
Procedural Texture Evolution Using Multi-objective Optimization 1

Procedural Texture Evolution Using Multi-
objective Optimization

Brian J. ROSS and Han ZHU

Brock University, Dept. of Computer Science
St. Catharines, Ontario, Canada L2S 3A1
bross@cosc.brocku.ca

Received March 23, 2004

Abstract This paper investigates the application of evolutionary
multi-objective optimization to two-dimensional procedural texture syn-
thesis. Genetic programming is used to evolve procedural texture for-
mulae. Earlier work used multiple feature tests during fitness evaluation
to rate how closely a candidate texture matches visual characteristics of
a target texture image. These feature test scores were combined into
an overall fitness score using a weighted sum. This paper improves this
research by replacing the weighted sum with a Pareto ranking scheme,
which preserves the independence of feature tests during fitness evalua-
tion. Three experiments were performed: a pure Pareto ranking scheme,
and two Pareto experiments enhanced with parameterless population di-
vergence strategies. One divergence strategy is similar to that used by
the NSGA-II system, and scores individuals using their nearest-neighbour
distance in feature-space. The other strategy uses a normalized, ranked
abstraction of nearest neighbour distance. A result of this work is that ac-
ceptable textures can be evolved much more efficiently and with less user
intervention with MOP evolution than compared to the weighted sum ap-
proach. Although the final acceptability of a texture is ultimately a sub-
jective decision of the user, the proposed use of multi-objective evolution
is useful for generating for the user a diverse assortment of possibilities
that reflect the important features of interest.

Keywords Procedural Textures, Multi-objective Optimization, Ge-
netic Programming.

2 Brian J. ROSS and Han ZHU

§1 INTRODUCTION
In the future, many important applications that will be addressed by

advanced computer software systems will be fundamentally subjective in nature.
For example, advanced natural language understanding systems will have to
consider a variety of points of view when analyzing a plot from a story. When
presented with a work of art, high-end image analysis systems will consider a
variety of nuances in the subject, composition, artist’s intension, and historical
context of the image. A music generation system will incorporate a suite of highly
subjective measurements when synthesizing musically interesting compositions.
In all these examples, it is important to realize that the quality of a solution
is not necessarily measurable by a precise mathematical model. Just as two
people might disagree on the meaning of a novel or painting, computer software
will similarly be working in a grey area, in which there is no canonically correct
interpretation. Nevertheless, problems that are inherently subjective should
not discourage nor frighten computer scientists from investigating algorithmic
solutions. Otherwise, the most important application domains that might be
tackled by artificial intelligence will be tragically ignored.

This paper addresses an application area that can be highly subjective in
nature – automatic image synthesis. To summarize, we wish the software system
to generate images that are in some sense similar in appearance to one or more
sample images. The synthesized images are generated by procedural textures,
which are algorithmic image generation expressions. Procedural textures are
used in computer graphics to produce a variety of photo-realistic effects, such
as stone, wood, clouds, and other natural and unnatural phenomena 3, 20). The
successful engineering of new procedural textures that display desired visual
effects requires extensive mathematical insight and analytical modelling. This
means that procedural texture design is technically difficult and unintuitive for
most users.

To simplify the invention of new procedural textures, a number of texture
exploration tools based on evolutionary computation have been devised. Evolu-
tionary computation can often excel in efficiently exploring a large search space.
Most of these texture evolution systems are interactive and user-supervised, re-
lying on the user to be the judge of texture fitness and suitability, and hence
guide the direction of evolution. A few texture evolution systems used unsuper-
vised evolution 8, 21). These systems replace the user with a conventional fitness
evaluator, in which candidate textures are scored via a number of image anal-

Procedural Texture Evolution Using Multi-objective Optimization 3

yses routines, in an attempt to find a match with the features from a “target”
image. Although rudimentary in their scope, a combination of feature tests usu-
ally gives satisfactory results. The reconciliation of independent feature tests by
the fitness function, however, is difficult to do effectively. Furthermore, effective
evolution in these systems also requires extensive computational effort.

This paper addresses the texture evolution problem by considering it to
be an instance of a multi-objective optimization problem (MOP) 1, 4). A MOP
is characterized by a set of distinct features, in which different combinations of
features result in optimized results. We use Goldberg’s Pareto fitness ranking
strategy, which considers the fitness space to be a stratification of ranks 5). The
top rank represents a set of solutions that is not dominated or improved upon
by any other solution in the population. The value of Pareto optimization in the
texture evolution problem is that it circumvents the need to reconcile indepen-
dent feature tests. Each feature test is retained as an independent dimension
of a visual characteristic of a texture, and no single feature will dominate any
others during the run. Along with a pure Pareto ranking scheme, some diversity
promoting strategies are used. The result is that textures are evolved with the
Pareto fitness strategy that are competitive with earlier experiments 21) that used
a weighted sum to score results, but are obtained significantly more efficiently,
and with minimal experimental design decisions by the user.

Section 2 discusses the use of evolutionary computation in texture gen-
eration, and overviews the texture feature tests used in our experiments. Section
3 discusses multi-objective optimization, and the Pareto and diversification algo-
rithms. Details about the genetic programming experiments are given in Section
4. Some results are shown in Section 5. Comparisons with related work are dis-
cussed in Section 6. A discussion and directions for future research conclude the
paper in Section 7.

§2 Automatic Texture Evolution

2.1 Procedural textures
Textures help create photorealism in computer graphics 3, 20). The most

common textures are procedural textures and bitmapped textures. Procedural
textures are computed via algorithms and mathematical formulae. They take as
input a coordinate or pixel location in 2D- or 3D-space, and compute a corre-
sponding pixel colour, in terms of an RGB (red, green, blue) triple for display

4 Brian J. ROSS and Han ZHU

on a monitor or printer. Bitmap textures wrap or tile a bitmap image onto an
object surface. Procedural textures have a number of advantages over bitmap
textures. They can be applied seamlessly over 3D objects, whereas bitmaps tend
to produce seams, stretch marks, and tiling artifacts. Procedural textures faith-
fully simulate a variety of natural phenomenon, including stone, cloud, wood,
and landscaping effects. Their mathematical nature makes them extremely ro-
bust, as there are an infinite variety of equations conceivable, all yielding new,
unique effects. Due to their mathematical nature, it is extremely difficult to
write a procedural texture formula from scratch that will produce an arbitrary
desired graphical effect. With a bitmap texture, however, one merely needs to
scan an image of the desired texture effect. Most applications therefore store a
library of parameterized procedural textures for known effects, which the user
can tailor as desired.

Figure 1 shows a procedural texture formula and its corresponding tex-
ture.

2.2 Texture evolution
The use of evolutionary computation is well established as a means for

searching the infinite space of procedural texture formulae 13, 15). Genetic al-
gorithms are well-adapted to this task, as the abstract concept of chromoso-
mal “building block” correlates well with the visual characteristics found within
terms of a texture formula. Texture formulae can be implemented as tree–based
programs, which can then be subjected to crossover and mutation operators as
used in genetic programming. Most texture evolution systems are interactive,
and rely on a human being to perform fitness selection on candidate textures.
This overcomes the complexity of automatic texture evaluation. A combination
of user-directed selection, mutation and refinement lets these systems converge
on a texture formula that satisfies some aesthetic requirements.

A few systems, such as Genshade 8) and Gentropy 21), perform automatic
texture analyses. A fitness function tests how closely a candidate texture shares
colours, patterns, and other features with a target texture. These feature tests
perform fairly basic image analyses, since it is a practical necessity that fast
and efficient tests be used in an evolutionary environment. The most accurate
analyses of images would use sophisticated computer vision technology, which is
too slow to be practical, and largely an open research problem.

The Genshade system evolves Renderman shaders 8). Chromosomes take

Procedural Texture Evolution Using Multi-objective Optimization 5

the form of directed acyclic graphs, which are akin to the S-expression trees used
in conventional genetic programming 9). Nodes of these graphs are references to
Renderman shader primitives, which are high-level texture generation functions
18). Genshade applies lumination, colour, and wavelet analyses to candidate tex-
tures, and attempts to match these scores with counterpart analyses performed
on target textures. Multiple parallel populations are used, to promote genetic
diversity. Genshade can be run in automatic or interactive modes.

Gentropy uses strictly automatic texture evolution21). Unlike Genshade’s
high-level texture language, Gentropy uses a lower-level set of texture genera-
tors, such as basic mathematical operators, and noise and turbulence effects. A
suite of different image feature tests is available, ranging from simple pixel-to-
pixel colour matches, to higher-level wavelet shape matching. Although each
feature test by itself is not a satisfactory nor adequate metric for image match-
ing, a combination of different tests often gives impressive results. Nevertheless,
sometimes the most pleasing results are those that do not necessarily have the
highest fitness score. Hence the notion of an “optimal solution” is not entirely
pertinent in this problem domain (although the target image itself would result
in a perfect score on all the measures). Nevertheless, the use of feature-test
scores within an evolutionary algorithm is still useful, for without such guidance
during search, the user would be presented with a myriad of textures that bear
no resemblance to the target texture.

Gentropy’s use of multiple feature tests is effective for automatic texture
evolution. A straight-forward combination of feature tests, however, often gen-
erates unsatisfactory results. This is because one feature usually dominates the
overall score for the run, resulting in a texture biased towards that particular
feature test. This domination can occur because one feature test scale may have
a disproportionately higher magnitude than another. Furthermore, one feature
characteristic (colour) might be much easier to satisfy than another more intri-
cate feature (shape) for a particular experiment. Although this behaviour can
be lessened with a strategically weighted sum of fitness scores, in general this is
an unsuitable solution, because it is intuitively difficult to reconcile independent
feature tests with a set of ad hoc predefined weights. The stochastic nature of
genetic algorithms dictates that one run can differ significantly from another,
which a static definition of weights may be unable to effectively address.

To try to compensate for this problem, Gentropy resorts to the use of
an Island-model genetic algorithm. A network of demes is defined, in which

6 Brian J. ROSS and Han ZHU

each deme is dedicated to one or more feature tests, possibly on different target
textures. At the highest level in the deme network, the various results from other
demes are combined into an overall score, using some weighted sum of feature
scores. This differs from Genshade’s parallel model, in which each population
uses the same standard feature tests. Unfortunately, Gentropy’s use of demes is
computationally expensive, as the combined population size is often over 5000
individuals.

2.3 Texture feature tests
Image feature tests evaluate how closely various visual characteristics

of candidate textures match against target textures. These feature tests are
adapted from those used by query by image content systems 16). The Gentropy
system supports a number different feature tests, and any combination of them
can be used within runs. The goal of each test is to act as a heuristic for matching
some visual characteristic of a candidate texture with that of the target texture.
Except for the most trivial textures, it is unlikely that an evolved texture will
exactly match the target. Hence perfect feature matches are not expected. In
any case, it is not a goal of texture evolution to generate the exact target texture
– that is an image compression problem. Rather, we wish to evolve a new texture
having visual characteristics similar to that of the target, and we use the target
texture as a guide or example. The remainder of this section briefly reviews the
feature tests used in this research. See 21) for more details on feature tests.

Gentropy’s feature tests fall into one of three general categories: colour,
shape, and smoothness (Table 1). These categories are not mutually exclusive.
For example, the CDIR test indirectly evaluates shape and smoothness features
as well, even though colour is the primary characteristic of interest. The colour
matching tests evaluate colour characteristics of an image:

1. CDIR (colour direct): This test matches a target and candidate texture
pixel-by-pixel. The distance in RGB colour space between a candidate’s
generated pixel colour and the corresponding target’s pixel colour is
computed. The overall distance is summed for all pixels in the image.

2. CHISTQ (colour histogram quadratic): The image is first quantized, by
rounding colours into coarser ranges. Then a histogram of quantized
colour frequencies is calculated. The histograms for two images are
then compared with one another, and an overall distance between them
is calculated. The term “quadratic” refers to the fact that all the

Procedural Texture Evolution Using Multi-objective Optimization 7

histogram entries in both images are compared exhaustively with one
another, to determine how close the colours distributions are between
the images. Unlike CDIR, the CHISTQ test is position-independent,
as it does not consider the locations of colours within images.

Shape tests evaluate pattern and edge correspondences:

1. WAV (wavelet): This performs a wavelet comparison of two images.
An image is first converted to grey-scale, by assigning shades of grey to
the frequencies of quantized colours in the original. Then basic Haar
wavelet decompositions are performed on the rows and columns of this
grey-scale image 17). The most pronounced coefficients in the image are
then saved. The wavelet decompositions of two images are compared
with each other, resulting in a basic shape comparison between the
images.

Smoothness tests analyze inter-pixel deviations.

1. SHIST (smoothness histogram): This measures the degree to which a
pixel deviates from its eight surrounding neighbour pixels, and thus
measures colour discontinuity. The relative deviation is mapped into
a grey-scale image, which essentially is a type of edge analyses of the
texture. A frequency histogram is then computed for it, and used for
comparison.

rgb(mod(turbflow(Y,X,X), sin(X)),
lum(marble(0.94, -0.78, (-0.46,0.50,-0.63))),
turb(chn(COLGRAD), cos(-0.24)))

Fig. 1 Formula and texture

§3 Evolutionary Multi-objective Optimization
A multi-objective optimization problem (MOP) is characterized by a set

of multiple objectives or parameters, often of which are related to one another in
conflicting, nonlinear ways. Evolutionary computation has been widely applied

8 Brian J. ROSS and Han ZHU

Colour tests Description
CDIR Pixel-by-pixel colour correspondence.
CHISTQ Matches similar colours, position independent.

Shape test Description
WAV Matches wavelet coefficients.

Smoothness test Description
SHIST Matches colour smoothness, position independent.

Table 1 Feature test summary

to MOP’s 1, 4, 19). Their success in MOP resides in their natural adaptability
to the MOP characterization of problems in terms of representation (chromo-
somes) and performance evaluation (fitness functions), and the correspondence
of the multidimensional MOP search space with the schema characterization of
evolutionary search 6).

3.1 Pareto Ranking
A popular approach to solving MOP with genetic algorithms is Gold-

berg’s Pareto ranking scheme 5). The basic idea of a Pareto ranking is to preserve
the independence of objectives. This is done by retaining a set of possible so-
lutions, all of which are legitimate solutions with respect to the population at
large. This contrasts with a pure genetic algorithm’s attempt to ascribe one
optimal solution for a MOP, which necessitates a reconciliation of different ob-
jective strengths in order to obtain a single optimal solution. The weighted sum
used in a single-objective genetic algorithm will also add bias to the kind of re-
sult obtained. For many MOP’s, relating different objective dimensions with one
another can be difficult and arbitrary, and the results are often unsatisfactory.

The following is based on a discussion in 19). We assume that the MOP
is a maximization problem (higher scores are preferred).

Definition 3.1

Given a problem defined by a vector of objectives ~f = (f1, ..., fk) subject to
appropriate problem constraints. Then vector ~u dominates ~v iff ∀i ∈ (1, ..., k) :
ui ≥ vi ∧ ∃i ∈ (1, ..., k) : ui > vi. This is denoted as ~u � ~v.

Procedural Texture Evolution Using Multi-objective Optimization 9

The above definition says that a vector is dominated if another vector exists
which is better in at least 1 objective, and at least as good in the remaining
objectives.

Definition 3.2

A solution ~v is Pareto optimal if there is no other vector ~u in the search space
that dominates ~v.

Definition 3.3

For a given MOP, the Pareto optimal set P∗ is the set of vectors ~vi such that
∀vi : ¬∃~u : ~u � ~vi.

Definition 3.4

For a given MOP, the Pareto front is a subset of the Pareto optimal set.

A typical MOP will have a multitude of conceivable solutions in its Pareto op-
timal set. Therefore, in a successful run of a genetic algorithm, the Pareto front
will be the set of solutions obtained.

To implement Pareto scoring in a genetic algorithm, chromosome fitness
scores take the form of Pareto ranks. Figure 2 shows how a Pareto ranking
can be computed for a set of vectors. To compute Pareto ranks, the set of
nondominated vectors in the population are assigned rank 1. These vectors are
removed, and the remaining set of nondominated vectors are assigned rank 2.
This is repeated until the entire population is ranked. Genetic evolution then
proceeds as usual, using the rank values as reconstituted fitness scores (lower
ranks are fitter). Note that Pareto ranks are always relative to the current
population. This implies that every generation in a run will have at least a
rank 1 set. This has repercussions on performance measurements, as there is no
concept of “best solution” amongst all the rank 1 members.

3.2 Population diversity strategies
The Pareto ranking strategy in Figure 2 will invariably suffer from pre-

mature convergence, and hence populations that lack diversity. This convergence
is a result of natural genetic drift, and also because the discrete Pareto ranks
define a coarse search space. As soon as a significantly improved candidate
chromosome is discovered, it will quickly dominate rank 1. To compensate for
this, attention has been directed towards the maintenance of genetic diversity
within the Pareto ranks 19). For example, fitness sharing amongst solutions in

10 Brian J. ROSS and Han ZHU

the Pareto front will prevent premature convergence. This can be done with re-
spect to population density and/or niche size 7, 10, 11), or vector distances between
members 14). Others have suggested more automated, parameterless techniques
that do not require foreknowledge of objective fitness space characteristics 2, 12).
Therefore, the use of some strategy for maintaining population diversity within
the Pareto rankings is mandatory for most problems.

To counteract premature convergence, we implement two population
diversity or diffusion schemes. These strategies are generic, and should give sat-
isfactory results for many MOPs. They are also very similar to the one used by
the NSGA-II system, and the reader is directed to 2) to see performance mea-
surements on standard MOP problems. Besides the simplicity and low overhead
of these diversity heuristics, an advantage of these strategies is that they are pa-
rameterless: the user does not need to submit parameterizations of the objective
fitness space or population characteristics.

To encourage population diversity, fitness evaluation must award di-
verse individuals. One indicator of diversity is the proximity of an individual’s
objective vector to those of its fellow members of the rank set. The heuris-
tic chosen here is the nearest-neighbour distance between population members
within ranks. This diversity heuristic can be computed with no prior knowledge
of the topology of the multi-objective fitness landscape. It captures the fact
that a perfectly diverse population will have equal nearest-neighbour distance
measurements (Figure 3a). This is a local measurement of diversity, as it does
not examine global distribution characteristics of the population. Hence, the
global distribution can be unbalanced (Figure 3b). There is a debate in evo-
lutionary MOP research whether crossover amongst widely diverse members in
the same rank set is detrimental, and whether mating amongst distant rank set
members should be restricted 19). Hence a localized measurement of diversity
such as nearest-neighbour distance may be preferrable for some problems. It
must be emphasized that texture evolution does not require overly precise diver-
sity testing. The feature analyses used are a rudimentary estimation of texture
suitability, and the user’s aesthetic decision will play a roll at the end of the
run. The diversity heuristics do try to ensure that the user is presented with a
variety of candidate solutions from which to choose.

Both diversity strategies evaluate individuals such that the following two
constraints are maintained. In the following, each individual xi in a population
has an associated objective vector ~vi. We will often refer to population members

Procedural Texture Evolution Using Multi-objective Optimization 11

by their objective vectors. We assume that the scores reflect a maximization
problem. Firstly, fitness scores respect the Pareto rank hierarchy:

if Rank(~vi) < Rank(~vj)
then score(~vi) > score(~vj)

Secondly, given two feature vectors ~vi and ~vj for individuals belonging to the
same rank set R:

if nearest neighbour distance(~vi)
> nearest neighbour distance(~vj)

then score(~vi) > score(~vj)

The algorithms compute a score for each population member using the above
constraints. Selection will then favour more optimal (lower) Pareto ranked indi-
viduals, and more diverse individuals within the same rank.

[1] Div1: Nearest neighbour distance diversity

Figure 4 shows pseudocode for the first diversity scoring algorithm, Div1.
This algorithm is essentially the same as that used in NSGA-II 2), the main
difference being that real Euclidean distances in fitness space are computed
here, whereas NSGA-II uses a simplified formulation of distance. In step 1, the
normal Pareto ranks are assigned to the population, as done in Figure 2. Then
the members in each Pareto rank set are processed . In step 2, the objective-
space distance between each member and its nearest neighbour within members
in its rank set is computed. Finally, in step 3, these nearest-neighbour distances
are scaled into a score. It is assumed that the scores for all ranks will be assigned
in a fractional manner, perhaps between 0.0 and 1.0, where a perfect solution
is 1.0. Score calculation is done linearly with respect to the nearest neighbour
distances obtained for members in that rank set, and is scaled into a range
[Lowi,Highi) for each rank Ri, under the above constraints. The member of
Ri with the longest nearest-neighbour distance is assigned a score of Highi ∗ c,
and the individual with the shortest nearest-neighbour distance is mapped to
Lowi. The c constant is a fraction < 1.0. It is used to prevent scores getting
assigned to Highi, which belongs to the next rank set, or 1.0 (a perfect solution).
Experiments in Section 5 use c = 0.90. The genetic algorithm uses a tournament
selection, which is only sensitive to relative differences in score values (ie. is score
1 greater than score 2), and not the actual proportion of such differences. Other
selection schemes, such as Roulette wheel, may be more sensitive to the details of

12 Brian J. ROSS and Han ZHU

the score mapping. Note that a perfect objective score (eg. 1.0) will be mapped
to 1.0 ∗ c, which might need to be accounted for within the genetic algorithm.
Also note that individuals that have duplicate solutions (feature vectors) in the
population will result in the worst score in their rank’s mapping, as they will all
map to Lowi. They will still have stronger scores, however, than individuals in
ranks that they dominate.

An example of Div1 scoring is given in Table 2. Note how these 4
feature vectors are undominated with respect to one another, and hence are
in the same rank 1 set should they represent the entire population. Nearest
neighbour refers to the ID of the nearest neighbour for each member, and MinDist
is the corresponding distance to it in the 3-dimensional feature space in which
~v resides. Higher values of MinDist thus denote individuals that are further
away from their nearest neighbours, and are therefore more diverse. The score
is calculated for the range [0.9, 0.99]. Using the formula from Figure 4, this
range could be computed with Low1 = 0.90, High1 = 1.0, and c = 0.9.

[2] Div2: Ranked nearest neighbour distance diversity

Div1’s scoring formula preserves the Pareto ranks, while the nearest-
neighbour distances within each rank’s score range is computed from raw ob-
jective score values. This is acceptable for problems in which all the objective
metric spaces are relatively uniform in scale, and changes in the separate objec-
tives occur at approximately the same rate. As with weighted sums of multiple
objective scores, however, this strategy can be unduly affected by changes in
single objectives, and especially when objective metric scales are not uniform.
A dramatic change in one objective dimension can impact the overall nearest-
neighbour distance. This problem is particularly relevant with respect to the
feature tests used in texture synthesis. For example, wavelet test scores have a
much smaller metric scale than colour histogram scores. In such cases, the Div1

nearest-neighbour distance will virtually ignore the effect of wavelet analyses, in
favour for the higher-magnitude changes resulting from colour and other tests.

The Div2 scoring scheme in Figure 5 also uses nearest neighbour dis-
tances as a diversity heuristic. Rather than using a raw nearest-neighbour dis-
tance as computed in the feature-space, Div2 normalizes these distances into
relative ranks, and keeps the ranked ordering for each objective independent
from one another. This ensures that objective distances will not unfairly domi-
nate one other. These ranks should not be confused with the higher-level Pareto

Procedural Texture Evolution Using Multi-objective Optimization 13

Nearest
~v neighbour MinDist Score

1 (0.1, 0.2, 0.9) 2 0.4243 0.92
2 (0.2, 0.1, 0.5) 3 0.3000 0.90
3 (0.4, 0.3, 0.4) 2 0.3000 0.90
4 (0.8, 0.9, 0.0) 3 0.8246 0.99

Table 2 Div1 scoring example. Scores range is [0.90, 0.99].

~v ~d ~r ravg Score

1 (0.1, 0.2, 0.9) (0.1, 0.1, 0.4) (1, 1, 2) 1.33 0.922
2 (0.2, 0.1, 0.5) (0.1, 0.1, 0.1) (1, 1, 1) 1.0 0.90
3 (0.4, 0.3, 0.4) (0.2, 0.1, 0.1) (2, 1, 1) 1.33 0.922
4 (0.8, 0.9, 0.0) (0.4, 0.6, 0.4) (3, 2, 2) 2.33 0.99

Table 3 Div2 scoring example

ranks. They are essentially sub-ranks that denote the ranked order of the mem-
bers within each Pareto rank. In step 2, the minimum distance for each feature
dimension is determined for every population member. This differs from Div1,
which computes the overall distance in feature-space. Step 3 then converts these
feature distances into ranks, where each rf corresponds to the ranking of feature
vf . The average rank value is computed in step 4. It is then converted to a
fitness score in step 5, in the same manner as in Div1.

An example of Div2 scoring is in Table 3. The same 4 individuals from
Table 2 are used. The ~d column shows the separate nearest neighbour distances
for each feature dimension. These distances are then sorted and ranked, and the
resulting rank numbers are shown in the ~r column. Here, higher rank numbers
are preferable, as they indicate that the corresponding distance is numerically
higher in the list of nearest neighbour distances for that feature. The average
rank value for each ~r is determined in ravg, which is used for mapping the vectors
in the score range in the Score column. Therefore, the intention here is to not
combine the individual feature distances into an overall Euclidean distance in
feature space, but instead to consider the overall diversity of a vector based
on diversity of each separate feature component. The net effect on the scores
compared to those in Table 2 is that vector #3 now has an intermediate fitness
level, whereas it is considered less fit in Table 2.

14 Brian J. ROSS and Han ZHU

Curr Rank := 1
N := (population size)
m := N
While N 6= 0 { /* process entire population */

For i := 1 to m { /* find members in current rank */
If ~vi is nondominated {

rank(~vi) := Curr Rank
}

}
For i := 1 to m { /* remove ranked members from population */

if rank(~vi) = Curr Rank {
Remove ~vi from population
N := N-1

}
}
Curr Rank := Curr Rank + 1
m := N

}
Fig. 2 Pareto Ranking Algorithm

§4 Experiment
Table 4 summarizes the MOP strategies and feature test sets used in

the experiments. The two feature sets use at least one feature test from each of
the colour, shape, and smoothness categories. Not all MOP strategies were run
with all feature test sets, since it was clear during early runs that pure Pareto
consistently produced poor results.

The strongly-typed lilGP 1.1 system is used 22). LilGP is a C-based
system, which implements tree-based genetic programming 9). Table 5 lists the
common parameters used in all the experiments. The GP parameters are stan-
dard in the literature; see 9) for details. A total of five rank 1 solutions were
extracted per run, which the user can then select from. These represent random
rank 1 solutions for the pure Pareto runs, and the most diverse rank 1 solutions
for the Pareto with diversity runs. Although the actual rank 1 set is often in the
100’s, the generation of five solutions is adequate to show the relative diversity
of the population. The image parameters are particular to the image processing
done during the feature tests described in Section 2.3.

Procedural Texture Evolution Using Multi-objective Optimization 15

Fig. 3 Effects of nearest-neighbour heuristic on diversity

The texture language, inspired by one in 15), is outlined in Table 6.
LilGP’s strong typing is useful for differentiating expressions that operate over
floats and RGB colour vectors (an array of three float values). During interpre-
tation, numeric values in floats and vectors are truncated to the range [-1.0, 1.0]
before converted to RGB. The float terminals x and y are the current 2D coor-
dinates being processed. An ephemeral constant (float or vector) is a constant
that is initialized with a random value when created, and then retains that value
throughout its lifetime during a run. The float nonterminal set includes stan-
dard arithmetic and trigonometric functions. Some specialty texture-oriented
functions are also included. lum computes luminance by averaging the RGB
channels. avg returns the mean of two arguments. Repeating tile patterns are
generated with tilerad. Various texture effects are generated by noise, turb,
turbflow, and cloud. The if function permits conditional processing, and forv,
chn, and ichn perform iterative processing on vectors. Vectors terminals include
ephemeral constants, as well as colgrad, which generates a vector using the cur-
rent x, y, and distance to origin. The nonterminal rgb constructs a vector from 3
float values. The remaining vector nonterminals generate a variety of noise and
other texture effects. Further details about the texture primitives are found in
21).

§5 Results
Figures 6 and 7 illustrate solutions that show typical behaviours of the

pure Pareto, Div1 and Div2 experiments. These results use the feature set
2b in Table 4. Two separate run results are shown for each experiment. The
5 solutions shown are random rank 1 solutions for the pure Pareto run, and

16 Brian J. ROSS and Han ZHU

1. Find Pareto ranks.
2. Compute feature-space distance to nearest neighbour for population:

For each rank set Ri {
For each individual ~vj ∈ Ri {

Compute feature-space distance between ~vj = (vj1, v
j
2, ..., v

j
n)

and all other ~vk ∈ Ri(k 6= j)

where distjk =

√√√√ n∑
i=1

(vji − vki)2.

MinDistj := (minimum distjk, the nearest-neighbour distance)
}

}
3. Convert nearest-neighbour distance into fitness score:

For each rank set Ri {
Lowi := (minimum fitness score for rank Ri)
Highi := (maximum fitness score for rank Ri)
dmin := (minimum MinDistj for members in Ri)
dmax := (maximum MinDistj for members in Ri)
For each individual vj ∈ Ri {

scorej := Lowi +
MinDistj − dmin
dmax − dmin

∗ (Highi − Lowi) ∗ c

}
}

Fig. 4 Diversity Rating Algorithm Div1

the most diverse rank 1 solutions for the Div runs. These runs are selected
from a total of 6 for each experiment, and are chosen as examples of better
quality solutions. All of these experiments used the same random number seed,
and hence the same initial population. The individual feature test scores are
included with each texture. These scores are between 0 (worst) to 100 (best).
The top feature test scores are underlined.

In the pure Pareto runs, the first thing to note is that the solutions
show a high degree of convergence. In other pure Pareto runs examined, it
was common to find all the solutions to be identical. Also note how a few
of the solutions in run 2 have a problem with colour; the CDIR scores are
correspondingly low. Compared to the Pareto runs, the Div1 and Div2 runs
have a better overall colour match with the target image. Furthermore, the Div2

Procedural Texture Evolution Using Multi-objective Optimization 17

MOP strategies:
1a. pure Pareto
1b. Div1

1c. Div2

Feature test sets:
2a. CHISTQ, WAV, SHIST
2b. CDIR, CHISTQ, WAV, SHIST

Table 4 Major parameter sets

runs have more diverse solutions than Div1, thus showing how the ranked nearest
neighbour diversity heuristic is advantageous. Nevertheless, Div1 did produce
more higher-scoring feature tests. Which solutions from these two strategies are
better is a subjective decision.

Figures 8 and 9 show good results selected from different runs using
Div2 diversity, and using the two different feature test sets from Table 4. In the
first figure, both feature test sets produce visually similar results. It was found
that set 2b, which uses the additional CDIR test, tended to produce textures
that matched the positions of colours in the target, since the CDIR test scores
positional colour matches. An example of this tendency is the first texture in
the upper row 2b, which is attempting to create a colour gradient that roughly
matches the target colour distribution. This is also seen in the first texture of
the lower row for test 2b. Here, there is an attempt at putting colours into the
quadrants where they are found in the target.

The stripe target texture in Figure 9 are fairly well simulated in the
results, and there are not many differences in the quality of the Div1 and Div2

runs.
The most challenging texture studied is the second target image in Fig-

ure 9. This target has a wide variety of colours of different luminosities within
complex convoluted shapes. All the results shown have fairly good colour and
luminosity (brightness) matches. The shape was difficult to reproduce, however.
Many results used a familiar radial pattern, which is seen in 8 of the 10 results
shown. This difficulty is perhaps due to inadequate imprecision in the wavelet
analysis, or a lack of necessary texture primitives. We also discovered that the
2b results were less varied than the corresponding 2a ones. This is due to 2b’s

18 Brian J. ROSS and Han ZHU

GP Parameter Value
Evolution paradigm generational
Max generations 100
Runs/experiment 6
Rank 1 solutions/run 5
Population size 1000
Initialization ramped half&half
Initial tree depth 2 to 6
Max tree nodes 100
Max tree depth 50
Crossover rate 0.90
Mutation rate 0.10
Tournament size 5

Image Parameter Value
Resolution 50x50
quantized colours 1000
quantized greys 50
wavelet coefficients 50

Table 5 Common experiment parameters

positional colour matching with the CDIR feature test, which can be seen in the
second last image in the 2b row.

Figure 10 shows some results using multiple targets, and using the Div2

diversity strategy. With these multiple target runs, a solution image is synthe-
sized that will have the combined features of two distinct target images. The
“shape image” is the target image used for shape information as measured with
the WAVE feature test. The colour image is a source of colour information on
which the CHISTQ feature test is applied. The results in the figure show a
number of hand-selected solutions from multiple runs. It is clear from all the
examples that the colour requirement was successfully met, as all the results are
drawn in the basic colours of the colour target image. The shape requirement is
also clearly successful in the bottom stripes examples. The top example’s shapes
are much more complex than the stripes, as is evident in the results. Because
the colour target has no gradient colours (shades), this affects the appearance of

Procedural Texture Evolution Using Multi-objective Optimization 19

Float terminals: x, y, ephemeral constants
Float nonterminals: lum, avg, +, -, diff, *, /, max, min, not, sin, cos,

mod, log, pow, tilerad, noise, turb, turbflow, cloud,
if, chn, ichn

Vector terminals: colgrad, ephemeral constants
Vector nonterminals: rgb, marble, warprel, warpabs, kaleid, tile, forv

Table 6 Texture language

the resulting shape patterns, which are shaded via gradients in the shape target
image.

§6 Related Work
Most other texture evolution systems are supervised, in which the user

must manually evaluate each texture 15, 13). The Genshade 8) and Gentropy 21)

systems replace user-evaluation with sets of feature tests, resulting in unsuper-
vised texture evolution. The main contribution of this paper is the treatment
of multiple feature tests as the basis of a MOP suitable for Pareto scoring. In
doing so, it replaces the weighted sum and multiple populations of Genshade and
Gentropy with a simpler Pareto scoring strategy, supplemented with population
diversity strategies. The results obtained here with the Div2 diversity strategy
are competitive with the non-MOP ones in 21). One difference, however, is that
these MOP results were obtained more efficiently, as a population size of 1000
was used here, instead of 5600 often used in 21). In addition, MOP experiments
are much simpler to design compared to weighted-sum multi-population ones
as done in Gentropy. In the latter case, each new experiment requires a clever
design of a texture-testing network, while with MOP, no special provisions are
required for new experiments. The treatment of texture evolution as an MOP
can be exploited in supervised texture evolution as well, as it lends a new way
to rate textures to be presented to the user for evaluation. In addition, popula-
tion diffusion heuristics such as Div2 can be of benefit in supervised systems, to
ensure that the user is presented with a varied set of acceptable solutions.

The nearest-neighbour diversity heuristic used here is similar to that
used in the NSGA-II system 2). Both are parameterless strategies that use
nearest-neighbour distances to promote population diversity. The Div1 strategy
is basically the same as NSGA-II’s formulation, while Div2 uses an abstraction

20 Brian J. ROSS and Han ZHU

of distance in order to avoid the dominance of feature scores. Whether Div2 is
advantageous in general over the Div1/NSGA-II approach depends on the nature
of the application problem. In problems with uniform objective scales and rates
of change, the use of absolute feature distances is probably an advantage. On
the other hand, with problems that have widely differing scales, like the feature
evaluation of images done here, Div2’s abstraction is superior.

Another similarity of the Div strategies and NSGA-II is that they are
both parameterless, and do not require the user to supply problem-specific de-
tails of the MOP search space. This constrasts with parameter-based work in
7, 14), which requires the user to enter niche radius values in order to define the
objective size of niches. In general, parameter-based approaches require fore-
knowledge of the MOP fitness space which might not be accurately know, if
at all. Poorly chosen parameters will adversely affect evolution. The work in
12) presents some alternative strategies for promoting diversity in evolutionary
MOP, many of which are applicable to texture evolution. However, given the
ultimately subjective nature of texture selection, it is unlikely that more sophis-
ticated diversity strategies will show a noticeable improvement.

§7 Conclusion
This paper establishes that evolutionary MOP techniques are ideally

suited to texture evolution. Pareto with diversity is an excellent way to evolve
a variety of textures from which the user can inspect and select. This is nat-
urally suited to texture synthesis, given the subjective nature of the problem.
Treating multiple feature tests as independent objectives removes the difficulty
of reconciling independent feature scores.

The pure Pareto strategy without diversity heuristics was unacceptable
since, predictably, premature convergence always arose. The nearest-neighbour
distance strategies used by Div1 and Div2 prevented premature convergence.
Although Div1’s population was diverse, the quality of solutions was often unsat-
isfactory. This undoubtedly arose because of domination by individual features
when computing the raw nearest-neighbour distance in objective space. Div2’s
ranked diversity scoring consistently produced the best results. This implies that
Div2’s abstraction of the individual feature space distances is well-suited to the
problem of texture synthesis, where difference feature tests use widely different
scales of measurement.

One unexpected discovery is that increasing the number of feature tests

Procedural Texture Evolution Using Multi-objective Optimization 21

can detract from the quality of evolved results. This contradicts the intuitively
appealing idea that a large bank of feature tests would result in more accurate
analyses: since each feature test measures one specific characteristic of an image,
lots of tests will therefore cover a host of various aspects. After comparing the
results from feature sets 2a and 2b, we found that the 2b results, which use the
additional CDIR test, were often weaker. This was puzzling at first, especially
considering the tenet of Pareto ranking – that features scores be kept indepen-
dent. The reason this happens, however, is because an increase in the number
of objectives creates a more difficult optimization problem. With additional
objectives, populations are stretched thinner across the corresponding higher-
dimensional search space. With respect to texture evolution, fewer feature tests
means that the population has a greater opportunity to evolve solutions with
better performance in all feature dimensions simultaneously, which naturally
results in better overall matches to target textures. This relates to Occam’s
Razor in many search and machine learning problems – that the most effective
solutions are often the simplest. On the other hand, adequate solution textures
rely on a minimal level of competent evaluation by the feature tests. Using too
small and primitive a set of feature tests will not result in an impressive set of
solutions from which to select.

There are a number of ways in which we could evolve better quality
results using our system. First, more sophisticated feature tests could be used.
A simple extension would be to increase the number of coefficients used in the
wavelet analysis. More advanced extensions would employ more sophisticated
image analyses as feature tests. Of course, such techniques will impact compu-
tation time, and hence evolution efficiency. Second, the texture language can
be expanded. Fractals and other texture generation primitives can be added to
enrich the texture generation formulae 13). Multiple expressions taking the form
of texture channels could be used, which would result in more complex images.
An advantage of using MOP evolution is that it removed the need for multiple
subpopulations, thus reducing computational effort. Nevertheless, it would be
interesting to apply distributed MOP evolution to texture generation, especially
if more complex feature tests were to be used.

The techniques described in this paper are currently being extended with
the addition of sophisticated feature tests that model aspects of visual aesthetics.
With these new tests, it should be possible to automatically synthesize visually
pleasing images. This is yet another example of a highly subjective domain since

22 Brian J. ROSS and Han ZHU

art is in the eye of the beholder.

Acknowledgement: Thanks to Andrea Wiens and her work on the Gentropy sys-
tem, upon which this research is founded; and to Beatrice Ombuki for her helpful
feedback. This research is supported by NSERC Operating Grant 138467-1998
and an NSERC USRA award.

Procedural Texture Evolution Using Multi-objective Optimization 23

References

1) C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
2002.

2) K. Deb, S. Agrawa, A. Pratap, and T. Meyarivan. A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In Pro-
ceedings PPSN VI, pages 849–858. Springer-Verlag, 2000.

3) D.S. Ebert, F.K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing
and Modeling: a Procedural Approach. Academic Press, 2 edition, 1998.

4) C.M. Fonseca and P.J. Fleming. An Overview of Evolutionary Algorithms in
Multiobjective Optimization. Evolutionary Computation, 3(1):1–16, 1995.

5) D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison Wesley, 1989.

6) J.H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1992.

7) J. Horn, N. Nafpliotis, and D.E. Goldberg. A Niched Pareto Genetic Algorithm
for Multiobjective Optimization. In Proceedings ICEC’94, pages 82–87, 1994.

8) A.E.M. Ibrahim. GenShade: an Evolutionary Approach to Automatic and In-
teractive Procedural Texture Generation. PhD thesis, Texas A&M University,
December 1998.

9) J.R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

10) M. Laumanss, E. Zitzler, and L. Thiele. On the Effects of Archiving, Elitism,
and Density Based Selection in Evolutionary Multi-objective Optimization. In
Proc. 1st Int. Conf. on Evolutionary Multi-Criterion Optimization, pages 181–
196. Springer-Verlag, 2001.

11) H. Lu and G.G. Yen. Rank-Density Based Multiobjective Genetic Algorithm.
In Proceedings CEC 2002, pages 944–949, 2002.

12) R.C. Purshouse and P.J. Fleming. Elitism, Sharing, and Ranking Choices in
Evolutionary Multi-Criterion Optimisation. Technical Report 815, Dept. of
Automatic Control and Systems Engineering, University of Sheffield, January
2002.

13) S. Rooke. Eons of Genetically Evolved Algorithmic Images. In P.J. Bentley and
D.W. Corne, editors, Creative Evolutionary Systems, pages 330–365. Morgan
Kaufmann, 2002.

14) J. Rowe, K. Vinsen, and N. Marvin. Parallel GAs for Multiobjective Functions.
In Proceedings of the 2nd Nordic Workshop on Genetic Algorithms and their
Applications (2NWGA), pages 61–70, University of Vaasa, Finland, 1996.

15) K. Sims. Interactive evolution of equations for procedural models. The Visual
Computer, 9:466–476, 1993.

16) J.R. Smith. Integrated spatial and feature image systems: retrieval, analysis and
compression. PhD thesis, Center for Telecommunications Research, Graduate
School of Arts and Sciences, Columbia University, 1997.

24 Brian J. ROSS and Han ZHU

17) E. Stollnitz, T. Derose, and D. Salesin. Wavelets for Computer Graphics: The-
ory and Application. Morgan Kaufmann, 1996.

18) S. Upstill. The Renderman Companion: A Programmer’s Guide to Realistic
Computer Graphics. Addison-Wesley, 1989.

19) D.A. van Veldhuizen and G.B. Lamont. Multiobjective Evolutionary Algo-
rithms: Analyzing the State-of-the-Art. Evolutionary Computation, 8(2):125–
147, 2000.

20) A. Watt and M. Watt. Advanced Animation and Rendering Techniques: Theory
and Practice. ACM Press, 1992.

21) A.L. Wiens and B.J. Ross. Gentropy: Evolutionary 2D Texture Generation.
Computers and Graphics Journal, 26(1):75–88, February 2002.

22) D. Zongker and B. Punch. lil-gp 1.0 User’s Manual. Dept. of Computer Science,
Michigan State University, 1995.

Procedural Texture Evolution Using Multi-objective Optimization 25

1. Find Pareto ranks.
2. Compute feature distance vectors to nearest neighbours:

For each rank set Ri {
For each individual ~vj ∈ Ri {

Compute ~dj := (dj1, ..., d
j
n)

where each djf is the minimum |vjf − v
k
f |

for all ~vk ∈ Ri(k 6= j), (f = 1, ..., n)
}

}
3. Assign ranks for all feature distances to nearest neighbour:

~ri := (ri1, r
i
2, ..., r

i
n)

where ranked ordering increases as distances djl increase.
4. Compute average rank for each individual:

ravgi := (
n∑
f=1

rif)/n

3. Convert average nearest-neighbour ranks into fitness score:
For each rank set Ri {

Lowi := (minimum fitness score for rank Ri)
Highi := (maximum fitness score for rank Ri)
rmin := (minimum r avgj for members in Ri)
rmax := (maximum r avgj for members in Ri)
For each individual vj ∈ Ri {

scorej := Lowi +
ravgj − rmin
rmax − rmin

∗ (Highi − Lowi) ∗ c

}
}

Fig. 5 Diversity Rating Algorithm Div2

26 Brian J. ROSS and Han ZHU

Target:

Pareto
run 1:

(49,62,35,8) (52,58,31,5) (42,49,19,8) (50,64,29,17) (52,59,28,9)

run 2:
(45,76,18,60) (33,75,30,18) (33,75,30,18) (32,71,24,24) (49,67,24,11)

Fig. 6 Randomly selected rank 1 solutions from single runs for Pareto, with feature set 2b

(CDIR, CHISTQ, WAV, SHIST).

Procedural Texture Evolution Using Multi-objective Optimization 27

Target:

Div1

run 1:
(54,72,31,49) (55,64,15,72) (54,73,38,61) (55,69,35,71) (56,71,25,53)

run 2:
(44,57,42,64) (40,75,22,75) (55,71,31,43) (56,70,26,52) (56,72,13,49)

Div2

run 1:
(45,85,16,63) (54,63,17,37) (43,79,17,71) (50,60,28,70) (44,59,23,16)

run 2:
(48,85,22,70) (54,78,29,68) (47,88,15,62) (46,87,21,69) (47,85,23,70)

Fig. 7 Randomly selected rank 1 solutions for Div1 and Div2. Feature set 2b (CDIR,

CHISTQ, WAV, SHIST).

28 Brian J. ROSS and Han ZHU

Target:

Test 2a:

Test 2b:

Target:

Test 2a:

Test 2b:

Fig. 8 Selection of results from Div2

Procedural Texture Evolution Using Multi-objective Optimization 29

Target:

Test 2a:

Test 2b:

Target:

Test 2a:

Test 2b:

Fig. 9 More results from Div2

30 Brian J. ROSS and Han ZHU

Shape:

Colour:

Shape:

Colour:

Fig. 10 Multi-target results using Div2

