the training specification.

5.5 Miscellaneous Results

Figure 13 shows an experiment in which a terrain-oriented training set similar
to that in Section 5.2 is used. After completing the sampling of the training
set, however, we swapped the blue channel and gradient values. It is difficult
to intuit the effect of this new interpretation of data. The runs yielded some
unexpected and interesting textures, and models tended to appear made of
transluscent minerals. This shows how automated evolutionary algorithms can
be used to discover interesting effects.

The final experiment uses the following training set. A total of 182 sample
points are used upon a cube (Figure 14). The cube is blue, with 3 coloured
bands (yellow, purple, tan) wrapping around the cube in the middle of each
face on each of the XY, XZ and YZ planes. The 8 vertices have shared normals,
interpolated from the faces surrounding each vertex. Hence the normals do not

15

indicate the planar normals of each face. Since this is a particularly challenging
texture to evolve, we let the system run for a total of 600 generations. Some
results are shown in Figure 15. They have hit scores of (in order) 47%, 40% and
40%. The results of training (column 1) are unexceptional. This is likely due
to descriptive shortcomings in the texture language, which is clearly lacking in
primitives that are adaptable to this particular target texture. Nevertheless,
the results of applying the solution texture to other models are interesting,
especially given that the overall colours used in the training set were prevalent.

6 Conclusion

This paper reports a first investigation into the suitability of using evolution-
ary computation to automatically synthesize 3-D procedural textures. The
results of these experiments are positive and promising. Our scoring method
– positive example matching – is very simple. This makes the results even
more impressive, since 3-D procedural texture spaces can be complex and
high–dimensional. The randomness and chaos that is an inherent part of evo-
lutionary computation is a distinct advantage in texture generation, as it lends
an element of invention and surprise to the texture synthesis process. Admit-
tedly, some of the target textures used here are simple enough that hand-
written solutions could be derived. The important point, however, is that no
manual derivation of procedural textures was necessary – genetic program-
ming obtained results automatically from training data. Obtaining samples
for training is a much simpler task than deriving texture formulae.

This paper can be compared to a few other investigations into 3D texture
evolution. Ibrahim’s Genshade system evolves Renderman shaders [10]. Gen-
shade can be used in either supervised or unsupervised modes. In unsupervised
mode, a set of rudimentary image analysis evaluations are performed on a 2D
rendition of the texture. Resulting shaders can be applied to 3D surfaces at
any time. Unlike this paper, however, 3D surface effects are not considered
during evaluation. In supervised mode, the user may be presented with ren-
derings of textures on 3D objects. No automated evaluation of the 3D rendered
textures is done. Work by Lewis evolves texture shaders for the Houdini an-
imation system [14]. These shaders are intended for rendering 3D objects.
Similar to Genshade’s supervised mode, no automated analysis nor effects of
surface characteristics are considered.

There are a number of directions for improving the evolution of 3D textures.
Firstly, the parameters of the experiments could be altered to promote more
optimal performance. For example, most runs resulted in bloated solutions.
This expression bloat contributes to convergence. The bloat terms not only
have the effect of protecting expressions from harmful alteration, but also al-

16

terations that might improve the fitness. Secondly, the texture language used
in this paper is very rudimentary, having only a basic set of arithmetic and
RGB operators, along with a basic noise primitive. More complex textures will
arise with a language that has higher-level texture generating primitives. For
example, the use of Renderman shaders as done in Genshade would immedi-
ately result in more complex texture results [10]. The language could also be
supplemented with additional information about the model structure, for ex-
ample, the hierarchical composition of models. This would permit the texture
formulae to incorporate which portion of the model hierarchy a texture is to
be rendered upon, and would result in textures that are tuned more intimately
to the model’s structure.

More work needs to address the issue of fitness evaluation. Although the pos-
itive example matching approach used here is simple to implement, and often
yields acceptable results, it could use improvement. A fundamental problem
with example scoring is that the results are strongly dependent on the fair-
ness of the example set. For example, if the majority of examples are blue,
then fitness evaluation will naturally be biased towards formulae yielding blue
colours. To overcome this bias, the user needs to balance the example set in a
way that different features are adequately populated within the set.

Another problem with example scoring is that positive example matching is
unsuitable for evolving noisy textures. The nature of noise is that a target
pixel satisfying various surface characteristics may have substantially variable
colour depending on the chaotic nature of the noisy texture space itself. Unfor-
tunately, the use of positive example matching is decidedly prejudiced against
noise, because of the chaotic colouring that occurs when noise primitives are
present in a texture formula. A noisy area of texture space may generate
colours within some distribution. Fitness scoring, however, requires a strict
match with the colour designated within the example. This means that the
existence of a noise function will detract from fitness, and so evolution will
prefer non-noisy formulae with more deterministic rendering behaviour. Our
experience was that noise primitives almost always disappeared from the pop-
ulation during early generations. An alternative fitness evaluation technique
that would not be biased against noise would be to incorporate probabilistic
matching of candidate and target examples. For example, one could ascribe
to an example point a probabilistic colour distribution. This would presume
that a number of examples would be included in this probabilistic colour set,
so that the resulting texture’s colour distribution would closely align itself to
the example set.

Since genetic algorithms are inherently statistical in nature, there is still a
strong element of discovery in unsupervised evolution of textures. Different
runs may produce quite unique and unexpected solutions. Often, the most
pleasing aesthetic results do not necessarily correlate with the strongest fit-

17

ness scores. Errors inherent in non-optimal solutions are often intriguing from
artistic points of view.

The value of unsupervised texture evolution is that acceptable solutions can
be obtained with no need for user involvement. This contrasts to supervised
evolution, in which the user is solely responsible for the nature of solutions
obtained. Perhaps the ideal system will be a compromise between these two
extremes. Until research into aesthetic modeling is more rigorously developed,
we feel that artistic applications such as this one can always benefit from the
aesthetic sensibilities and artistic intervention of a human being. It is inter-
esting to consider the implementation of semi-automated texture synthesis
systems that incorporate a dynamic interplay of automated and user-directed
evaluation. Such tools might turn out to be the most practical.

Acknowledgement: This research is supported by NSERC Operating Grant
138467-1998.

References

[1] S. Baluja, D. Pomerleau, and T. Jochem. Towards Automated Artificial
Evolution for Computer-generated Images. Connection Science, 6(2/3):325–
354, 1994.

[2] P. Bentley. Evolutionary Design by Computers. Morgan Kaufmann, 1999.

[3] P. Bentley and D.W. Corne. Creative Evolutionary Systems. Morgan Kaufmann,
2002.

[4] A. Dorin. Aesthetic Fitness and Artificial Evolution for the Selection of Imagery
fgrom the Mythical Infinite Library. In Advances in Artificial Life – Proc. 6th
European Conference on Artificial Life. Springer-Verlag, 2001.

[5] D.S. Ebert, F.K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing
and Modeling: a Procedural Approach. Academic Press, 2 edition, 1998.

[6] R. Gatarski. Evolutionary Banners: An Experiment With Automated
Advertising Design. In Proc. COTIM-99, 1999.

[7] J. Graf and W. Banzhaf. Interactive Evolution of Images. In Proc. Intl. Conf.
on Evolutionary Programming, pages 53–65, 1995.

[8] J.I. Hemert and A.E. Eiben. Mondrian Art by Evolution. In Proc.
Dutch/Belgian Conf. on Artificial Intelligence (BNAIC ’99), 1999.

[9] J.H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1992.

[10] A.E.M. Ibrahim. GenShade: an Evolutionary Approach to Automatic and
Interactive Procedural Texture Generation. PhD thesis, Texas A&M University,
December 1998.

18

[11] C. Jacob. Illustrating evolutionary computation with Mathematica. Morgan
Kaufmann, 2001.

[12] J.R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

[13] B. Lange and M. Beyer. Rayvolution: An Evolutionary Ray Tracing Algorithm.
In G. Sakes, P.Shirley, and S. Muller, editors, Photorealistic Rendering
Techniques, pages 136–144. Springer-Verlag, 1995.

[14] M. Lewis. Aesthetic Evolutionary Design with Data Flow Networks. In Proc.
Generative Art 2000, 2000.

[15] P. Machado and A. Cardoso. All the Truth About NEvAr. Applied Intelligence,
16(2):101–118, 2002.

[16] P. Machado, A. Dias, N. Duarte, and A. Cardoso. Giving Colour to Images. In
Proc. AISB 2002 Symposium on AI and Creativity in the Arts, 2002.

[17] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1996.

[18] D.J. Montana. Strongly Typed Genetic Programming. Evolutionary
Computation, 3(2):199–230, 1995.

[19] K. Perlin. An Image Synthesizer. Computer Graphics, 19(3), 1985.

[20] R. Poli. Evolution of Graph-like Programs with Parallel Distributed Genetic
Programming. In Thomas Back, editor, Proc. 7th Intl. Conf. on Genetic
Algorithms, pages 346–353. Morgan Kaufmann, 1997.

[21] S. Rooke. Eons of Genetically Evolved Algorithmic Images. In P.J. Bentley and
D.W. Corne, editors, Creative Evolutionary Systems, pages 330–365. Morgan
Kaufmann, 2002.

[22] B.J. Ross and H. Zhu. Procedural Texture Evolution Using Multiobjective
Optimization. Technical Report CS-02-18, Brock University, Dept. of Computer
Science, July 2002.

[23] A. Rowbottom. Evolutionary Art and Form. In P.J. Bentley, editor,
Evolutionary Design by Computers, pages 330–365. Morgan Kaufmann, 1999.

[24] K. Sims. Interactive evolution of equations for procedural models. The Visual
Computer, 9:466–476, 1993.

[25] K. Sims. Evolving Virtual Creatures. In SIGGRAPH 94, pages 15–22, 1994.

[26] S. Todd and W. Latham. Evolutionary Art and Computers. Academic Press,
1992.

[27] J. Ventrella. Explorations in the Emergence of Morphology and Locomotion
Behavior in Animated Characters. In R. Brooks and P. Maes, editors, Artificial
Life IV: Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, pages 436–441. MIT Press, 1994.

19

[28] J. Ventrella. Disney meets Darwin - the evolution of funny animated figures.
In Computer Animation 95, pages 35–43. IEEE Press, 1995.

[29] A. Watt and M. Watt. Advanced Animation and Rendering Techniques: Theory
and Practice. ACM Press, 1992.

[30] M. Whitelaw. Breeding Aesthetic Objects: Art and Artificial Evolution. In
P. Bentley and D.W. Corne, editors, Creative Evolutionary Systems, pages 129–
145. Morgan Kaufmann, 2002.

[31] A.L. Wiens and B.J. Ross. Gentropy: Evolutionary 2D Texture Generation.
Computers and Graphics Journal, 26(1):75–88, February 2002.

[32] D. Zongker and B. Punch. lil-gp 1.0 User’s Manual. Dept. of Computer Science,
Michigan State University, 1995.

20

Fig. 4. Texture language effects. (a) Basic. (b) Normals. (c) Normals and gradients.

RGB ::= RGBterm | RGBfunc

RGBterm ::= vxyz | nxyz
RGBfunc ::= rgbvec(F, F, F)

F ::= Fterm | Ffunc
Fterm ::= x | y | z | nx | ny | nz | diff | ephem

Ffunc ::= sin(F) | cos(F) | F + F | F − F | F ∗ F | avg(F, F) | lum(RGB)

| max(F, F) | min(F, F) | if(F, F, F) | noise(RGB)

Fig. 5. Texture Language Definition

Parameter Value

Population size 1000

Generations 200 (sometimes more)

Runs/experiment 10

Initialization ramped half&half

Initial ramped tree depth 5 to 10

Max. tree depth 17

Crossover rate 0.9

Mutation rate 0.1

Selection scheme tournament (size 5)
Table 1
Genetic Programming Parameters

21

Experiment Gen. Training Population Best Best

set size fitness fitness hits

Primary cube (Fig. 6) 300 6 99.3% 100.0% 100%

Terrain (Fig. 8) 200 97 84.0% 84.3% 29%

Clothing (Fig. 10) 600 1327 92.5% 92.9% 46%

Normal gradient (Fig. 12) 200 115 96.7% 97.3% 88%

Channel swap (Fig. 13) 200 97 90.4% 90.7% 37%

Banded cube (Fig. 15) 600 182 87.6% 88.0% 43%
Table 2
Experiment summary. Results averaged over 10 runs.

22

Fig. 6. Primary colour cube. Each column is a separate solution. The rows show
training front view, training back view, woman front and back views, and terrain.

23

(rgb (+ (cos (+ (avg Z NZ) (- (* (- (cos (if (cos (- Z Y)) 0.28686 Y)) (min 0.36341 0.13969)) (min (+ (- Z NZ)
(* NX X)) (- Z NX))) NX))) (* (- (cos (if (- (cos (if (min 0.36341 0.13969) (- (min 0.36341 0.13969) (avg Z NZ))
(if (min NY 0.13969) (min (+ (avg Z NZ) (lum NXYZ)) (+ Z (- (min NY 0.13969) NZ))) Y))) 0.41939) (+ NZ
Z) Y)) (- Z NX)) (+ (* (avg (+ (- Z NX) (+ NY X)) (avg (+ (+ NZ (+ NY X)) (avg (+ (+ NZ NX) (+ NY X))
(- (cos (avg (+ (+ Z (* NX X)) X) NX)) (- (cos (min NY 0.13969)) (- Z NX))))) (- (cos (+ (avg Z NZ) (+ Y (-
Z NX)))) (min 0.36341 0.13969)))) (- Z NZ)) (- NZ NX)))) (cos (+ (min (avg (+ (min (+ Z (min (+ (avg Z NZ)
(lum NXYZ)) (cos (+ (* (avg (+ (+ NY X) (avg Z NZ)) (- Z NZ)) (- (cos NZ) NY)) (- NZ NX))))) (avg (+ (+ Z
(* NX X)) X) NX)) (+ NY X)) (- (cos (min (avg (+ NY (* NX X)) (avg (+ NY X) (- (cos (avg (+ NY (+ (+ Z
(* NX X)) X)) (- (cos (- Z Y)) (min 0.36341 0.13969)))) (- (cos (min 0.36341 0.13969)) (min 0.36341 0.13969)))))
(* NX X))) (min 0.36341 0.13969))) (min (avg (+ (+ NZ NX) (+ NY X)) (- (cos (min (avg (+ (+ NZ NX) (-
(- (cos NZ) NY) 0.41939)) (- (cos (avg (- Z NX) NZ)) (- (cos (if (lum NXYZ) 0.28686 Y)) (- Z NX)))) (- (- (*
(- (cos (avg (- NZ NZ) NZ)) (- (cos (min 0.36341 0.13969)) (min 0.36341 0.13969))) (- Z NZ)) NX) NZ))) (min
0.36341 0.13969))) (* (avg (+ (* NX X) X) (avg (+ (+ Z (* NX X)) X) NX)) X))) (+ Z (- (+ NZ (+ Z (* NX
X))) NX)))) (* (- (avg (- (cos (+ (* (avg (+ (+ NZ NX) (+ NY X)) (- (cos (- Z Y)) (min 0.36341 0.13969))) (-
(- NZ NX) NZ)) (- NZ NX))) (+ NY X)) (sin X)) (min (+ (avg Z NZ) (lum NXYZ)) (cos (cos (- (cos (cos (+ (*
(avg (+ (+ NY X) (avg Z NZ)) (- Z NZ)) (+ Z (* (- Z NX) X))) (- NZ (+ Z (min (+ (avg Z NZ) (lum NXYZ)) (-
(cos (* NX X)) (min 0.36341 0.13969)))))))) (cos (- (+ (+ NZ NZ) (avg (+ (+ NZ NX) (+ NY X)) (- (cos (avg
(+ (+ Z (* NX X)) X) NX)) (- (cos (min NY 0.13969)) (sin X))))) (min 0.36341 0.13969)))))))) (cos (avg (- (+
(- Z NZ) (* NX X)) (+ (avg Z NZ) (lum NXYZ))) (avg (max (+ (avg Z NZ) (+ Z (- NZ NX))) (min (+ (* (avg
(+ (+ NZ NX) (+ NY X)) (- (cos (- Z Y)) (min 0.36341 0.13969))) (- (- NZ NX) NZ)) (- NZ NX)) (- (cos NZ)
NY))) (- (* (- (cos NZ) (- Z NX)) (min (sin X) (- Z NZ))) NX))))))

Fig. 7. Example solution for primary colour cube (col. 3 of Fig. 6).

24

Fig. 8. Terrain texture. Each column is a solution.

25

Fig. 9. Woman’s clothing training points.

Fig. 10. Woman’s clothing texture. Four solutions. Terrain uses bottom right cloth-
ing texture.

26

Fig. 11. Fitness progress for clothing texture run.

27

Fig. 12. Normal and gradient specialized texture. Each row is a solution.

28

Fig. 13. Swapping blue channel with gradient. Each row is a solution.

Fig. 14. Banded cube training points.

29

Fig. 15. Banded cube texture. Each row is a solution.

30

