
The Evolution of 3D Procedural Textures

Adam Hewgill
Department of Computer Science

Brock University
St. Catharines, ON, Canada L2S 3A1

ahewgill@hotmail.com

Brian J. Ross
Dept. of Computer Science

Brock University
St. Catharines, ON, Canada L2S 3A1

bross@cosc.brocku.ca

Abstract

Genetic programming is used to automati-
cally synthesize procedural textures for 3D
surfaces. The GP system evolves textures
with similar colour and surface characteris-
tics as training textures sampled on 3D mod-
els. The texture language includes mathe-
matical operators, colour and noise functions,
as well as surface information for the point
being rendered, such as coordinates, normal,
and gradient. Experiments successfully gen-
erated procedural textures that displayed vi-
sual characteristics similar to target textures.

1 INTRODUCTION

This paper briefly summarizes work in (Hewgill and
Ross 2003), in which genetic programming is used to
evolve procedural textures for 3D surfaces1. A pro-
cedural texture is a colour generating function that
computes the colour of some point in 2D or 3D space
(Ebert et al. 1998). For example, a 2D procedural
texture will take as input the X and Y coordinate of a
pixel, and compute the RGB colour for the pixel. 3D
procedural textures are similar defined for 3D space.
Procedural textures define colours for all points in a
scene, without the seams and tiling effects that arise
with bitmapped textures. Furthermore, a variety of re-
alistic phenomena are readily modeled by procedural
formulae, such as stone, marble, and wood. Procedu-
ral textures can be complicated, however, and a great
deal of technical expertise and trial-and-error experi-
mentation is required to create a desired effect. Such
expertise is beyond the ability of most casual users.

The implementation of computer support tools to aid
in the synthesis of procedural textures is a worth-

1
http://www.cosc.brocku.ca/Department/Research/TR/cs0306.pdf

while goal. In particular, evolutionary computation
has been investigated as a tool for procedural tex-
ture creation (Sims 1993, Rooke 2002), normally us-
ing a human as an interactive fitness function. Work
in (Ibrahim 1998, Ross and Zhu 2002, Wiens and
Ross 2002) uses genetic programming to evolve 2D tex-
tures using automatic fitness scoring via feature anal-
ysis. Although 2D procedural textures are applica-
ble to 3D surfaces, the results are often unsatisfactory
because the 2D formulae do not account for 3D sur-
face features. The rendered results will usually obscure
surface detail, unless external local lighting effects are
applied along with the procedural texture.

This research investigates the texture evolution prob-
lem for 3D surfaces. The main enhancement required
for 3D procedural texture synthesis is the inclusion of
surface information in the texture formulae, such as
XYZ coordinates, normals, and surface gradients.

2 EXPERIMENT

Parameter Value
Population size 1000
Generations 200+
Runs/experiment 10
Initialization ramped half&half
Initial ramped tree depth 5 to 10
Max. tree depth 17
Crossover rate 0.9
Mutation rate 0.1
Selection scheme tournament (size 5)

Table 1: Genetic Programming Parameters

The strongly-typed lilGP 1.1 system is used (Zongker
and Punch 1995). The target language is designed
for procedural texture generation. Terminals include
surface coordinates, surface normals, surface gradients
(localized normal deviation), and ephemeral constants.



Functions include standard mathematical operators,
sine, cosine, min, max, if-then-else, average, and noise.
Another function combines 3 floating point expres-
sions into a triple, which is then interpretable as an
RGB colour. Strong typing is used for differentiating
floating-point expressions and 3-channel RGB expres-
sions. Other GP parameters are in Figure 1.

Fitness scoring evaluates a candidate texture on a pre-
defined training set. This training set is obtained man-
ually from a target texure defined on some given 3D
surface. The RGB distance is determined between
the generated texture colour and the desired training
colour for a surface point with a given coordinate, nor-
mal, and gradient. The overall fitness score is the cu-
mulative sum of the RGB distances for all examples.
A low score indicates a close correspondence to the
training set.

A run’s final solution texture is given to a ray-tracer,
which uses it to render a set of test images, each using
a different 3D model.

3 RESULTS

See (Hewgill and Ross 2003) for colour images of the
results. A number of different textures were evolved,
using the following training textures:

1. A cube with sides having primary colours.

2. A mountainous terrain with natural colouring:
white peak, grey cliff, and green base.

3. A natural terrain as above, but swap the blue and
gradient channel values.

4. Render a female figure with green shirt, pink face
and arms, blonde hair, purple pants, black shoes.

5. Render a surface to have a red top, green sides,
and white base.

6. A blue cube with coloured orthogonal stripes.

Experiments 1, 2, 4, and 5 evolved textures that closely
corresponded to the given target texture. Experiment
5 was particularly interesting, for it proved that ge-
netic programming was able to evolve textures that
corresponded to particular surface orientations of in-
terest. Although the results of experiment 3 were dif-
ficult to intuit or predict, the end results were textures
with a glowing mineral-like quality. A good training
match was challenging for experiment 6. Nevertheless,
the resulting textures were glimmering and opalescent
in appearance.

4 CONCLUSIONS

Automatic 3D procedural texture synthesis is well-
suited to genetic programming. As is commonly found
with artistic applications of evolutionary computation,
we discovered that raw fitness scores are not necessar-
ily the best indicator of the aesthetic suitability of a
result. Rather, fitness gives evolution a direction to
explore. A number of parallel runs should then be
used, and the final explored results can be compared
and judged. This points to the fact that user inter-
action may still play a useful role alongside automatic
synthesis.

Acknowledgments

This research is supported by NSERC Operating
Grant 138467-1998.

References

Ebert, D.S., F.K. Musgrave, D. Peachey, K. Perlin and
S. Worley (1998). Texturing and Modeling: a Pro-
cedural Approach. 2 ed.. Academic Press.

Hewgill, A. and B.J. Ross (2003). Procedural 3D
Texture Synthesis Using Genetic Programming.
Technical Report CS-03-06. Brock University,
Dept. of Computer Science.

Ibrahim, A.E.M. (1998). GenShade: an Evolutionary
Approach to Automatic and Interactive Procedu-
ral Texture Generation. PhD thesis. Texas A&M
University.

Rooke, S. (2002). Eons of Genetically Evolved Algo-
rithmic Images. In: Creative Evolutionary Sys-
tems (P.J. Bentley and D.W. Corne, Eds.).
pp. 330–365. Morgan Kaufmann.

Ross, B.J. and H. Zhu (2002). Procedural Texture Evo-
lution Using Multiobjective Optimization. Tech-
nical Report CS-02-18. Brock University, Dept. of
Computer Science.

Sims, K. (1993). Interactive evolution of equations for
procedural models. The Visual Computer 9, 466–
476.

Wiens, A.L. and B.J. Ross (2002). Gentropy: Evolu-
tionary 2D Texture Generation. Computers and
Graphics Journal 26(1), 75–88.

Zongker, D. and B. Punch (1995). lil-gp 1.0 User’s
Manual. Dept. of Computer Science, Michigan
State University.


