
Logic–based Genetic Programming with Definite Clause Translation Grammars 1

Logic–based Genetic Programming with
Definite Clause Translation Grammars

Brian J. ROSS

Brock University, Dept. of Computer Science
St. Catharines, Ontario, Canada L2S 3A1
bross@cosc.brocku.ca

Received 22 June 1999

Revised manuscript received 20 April 2000

Abstract DCTG-GP is a genetic programming system that uses def-
inite clause translation grammars. A DCTG is a logical version of an
attribute grammar that supports the definition of context–free languages,
and it allows semantic information associated with a language to be eas-
ily accomodated by the grammar. This is useful in genetic programming
for defining the interpreter of a target language, or incorporating both
syntactic and semantic problem–specific contraints into the evolutionary
search. The DCTG-GP system improves on other grammar–based GP
systems by permitting non–trivial semantic aspects of the language to be
defined with the grammar. It also automatically analyzes grammar rules
in order to determine their minimal depth and termination characteris-
tics, which are required when generating random program trees of varied
shapes and sizes. An application using DCTG-GP is described.∗1

Keywords Genetic Programming, Evolutionary Computation, Defi-
nite Clause Translation Grammar, Logic Programming, Stochastic Lan-
guage Inference.

§1 INTRODUCTION
Genetic programming (GP) implementations have benefitted from sim-

ple program denotations. In Koza’s denotation of program trees as implemented
∗1 New Generation Computing, vol.19, n.4, 2001, pp. 313-337.

2 Brian J. ROSS

by S-expressions in Lisp, a simple context–free language with one nonterminal
is used 24). This basic grammatical definition of program structure makes pro-
gram generation and reproduction straight-forward to implement and efficient to
execute by the GP system. The only grammatical requirement is that all expres-
sions are either single terminals, or a single nonterminal followed by zero or more
arguments – each of which is defined recursively. Another potential advantage
of this scheme is that it permits a rich search space to be used during evolution,
since a wide syntactic variety of trees is permissible. The user must ensure the
closure of all such trees, so that every program can be executed without errors.

Although robust, this simple treatment of program structure is some-
times detrimental. Some GP systems require distinguished branches in the pro-
gram tree representation, and these special cases complicate implementations.
For example, ADF definitions require specially denoted ADF branches 25). More
importantly, more rigorous parse tree representations using data types and gram-
mars is beneficial to evolution efficiency 31, 41, 43). One reason for this is that
the basic S-expression representation does not necessarily favour semantically
useful programs during evolution. This effect becomes more critical for target
languages that have more restricted syntax than Lisp. In addition, the use of
grammars permits problem domain specific syntactic constraints to be injected
in the evolved program structure, thus enhancing evolution effectiveness by re-
fining the search space.

DCTG-GP is a logic–based genetic programming system that uses a
definite clause translation grammar (DCTG). A DCTG is a logic grammar which
permits Backus–Naur style specification of context–free grammars. DCTG’s also
permit multiple semantic definitions to be included within the definition of the
grammar, allowing the syntactic definition of the language to be unified with
various semantic properties. This is beneficial for GP systems in a number of
ways. For example, the complete computational semantics of a language may be
defined with the DCTG in order to define a complete run–time environment for
the language, instead of a separate interpreter or compiler. Alternatively, the
DCTG semantic rules can define semantic properties which simplify the target
language’s grammar. Given that problem–oriented syntactic constraints can aid
evolution, the use of the DCTG semantics for refining these constraints can be
very convenient. Finally, depending on the problem, it is possible to partially
interpret programs within the DCTG in order to determine their admissibility,
and hence within tree generation and reproduction processes during evolution.

Logic–based Genetic Programming with Definite Clause Translation Grammars 3

GP systems must generate random trees during initial population cre-
ation and program mutation. The sizes of trees must be controlled during ran-
domized generation, in order to ensure that they have a variety of different shapes
in the initial population. It is difficult, however, to control tree sizes as gener-
ated by general context–free grammars. To overcome this problem, DCTG-GP
uses a grammar pre–processor, which analyzes DCTG production rules in or-
der to obtain their recursion characteristics and the minimal depths of subtrees
generated by them. This information is required for the effective generation of
program trees of desired depths during the initial population genesis and pro-
gram mutation.

Section 2 reviews genetic programming and definite clause translation
grammars. The DCTG-GP system is presented in Section 3. An example ap-
plication using DCTG-GP is described in Section 4. DCTG-GP is compared
with other grammatical–based GP systems in Section 5. Section 6 concludes the
paper with a discussion.

§2 BACKGROUND

2.1 Genetic Programming
Genetic programming 4, 24) is a method of automatic programming in

which programs are evolved using a genetic algorithm 18). Both GP and GA are
characterized by their use of the following (see Fig. 1): (i) an initial popula-
tion of random individuals, which in the case of GP are randomly–constructed
programs; (ii) a finite number of generations, each of which results in a new
or replenished population of individuals; (iii) a problem–dependent fitness func-
tion, which takes an individual and gives it a numeric score indicative of that
individual’s ability to solve a problem at hand; (iv) a fitness–proportional se-
lection scheme, in which programs are selected for reproduction in proportion
to their fitness; (v) reproduction operations, usually the crossover and mutation
operations, which take selected programs and generate offspring for the next
generation.

The essential difference between GP and GA is the denotation of in-
dividuals in the population. A pure GA uses genotypes that are fixed–length
bit strings, and which must be decoded into a phenotype for the problem be-
ing solved. A GP uses a variable–length computer program genotype, which is
directly executable by some interpreter (typically Lisp). The use of program-

4 Brian J. ROSS

1. Initialize: Generate initial randomized population.
2. Evolution:

GenCount := 0
Loop while GenCount < maximum generations

and fitness of best individual not considered a solution {
Loop until New population size = max. population size {

Select a genetic operation probabilistically:
→ Crossover:

Select two individuals based on fitness.
Perform crossover.

→ Mutation:
Select one individual based on fitness.
Perform mutation.

Add offspring to new population.
}

GenCount := GenCount+1
}

3. Output: Print best solution obtained.

Fig. 1 Genetic Algorithm

ming code as genotype is powerful, as its generality permits a vast number of
problems to be addressed. It also means that GP is the closest realization yet
for true automatic programming, in which computers program themselves after
being given a description of a problem in which to solve.

The two main reproduction operators used in GP are crossover and mu-
tation. Crossover is the more important of the two operators, as it permits
the genetic combination of program code from programs into their offspring,
and hence acts as the means for inheritance of desirable traits during evolution.
Crossover takes two selected programs, finds a random crossover point in each
program’s internal representation (normally a parse tree), and swaps the sub-
trees at those crossover points. The crossover points must be selected so that
the resulting offspring are syntactically correct. With Koza’s simple program
structure 24), if a subtree with a nonterminal root (function label) is selected in
one program, it should be swapped by a subtree with a nonterminal root from
the other program. Mutation is not as commonly performed in GP. When it is

Logic–based Genetic Programming with Definite Clause Translation Grammars 5

used, a random mutation point is found in a selected program, and the subtree
at that node is replaced with a new, randomly generated tree. This is the means
by which new genetic traits can be introduced into the population during evo-
lution. Although crossover and mutation preserve the grammatical integrity of
programs, the user must ensure closure – that the resulting programs are always
executable. So long as closure is maintained, all programs derivable by the GP
system will be executable by the fitness function, and hence their fitness will be
derivable.

2.2 Definite Clause Translation Grammars
DCTG’s were invented as a means for specifying the syntax and seman-

tics of languages in a convenient, unified fashion 1). A DCTG has a syntactic
component, and possibly multiple semantics components. The syntactic com-
ponent is equivalent to that used by definite clause grammars 32), and permits
the definition of context–free languages using a Backus–Naur style of syntax.
Since DCTG’s and DCG’s are logic grammars that are usually implemented in
Prolog 8), the syntactic component permits user–defined arguments, embedded
Prolog goals, and calls to DCTG semantic rules to be used within nonterminal
productions. These semantic references represent context–sensitive information
about the language, and can verify grammatical constructs for semantic viability
during generation or parsing.

Some definitions are now given. (See 19) for more information on the
fundamentals of formal grammars.) A context–free grammar (CFG) is a 4–tuple
(N,Σ, P, S), where N are nonterminals, Σ are terminals, P are productions of
the form x → y (x ∈ N, y ∈ (N ∪ Σ)∗), and S is a start symbol. A derivation
step,

αAβ
Pi→ αγβ

represents the application of production Pi : A → γ to nonterminal A. Deriva-
tions are conveniently denoted by derivation trees or parse trees, in which the
root is S, the internal nodes are N , leafs are Σ, and the descendents of N nodes
represent the application of particular productions (ie. each nonterminal node is
associated with a corresponding production). Note that a nonterminal can have
multiple productions applicable to it.

Using logic programming terminology, a goal is a nonterminal or terminal
reference in the right–hand side of a production. The set of goals in a production

6 Brian J. ROSS

is the body. Each production has a head, which includes a reference to the
nonterminal the production encodes, as well as optional data arguments. A
(logic) variable denotes a place holder for an expression, which is normally a
data structure element when it appears within a head or goal.

The syntactic form of DCTG rules is:

H ::= B1, B2, ..., Bk

<:>
S ::− G1, G2, ..., Gn.

The line with head H defines the syntactic definition for the production, for
some particular nonterminal encoded in H. The B’s are goals of the production.
They may refer to nonterminals, or terminals (encoded as Prolog list elements).
They may also be calls to Prolog code, or references to semantic components
elsewhere in the grammar; such goals are embedded within braces. The symbol
“<:>” delimits the syntactic rule from the semantic definition with head S.
There may be more than one semantic definition per production. The goals G
are references to either semantic goals in the grammar or Prolog goals. When
such a goal is a semantic reference, it specifically refers to a semantic goal from
one of the syntactic goals B from the syntactic production above it. The “∧∧”
operator, used in concert with a variable, links a semantic goal with a syntactic
goal:

H ::= ..., B∧∧N,

<:>
S ::− ..., N∧∧G,

Here, the goal G in the semantic definition refers to the semantic component
associated with the parse tree for nonterminal B in the syntactic definition.
(Terminals do not have productions associated with them, and cannot have
semantic rules). This scheme permits access to various diverse subtrees of the
overall parse tree, and the semantic components associated with those subtrees.

A typical DCTG production for natural language processing is the fol-
lowing:

verb_phrase ::= verb^^V, { transitive(V) }, noun_phrase^^N

<:>

(agree(Num) ::- V^^agree(Num)),

(logical_form(X,P) ::- V^^logical_form(transitive,X,Y,P1),

N^^logical_form(Y,P1,P)).

Logic–based Genetic Programming with Definite Clause Translation Grammars 7

The rule verb phrase is the syntactic definition, and defines a single CFG pro-
duction stating that a verb phrase is a verb followed by a noun phrase. The
intervening reference to transitive is an embedded Prolog goal, and is used to
verify that the verb referred to by V is transitive. This is context–sensitive infor-
mation, since it is used only when the rule is interpreted with a user’s sentence,
and it must evaluate to true if the sentence is to be considered grammatically
correct. There are two semantic rules associated with this production. The rule
agree generates the agreement class for the verb phrase, based upon the agree-
ment class of the verb used within it, for example, a singular or plural verb.
The logical form rule generates a logical representation for this portion of the
parse tree, the details of which are done recursively by the calls to logical form

within the verb and noun phrase portions of the parse tree.

§3 SYSTEM DESIGN
DCTG-GP is genetic programming system implemented in SICStus Pro-

log 3.8.1 39) on Silicon graphics IRIX 6.3 and Windows 98 platforms. The DCTG
library is authored by Harvey Abramson 1). The DCTG-GP engine uses conven-
tional GP strategies, such as steady–state or generational evolution, tournament
selection, and local search. Parameters for GP control are outlined in Section 4.
The remainder of this section will discuss features particular to the grammatical
and logical foundation of DCTG-GP.

3.1 Grammar Representation
The syntactic and semantic definitions of the DCTG grammar are ini-

tially parsed by DCTG library utilities and translated to standard Prolog clauses.
When executed, these clauses parse argument lists of tokens according to the
rules of the grammar. The clauses also permit generation of sentences conform-
ing to the grammar. An internal tree structure is used by DCTG-GP to concisely
represent the parse trees of programs. Nonterminal nodes have the form,

node(Call, [Node1, · · · , Nodek], ID)

while leaf nodes are represented as,

[constant].

The nonterminal structure represents a single internal node in the parse tree.
Call is a copy of the head of the corresponding grammar production for the rule,
and the exact DCTG rule used is identified by an ID number. The list of nodes

8 Brian J. ROSS

are immediate descendents of this node as encoded in the production body, and
each Nodei recursively uses this same node representation. This representation
does not include embedded references to semantic goals and Prolog code goals.
If such embedded goals are used, the DCTG rules are interpreted in parallel with
the interpretation of the parse tree representation. We call this parallel inter-
pretation verification. Should embedded goals fail during verification, then the
parse tree will be invalid, and the tree generation or reproduction step will fail.
The GP engine will then reattempt the evolutionary action being undertaken.

3.2 Grammar Preprocessor
The DCTG’s used by DCTG-GP are generative grammars, and the ran-

dom selection of DCTG rules during derivation will generate grammatically–
correct random programs of various shapes and sizes. Any embedded semantic
goals and Prolog goals in the rule bodies are executed during this random gen-
eration, which acts as additional context–dependent verification of the parse
tree being constructed. Tree generation happens during the initial population
generation, as well as during any mutation steps during evolution.

GP runs commence by generating initial populations of random pro-
grams. The conventional wisdom is that evolution is most effective when the
initial population of programs has a variety of shapes and sizes. One popular
means for deriving such populations is Koza’s ramped half–and–half generation
strategy 24). Half the programs generated are full trees, in which trees are gen-
erated through a range of maximal depths, and each branch of the tree has a
maximal depth. The other half of the population are grow trees, in which a
range of tree depths are also generated, but where each tree’s branch must be
no greater than the maximal depth. Generating a tree of a desired depth is easy
with Koza’s S-expression grammar. The grammar specifies that expressions are
either terminals, or a nonterminal followed by expression arguments. Therefore,
derivations can be terminated at any time, merely by using terminals instead of
nonterminals.

Unfortunately, deriving trees having desired depths is not trivial to do
with a grammar. When a tree is being derived, each nonterminal node is to be
expanded via one of many productions for that nonterminal. It is difficult to
ensure that a tree will have a desired depth because it cannot be directly deter-
mined whether the application of a particular production will result in a branch
of required depth. For example, some productions may terminate immediately

Logic–based Genetic Programming with Definite Clause Translation Grammars 9

should their bodies consist of terminals. Other productions may recurse, which
in itself may cause infinite recursion. This problem with generative grammars is
well known, and has been investigated elsewhere 2, 5, 21).

The solution given here, although sharing characteristics with other al-
gorithms, uses a simple algorithm which yields acceptable results, albeit not as
precisely as other more complex approaches. To generate a ramped half–and–half
population with the DCTG, some analyses of the grammar is first undertaken,
in order to determine two characteristics of rules: (i) the minimal depth of trees
generated by each DCTG rule; and (ii) whether rules may generate terminat-
ing (finite) or arbitrarily deep (recursive) trees. Once these characteristics are
found, rules can be selected more prudently. The first characteristic identifies
rules that can terminate branches at appropriate depths, and the second charac-
teristic identifies rules that will more likely result in trees with fuller branches.

The following notation is used in the algorithm pseudocode. Let Ri (1 ≤
i ≤ K) denote the K nonterminal labels in the grammar. Let Ri,j (1 ≤ i ≤
K, 1 ≤ j ≤ Ni) denote the individual production rules in the grammar, where
i indexes the K nonterminals, and each nonterminal has Ni production rules
defining it. The goals in each Ri,j are indexed as Gi,j,k. For example,

p :: −a, b, c.
p :: −d, a.
p :: −e.
q :: −e, f.
q :: −f.

⇒

R1,1 :: −G1,1,1, G1,1,2, G1,1,3.

R1,2 :: −G1,2,1, G1,2,2.

R1,3 :: −G1,3,1.

R2,1 :: −G2,1,1, G2,1,2.

R2,2 :: −G2,2,1.

In the above, the nonterminal p is denoted R1, and is defined by the rules R1,1,
R1,2, and R1,3. The goals g above may refer to nonterminals (Ri’s) or terminals.

The first analysis determines the minimal depth of subtrees generated
by each grammar rule Ri,j . There may be multiple rules applicable for a par-
ticular nonterminal Ri, and these rules may generate trees of varying minimal
depths. When generating trees of a given depth, selected rules must be assured
of generating trees within some depth limit. The algorithm for computing min-
imal rule depth is in Fig. 2. It is an iterative algorithm which processes the
set of grammar rules in a bottom-up fashion. Two values are determined in
the algorithm: (i) RuleDepthi,j is the minimum tree depth for each rule Ri,j ;
and (ii) NonTermDepthi is the minimum tree depth for each nonterminal Ri.
Note that RuleDepthi,j is used by GP later, while NonTermDepthi is used only

10 Brian J. ROSS

iterate over Ri,j until RuleDepthi,j found for all rules
or no further progress possible {

Examine a non-processed rule Ri,j :
1a. if all Gi,j,k are terminals

then RuleDepthi,j = 1
1b. else if each nonterminal Gi,j,k has a known NonTermDepthn

then RuleDepthi,j = 1 +maximum(NonTermDepthn)
2. if a new nonterminal Ri had RuleDepthi,j calculated in step 1

then NonTermDepthi = RuleDepthi,j

}

Fig. 2 Minimal Depth Algorithm

during the run of the minimal depth algorithm. The base case is a rule contain-
ing only leaf nodes, which has a minimal depth of 1 (step 1a). The iterative
case is a rule whose nonterminals all have known minimal depths; the minimal
depth for this rule is then one level deeper than the maximum depth of all the
nonterminal subtree depths (step 1b). Additionally, the first time a minimal
depth RuleDepthi,j is determined for any rule comprising a nonterminal Ri, it
becomes the minimal depth NonTermDepthi for Ri as referred to by all other
rules (step 2). Processing continues until either all rules have minimum depths
computed for them, or rules with undeterminable minimal depth are discovered.
These rules are recursive ones that have no means of termination, and must be
fixed by the user before proceeding. For example, if the rule

r :: −r.

is used, and there is no other production for r, then r is obviously infinitely
recursive, and is rejected by the system.

An example run of the minimal depth algorithm is as follows. Consider
the grammar in Fig. 4. The goals enclosed in brackets “[]” and braces “{ }” are
treated as terminals. In the following, the notation expr3 denotes of the third
rule of expr.

Logic–based Genetic Programming with Definite Clause Translation Grammars 11

iterate over Ri,j until all Ri,j labelled
or no further progress possible {

Examine a non-labelled rule Ri,j :
1. if all Gi,j,k are terminals

or all Gi,j,k nonterminals are labelled terminating
then Ri,j labelled terminating.

2. if all Ri,j for an Ri labelled as terminating
then label Ri as terminating.

}
Label remaining unlabelled rules nonterminating.

Fig. 3 Rule Termination Algorithm

Iteration RuleDepth NonTermDepth
1 guardedexpr1=1, guardedexpr2=1, guardedexpr=1, intval=1,

intval1=1, probval1=1 probval=1
2 expr1=2, choice1=2 expr=2, choice=2
3 expr2=3, expr3=3, expr4=3,

choice2=3

The second analysis determines termination (recursion) characteristics
of rules. A rule is said to be terminating if neither it nor its descendents can
result in recursive nonterminal derivations, and hence always derives finite trees.
Otherwise, the rule is nonterminating. This knowledge about the recursive prop-
erties of rules is needed during the generation of full trees, which requires that
branches be as deep as possible. In order to generate full trees, the random
selection of DCTG rules should be from those that enable the deepest branches
possible. It can be counterproductive to select a rule that always generates a
finite-depth subtree, since the tree may be forced to terminate at a shallower
depth than desired. Knowing which rules have recursive descendents is there-
fore valuable, as these rules are more likely to generate trees having a required
maximal depth.

The algorithm for determining the termination properties of rules is in
Fig. 3. This algorithm is also an iterative, bottom–up one. The algorithm
determines whether each rule is to be labelled terminating or nonterminating.
The user may override the termination designations for a nonterminal, because it
is not useful to generate deep program structures for some language constructs.
For example, generating a deep enumerated Pascal set structure may mean that

12 Brian J. ROSS

the generated set will always include all the members of that enumerated space,
which is probably undesirable.

Consider once again the grammar in Fig. 4. During the first iteration,
guardedexpr1 , intval and probval are determined to be terminating. However,
in the next iteration, all the remaining rules refer to goals which are not yet
classifiable as terminating, and hence no changes occur. The final step in the
algorithm will therefore label the rest of the rules as nonterminating, which
indicates that they can generate recursive, potentially nonterminating trees.

The above method for determining minimal rule depths and recursion
in rules is based solely on nonterminal label analysis within productions. The
algorithms give an approximation of the minimal size tree derivable with each
production, as well as the recursive nature of each production. In reality, the
actual minimal depths of productions is complex to determine, because not every
production for a nonterminal is applicable during the derivation, due to the
existence of arguments values, embedded semantic and Prolog goals used within
the DCTG rules. Although more in-depth consideration of these features could
be undertaken, (for example, using abstract interpretation 9)), we ignore them
for the sake of efficiency and practicality. This design decision is supported
by the fact that argument values are usually dependent upon run–time data
that is not available during population generation. The main goal is that trees
generated by the DCTG are more likely to have desired shapes and sizes, rather
than guarantee that they precisely will.

3.3 Reproduction Operations
A requirement for crossover and mutation operations is that offspring

are grammatically correct with respect to the DCTG. As is suggested elsewhere
16, 41), maintaining grammatical integrity during crossover is ensured by select-
ing subtrees from each parent that have roots of the same nonterminal type.
Terminals are never selected for crossover, because they are unlabelled within
the DCTG parse tree, and hence cannot be easily identified for correctness. (If
the user wishes the selection of terminal information during crossover, then non-
terminal rules should be defined to represent them.) Similarly, only subtrees
with nonterminal roots can be selected for mutation. A tree with the same non-
terminal type as the selected subtree is generated, and it replaces the selected
subtree.

If the DCTG productions contain semantic goals or Prolog goals, they

Logic–based Genetic Programming with Definite Clause Translation Grammars 13

will need to be interpreted after crossover and mutation in order to verify the
correctness of the parse tree. This is considered a verification step performed
upon the offspring. In applications that only use the DCTG’s syntactic defi-
nitions, and do not use semantic rules nor embedded Prolog goals, semantical
verification is unnecessary and is omitted.

Crossover and mutation can fail in a number of ways. During crossover,
the nonterminal type of a selected subtree in one parent may not exist in the
other parent. The offspring may exceed maximum depth bounds. Semantic
verification may fail. If any of these situations occur, then the reproduction step
is retried on the given parents up to a user-specified number of times. If all
reattempts fail, then that reproduction operation fails for the selected parent(s),
and evolution continues with the selection of other genotypes for reproduction.

§4 AN EXAMPLE EXPERIMENT
This section presents an example application of DCTG-GP. The exper-

iment involves the grammatical inference of a probabilistic pattern matching
language. The experiment is in the spirit of work elsewhere 35), which should be
consulted for additional details and examples. The given experiment is intended
to show two specific practical benefits of DCTG-GP: (i) the encoding of syntactic
contraints, and how such constraints are unwieldy to implement in non-DCTG
systems; and (ii) the encoding of operational semantics. It is not the intent of
this section to study the effects of DCTG-GP on evolutionary performance, nor
compare the inference undertaken with other inference paradigms, which may
or may not be more effective for this particular inference problem. Therefore,
the experimental details and results in Sections 4.4 and 4.5 are not of primary
importance here, but are included for completeness. Furthermore, this section
does not explore the variety of languages that can be encoded with a DCTG;
please refer to Section 5 for an overview of work in grammatical GP and related
topics.

An overview of the problem is first given. The implementation of the
probabilistic language in DCTG-GP is then discussed, which illustrates some
major strengths of the system. Experimental parameters and strategies are
outlined, and the overall results of the experiment are given. The reader should
have some exposure to formal language theory 19).

4.1 Probabilistic Pattern Matching

14 Brian J. ROSS

Grammatical inference is a classical problem in machine learning 3, 12, 37).
GA and GP have been successfully applied towards the inference of formal lan-
guages 6, 10, 26, 27, 40, 44). The use of GA and GP for stochastic language inference
has also been investigated 23, 38). A stochastic language is a formal language with
a probability distribution over its set of members. For example, a stochastic reg-
ular language is a regular language whose membership conforms to some proba-
bility distribution. From one point of view, this seems like an additional burden
for inference algorithms, for both the language membership and the probability
distribution of its members must be ascertained. On the other hand, the use
of probability distributions can be advantageous for inference algorithms for a
number of reasons. First, the use of probabilities precludes the need for negative
examples, since the probabilities of positive members automatically accounts for
negative membership. Second, probability distributions lend an additional de-
gree of freedom for inference, since it permits a natural means for specifying the
statistical accuracy of acceptable solutions. Probabilistic language inference is
naturally suited to GP, as GP is reknown for being most effective for problems
that require an accurately good solution, rather than a precisely correct one with
no latitude for error.

The target language used here is a probabilistic regular language called
(guarded) Stochastic Regular Expressions (gSRE) 35). It is similar to a stochas-
tic regular language in 13), and is much like a conventional regular expression
19), except that operators have numeric fields indicating the probability that
they produce results. This language is one of a number of notations that can
express stochastic regular languages, the other two being stochastic finite au-
tomata (also called Hidden Markov Models 34)) and stochastic regular grammars
7). These notations are theoretically equivalent in the Chomsky hierarchy, and
they can be translated to each other algorithmically. There are stochastic reg-
ular languages, however, which are more clearly and concisely expressed with
one notation over another. A simple gSRE expression may be equivalent to a
quite complex stochastic regular grammar. For example, considering conven-
tional regular languages, the regular expression 01∗ + 1 translates to a 10–state
finite automaton 19). Although the finite automaton recognizes the identical reg-
ular language, its complexity makes it much less transparent than the concise
regular expression. Therefore, linguistic clarity of a denotation impacts the ef-
fective inference of a solution, since more complex denotations naturally require
more effort by an inference algorithm.

Logic–based Genetic Programming with Definite Clause Translation Grammars 15

gSRE has the following syntax. Let α range over alphabet Σ∗, E range
over gSRE expressions, n range over positive integers (0 ≤ n ≤ 1000), and f

range over decimal values with a precision of 2 decimal places (0 ≤ f < 1.00).
The syntax of gSRE is recursively defined as:

E ::= α |
∑
i

E′i(ni) | E1 : E2 | E∗f

With no loss of generality, the empty string ε is not included in the alphabet.
The language for an expression E is L(E). The meaning of the above operators
is as follows.

1. Atomic action α: The action α is generated with a probability of 1.
2. Guarded Choice

∑
i

E′i(ni), where E′ = (αi : Ei) or E′ = αi, and ∀i 6=

j : αi 6= αj : Each term in the choice expression is prefixed with a unique
atomic action that is found nowhere else in the expression. This makes
guarded choice deterministic, and it contributes to smaller expressions
during GP processing as compared to nondeterministic choice. Each
term E′i has a probability

ni∑
j nj

.

For example, given the expression E1(3) + E2(5), the term E1 has a
probability of 3/8 and E2 has a probability of 5/8. The probability
of the entire expression is the product of the probability of the chosen
term with the probability of the expression encapsulated within it.

3. Concatenation “E1 : E2” : Term E1 is interpreted, followed by that
of E2. The overall probability is the product of the probabilities for
expressions E1 and E2.

4. Kleene Closure E∗f : Term E can be repeatedly executed 0 or more
times. Each iteration occurs with a probability of f multiplied by the
probability of expresion E. The probability of E not iterating is 1− f .

A given gSRE expression denotes a set of strings belonging to its lan-
guage, as well as a probability distribution for that language. When interpret-
ing a gSRE expression, a probability field is also maintained, as is informally
explained in the above operator descriptions. For example, consider the expres-
sion

E = (a : b∗0.6)(2) + c∗0.1(3)

16 Brian J. ROSS

The string c is a member of L(E), and has a probability of 0.054 (the term with
c can be chosen with a probability of 0.6; then that term iterates once with a
probability of 0.1; finally the iteration terminates with a probability of 1−0.1 =
0.9, giving an overall probability of 0.6 × 0.1 × 0.9 = 0.054). The string abb is
also a member of L(E), and has a probability of 0.4× 0.6× 0.6× 0.4 = 0.0576.
The string ba is not a member of L(E), and its probability is 0.

4.2 DCTG Definition of gSRE Syntax

expr ::= guardedexpr. % 1

expr ::= choice^^A, { A^^construct(CL), unique_guards(CL) }. % 2

expr ::= expr, expr. % 3

expr ::= expr^^A, { not A^^iter }, probval % 4

<:>

iter.

choice ::= guardedexpr, intval, guardedexpr, intval. % 5

choice ::= guardedexpr, intval, choice. % 6

guardedexpr ::= [A], {action_val(A)}. % 7

guardedexpr ::= [A], {action_val(A)}, expr. % 8

intval ::= [N], { is_an_integer(N) }. % 9

probval ::= [R], { is_a_probability(R) }. % 10

Fig. 4 DCTG Syntactic Definition of gSRE

Fig. 4 is the DCTG encoding of the gSRE grammar. To elucidate the
grammar, the DCTG is simplified by the removal of all the semantic rules (other
than the last rule for expr), as well as most of the variables used by these
semantic rules.

The rules function as follows. In rules 1 through 4, the expr rules define
top–level gSRE expressions, which may be guarded expressions (in order to
include actions), choice, concatenation, or Kleene closure. In rule 2, a syntactic
constraint is used to enforce guarded choice (unique prefixes in choice terms).
The reference to the semantic goal construct of nonterminal choice is one
which constructs a list of all the prefixes of terms in the choice expression. Then
the call to the Prolog goal unique guards takes this list, and succeeds if all these
prefixes are unique. Otherwise, it will fail, and the parse tree will fail due to an
instance of duplicate prefixes.

Rule 4 encodes an additional syntactic constraint: directly nested it-
erations are prohibited. For example, (a∗p)∗q is disallowed. This is similar
to the common practice with conventional regular expressions to convert (a∗)∗

to a∗. Preliminary experiments found that nested iterations were commonly
constructed during GP, resulting in program bloating. This dramatically slowed

Logic–based Genetic Programming with Definite Clause Translation Grammars 17

down the interpretation of expressions, while at the same time generating minute
probabilities due to the compounded application of the iterative probability. For
example, consider the expression,

((a∗0.5)∗0.5)∗0.5.

This expression generates the string aaa using 5 different combinations of the
nested iteration operators, and with an overall probability of only 0.008. Fur-
ther nesting creates combinatorially more iterations to compute, with even less
significant probabilities. These expressions become a primary vehicle for intron
bloat. Literally any expression can be used within the nested iteration with no
adverse effect on the language generated, because the overall probability of the
iteration is inconsequential anyway. Disallowing such expressions significantly
speeds processing, with no negative effect on evolution. Rule 4 uses a simple
constraint on the semantics of the expression embedded in its iteration: if the
embedded expression is also an iteration – and only rule 4 is labelled by this
iter designation – then the rule forces failure.

Rules 5 and 6 define choice, while 7 and 8 define guarded expressions.
The term [A] is the DCTG notation for a terminal, and this succeeds in rules
7 and 8 if that terminal is a member of the alphabet. Finally, rules 9 and 10
define integers and floating point values, to be used in choice probabilities and
iteration respectively.

The DCTG’s ability to parameterize context–sensitive grammatical con-
straints permits a concise implementation. To see this, it is worth examining
the contributions of the semantics in rules 2 and 4 in more detail. In rule 4,
the semantic check for nested iteration is an example of the use of context–
sensitive information (whether the expression nested in that rule is iterative or
not) determining the legitimacy of the parse tree. Without the use of this se-
mantic parameterization of this check, a more complex grammar is required. For
example:

expr ::= noniter.

expr ::= iter.

noniter ::= guardedexpr.

noniter ::= choice,

noniter ::= expr, expr.

iter ::= noniter, probval.

This is clearly more involved than the simple context–sensitive check done in
Fig. 4.

With rule 2, the alternative is even more unwieldy. Separate sets of rules

18 Brian J. ROSS

are required in order to denote which actions have or have not been processed
in the guarded expression. For example, if Σ = {a, b, c}, then the following non–
DCTG attribute grammar is equivalent to the processing of guarded choice done
in Fig. 4:

choice ::= guard_a, intval, guard_not_a, intval.

choice ::= guard_a, intval, choice_not_a.

choice ::= guard_b, intval, guard_not_b, intval.

choice ::= guard_b, intval, choice_not_b.

choice ::= guard_c, intval, guard_not_c, intval.

choice ::= guard_c, intval, choice_not_c.

choice_not_a ::= guard_b, guard_c.

choice_not_a ::= guard_c, guard_b.

choice_not_b ::= guard_a, guard_c.

choice_not_b ::= guard_c, guard_a.

choice_not_c ::= guard_a, guard_b.

choice_not_c ::= guard_b, guard_a.

guard_not_a ::= guard_b.

guard_not_a ::= guard_c.

guard_not_b ::= guard_a.

guard_not_b ::= guard_c.

guard_not_c ::= guard_a.

guard_not_c ::= guard_b.

Obviously, this strategy is untenable for grammars with even small alphabets.

4.3 DCTG Definition of gSRE Operational Semantics

choice ::= guardedexpr^^A1, intval^^B1, guardedexpr^^A2, intval^^B2

<:>

(recognize(S, S2, Sum, PrSoFar, Pr) ::-

B1^^construct(Val),

Pr2 is (Val/Sum)*PrSoFar,

A1^^recognize(S, S2, Pr2, Pr)),

(recognize(S, S2, Sum, PrSoFar, Pr) ::-

B2^^construct(Val),

Pr2 is (Val/Sum)*PrSoFar,

A2^^recognize(S, S2, Pr2, Pr)).

Fig. 5 Operational Semantics of Choice Operator (excerpt)

From section 4.1, it should be evident that gSRE has a fairly straight–
forward operational semantics. Since its operational semantics are composi-
tional, each operator’s operational semantics is conveniently encoded within a
semantic field of the DCTG. During fitness evaluation, the GP will test whether
gSRE expressions can recognize different example strings of the target language.
Hence the operational semantics are encoded so that expression interpretation
attempts to recognize the membership of strings, and produce their correspond-
ing probabilities if so recognized. Given a string to recognize, the actual imple-

Logic–based Genetic Programming with Definite Clause Translation Grammars 19

mentation finds the probability of the longest prefix recognized by an expression.
A complete account of the implementation of gSRE’s operational seman-

tics is beyond the scope of this paper. To give a flavour of the implementation,
Fig. 5 contains the semantics for rule 5 of Fig. 4. This rule is included in
any parse tree containing choice, as it terminates the tail recursion used in rule
6. The semantics of this rule applies the probability of choosing one of the
two choice terms within the computation of the overall probability. The rule
recognize(S, S2, Sum, PrSoFar, Pr) has 5 arguments: the string S at the
start of processing of this choice expression; the string S2 after processing (S2
is either equal to S or a suffix of it); the Sum of the probability values terms in
the choice list (ie. the overall denominator value); the probability PrSoFar com-
puted so far while processing the current string (other expression components
may have read earlier prefixes of the example string, yielding this probability);
and the final computed probability Pr after processing S is completed.

There are two rules for recognize, and each rule processes one of the
terms from the pair of choice expressions. The call to construct retrieves the
actual integer value from the probability field for that term. The probability for
that term is calculated, and multiplied by the overall probability so far. This
new intermediate probability is then passed to the recognition semantics for the
expression embedded in that choice term. During processing, both rules will be
invoked – the first followed by the second – because there are multiple ways a
string can be recognized by an gSRE expression. The operational semantics for
gSRE will exhaustively try all rules until the string is completely recognized,
and no alternative derivations of the gSRE expression are possible. All the
probabilities obtained for these difference derivation paths are collected and
summed elsewhere, to yield an overall probability for that string (or its longest
prefix).

An example execution is as follows. Consider the expression E(2) +
F (3), where E and F are gSRE expressions. Elsewhere it is determined that
the denominator for this expression is 5. Assume that earlier interpretation
of other terms has computed a probability so far of 0.5. Then recognize(S,

S2, 5, 0.5, Pr) will first process the E(2) choice term. The probability is
updated to be 2/5 × 0.5 = 0.2, and then the term E is interpreted, using the
call A1∧∧recognize(S, S2, 0.2, Pr). Its successful interpretation will return
the overall probability Pr for this term. The interpretation of the F (3) term is
similar, except that an intermediate probability 0.3 is computed.

20 Brian J. ROSS

4.4 Other Experiment Details

Table 1 Experimental Parameters

Parameter Value

Target language gSRE
Terminals a, b, c
DCTG root expr
Fitness function modified χ2 on random test set
Generation type steady-state
Initial population size 750
Running population size 500
Unique population members yes
Maximum generations 50
Probability of crossover 0.90
Probability of mutation 0.10
Probability internal crossover 0.90
Probability terminal mutation 0.75
Probability numeric mutation 0.50
Numeric mutation range ±0.1
Max reproduction attempts 3
Initial population shape ramped half&half
Min/max depth initial popn. 6, 12
Max depth offspring 24
Tournament size, selection 2
Tournament size, replacement 3
Test set size 1000
Approx. max. test string size 20
gSRE probability limit 0.00001

The task is to evolve a gSRE expression that corresponds to the language
for the following target expression:

a : c∗0.5 : a (1) + b : c∗0.5 : b (1)

The fitness strategy used is to test how well an expression can recognize a random
test set of 1000 strings generated for this target description. The test set is
regenerated randomly before each new generation. The entries are counted, and

Logic–based Genetic Programming with Definite Clause Translation Grammars 21

the resulting test set is a list of string values and their frequencies.
Each test set string ti is given to the gSRE interpreter as encoded in the

DCTG, and its membership probability is computed. A modified χ2 formula 33)

is used in the fitness evaluation formula:

Fitness =
∑
ti∈T

(di − (Pr(ti) ∗N))2

di
: Pr(ti) ≥ 0

(
1 +
|ti| − |maxprefi|

|ti|

)
· di : Pr(ti) = 0

where di is the frequency of example ti in test set T , N = |T |, and maxprefi is
the maximum prefix of ti recognized. The first term is the χ2 formula, and it is
used when the example string ti is completely recognized. The second formula
is used when only a prefix of ti is recognized. Its value is inversely proportional
to the size of the prefix recognized. Should none of ti be recognized, then this
value becomes 2 ·di (a normal χ2 formula would use just di). This prefix scoring
gives credit to expressions that recognize portions of the examples, which helps
drive evolution towards expressions that recognize complete examples.

Other GP parameters are listed in Table 1, and most are self–explanatory
from the GP literature. Mutation is specialized so that it can mutate the numeric
terminals found throughout gSRE expressions. The probability of numeric muta-
tion states that 50% of the time numeric fields will be selected for mutation, and
the mutation range specifies that a numeric value will be randomly perturbed
±10% of its value. Failed reproduction operations (offspring too large, non-
terminals not matching in selected substrings,...) will be reattempted 3 times,
after which new parents will be used. The gSRE probability limit specifies a
lower cutoff probability during gSRE recognition. When the probability be-
comes lower than this value, recognition using the current expression derivation
path is halted, and a new derivation is attempted. This boosts efficiency by
pre-empting inconsequential derivations.

4.5 Results
Table 2 summarizes the experiment results. The values in the table are

computed from the 25 runs for a fixed test set. Note that there is a significant
degree of variation in the fitness of individuals for different test sets, because the
randomly generated test set varies between generations and runs. The average
test set χ2 gives an indication of how much different test sets vary with each

22 Brian J. ROSS

Table 2 Summary

Total runs 25

unique examples 19

Avg. test set χ2 30.68
(50 cases)

Fitness min 12.67 (χ2=12.67)
max 328.6 (χ2=314.23)
avg 150.54 (χ2=148.26)

other. Therefore, although the overall average solution obtained for the set of
runs is not outstanding, the best solutions are very good. Fig. 6 shows the
average performance of the 25 runs.

The best solution, with a fitness of 12.67, has the following genotype:

node(expr,[node(choice,[node(guardedexpr,[[a],node(expr,[node(expr,

[node(expr,[node(guardedexpr,[[c]],6)],0), node(probval,[[0.49]],9)],3),

node(expr,[node(choice,[node(guardedexpr,[[a]],6),node(intval,[[819]],8),

node(guardedexpr,[[b],node(expr,[node(expr,[node(choice,

[node(guardedexpr,[[c]],6),node(intval,[[34]],8),node(guardedexpr,[[b]],6),

node(intval,[[890]],8)],4)],1),node(expr,[node(choice,

[node(guardedexpr,[[b]],6),node(intval,[[435]],8),node(guardedexpr,[[c]],6),

node(intval,[[341]],8)],4)],1)],2)],7),node(intval,[[6]],8)],4)],1)],2)],7),

node(intval,[[532]],8),node(guardedexpr,[[b],node(expr,[node(expr,

[node(expr,[node(guardedexpr,[[c]],6)],0),node(probval,[[0.49]],9)],3),

node(expr,[node(choice,[node(guardedexpr,[[a]],6),node(intval,[[6]],8),

node(guardedexpr,[[b]],6),node(intval,[[990]],8)],4)],1)],2)],7),

node(intval,[[553]],8)],4)],1)

Translated into gSRE, this is:

a : c∗0.49 : (a(819) + (b : (c(34) + b(890)) : (b(435) + c(341)))(6))(532)
+ b : c∗0.49 : (a(6) + b(990))(553)

A further translation into a more readable form, where the probabilities over
choice are directly given, is:

.49 (a : c∗.49 : (.99 a+ .01 (b : (.03 c+ .97 b) : (.56 b+ .44 c))))
+ .51 (b : c∗0.49 : (.001 a+ .99 b))

This is further simplified by removing terms with statistically insignificant prob-
abilities:

.49 (a : c∗.49 : a) + .51 (b : c∗0.49 : b)

Logic–based Genetic Programming with Definite Clause Translation Grammars 23

Fig. 6 Fitness curves (avg 25 runs)

The above is essentially the target language expression. Note that the removed
expression terms are intron material – genetic information that does has no ill
effect on the fitness of an individual, other than bloating its size.

A poor solution with a fitness of 263 is:

(b : c∗.5(368) + (a : (c) ∗ 0.48)(454)) : (a(827) + b(760))

Transforming it in the manner above, it becomes:

(.45 b : c∗.5 + .55 a : c∗.48) : (.52 a + .48 b)

The left–side of the top–level concatentation term accurately processes the pre-
fixes of the target language. However, the right–side is only partially correct.
For example, the string bca is inferrable with a significantly high probability of
0.0585. This expression thus differs from normal intron material, which gener-
ates erroneous strings with very low probabilities.

24 Brian J. ROSS

§5 OTHER WORK
DCTG-GP is inspired by the LOGENPRO system43). LOGENPRO is

also implemented in a logic programming language, and uses the DCG logic
grammar paradigm32). LOGENPRO’s crossover procedure blindly selects nodes
for potential exchange, and only succeeds if it is determined that the offspring
are grammatically correct. Even though crossover is usually inexpensive for
smaller–sized trees, this is somewhat wasteful, as a significant proportion of
crossover operations will fail. This is overcome in DCTG-GP by only selecting
similarly labelled node types for crossover. Although the details of the system
representation for programs are not given in43), it appears that a logic–program
representation is used, since the logic grammar argument structure must be
maintained during all crossover and reproduction operations. DCTG-GP uses a
simplified tree structure that denotes the essence of the grammar tree only. If
semantic components are required for verification after crossover or mutation, the
DCTG clauses for the grammar is then interpreted in unison with the grammar
encoding for the program. This permits semantic execution to be circumvented
when it is not required.

One major advantage of a DCTG over LOGENPRO’s DCG is the ad-
ditional semantic expressiveness inherent in a DCTG. The motivation behind
DCTG’s in the first place is that a DCG cannot encode substantial semantic
information without the grammar becoming overly complex and unwieldy. A
DCTG overcomes the representational weaknesses of DCG’s by encoding the se-
mantics into modularly separate areas, while still tying them together with the
rules to which they pertain. Argument notations permit semantic information
from various goals in the syntactic rule to be extracted and used as required.
The net result is that more complex semantics, including entire language in-
terpreters, are encodable with a DCTG. DCTG semantic definitions are also
practical for incorporating syntactic constraints into the grammar of the target
language. Although such syntactic constraints might be definable via syntactic
rules, the use of semantics for this purpose can greatly simplify the grammar, as
is seen in Section 4.2.

Gruau uses CFG’s to enforce syntactic properties in genetic programs16).
Gruau suggests that, if a user knows a syntactic constraint that a solution must
have, she or he should encode this property in the grammar of the target lan-
guage’s search space. Hence the semantics of the search space is constrained
by the user in so far as the semantic constraints are effectively controlled by

Logic–based Genetic Programming with Definite Clause Translation Grammars 25

syntactic constraints. This is not as general a means for controlling search as
is potentially available with logic grammars such as DCTG’s, which allow more
generalized context–sensitive constraints.

Gruau’s system does recursive call counting to ensure that program trees
do not exceed given depth limits. It is unclear, however, how he ensures that rules
selected during program generation do not result in unduly small trees, since he
does not appear to identify the termination properties of rules (ie. whether a
rule always terminates, or can generate a subtree less than a given depth). Hence
it is likely that programs in the initial population tend to be shallow in depth,
given the lack of control of generated program sizes. As in DCTG-GP, crossover
in his system only selects subtrees having the same nonterminal identifier, which
guarantees grammatical correctness. Additionally, Gruau transforms grammars
into normal forms, which increases the likelihood of permissible crossover possi-
bilities than is possible for non–transformed productions. Gruau uses a binary
encoding for the grammars, since grammatical representations can be resource
expensive. It could be argued that such an encoding may hinder execution speed
at the expense of cheap memory.

Whigham uses CFG’s in GP41, 42). As with Gruau’s system and DCTG-
GP, only nodes having the same nonterminal identifier are selectable for crossover
exchange. Whigham controls the size of generated trees by requiring that the
user manually encode each production with a number indicating the minimal
tree depth possible with that rule. DCTG-GP automatically determines this
information. Since Whigham does not analyze the termination characteristics
of rules, the initial population will favour smaller trees.

Some researchers suggest using a linear representation of programs, in
which genes are numbers that map to grammar rules11, 36). Gene mapping is per-
formed in a way so that only legal grammatical trees are generated; translations
to erroneous grammatical structures are ignored. This denotation is arguably
more akin to a GA with variable–length chromosome than the conventional
tree–based GP denotation, as a translation step from a basic genotype into the
grammar–tree phenotype must be undertaken. With this approach, grammatical
correctness does not need to be preserved during reproduction, since erroneous
chromosome mappings are circumvented during gene translation. In addition,
since the grammar rules are not used for tree generation (chromosomes are lists
of numbers), the depths of trees and termination characteristics of grammar
rules do not need to be considered.

26 Brian J. ROSS

Other work using grammars in GP is as follows. Geyer–Schulz has imple-
mented various GA and GP systems that use grammars14, 15). He concentrates on
studying issues with the syntactic context-free grammar representations for use
within GP systems, and assumes that attribute grammars, compiler-compilers
and other tools are available to implement the semantics of the languages. Ja-
cob uses grammatical GP to encode L-systems for use in modelling natural
phenomena22). L-systems are context-free grammars whose terminals have se-
mantic interpretations usually associated with graphical meanings. The above
works14, 15, 22) are related to DCTG-GP in that their use of context-free gram-
mars are equivalent to the syntactic portion of DCTG rules.

Hussain and Browse use attribute grammars and GP to evolve neural
networks20). Their use of attribute grammars is closely related to DCTG-GP,
since the semantic component of DCTG’s is a logical implementation of an at-
tribute grammar. The main difference between their attributes and DCTG se-
mantics is one of implementation style. DCTG semantics are tied directly to
individual grammar rules, permitting direct access to portions of the parse tree.
Traditional attribute grammars as in 20) define attributes separately from the
grammar rules, which they are referenced within the grammar at appropriate
locations. Their attribute grammar uses a conventional Pascal–like language for
defining semantics, while DCTG-GP uses logic programming.

Work related to grammatical GP is that of GP with data typing17, 24, 31).
Data typing constrains solutions with respect to the range of argument values
passed to program constructs. Therefore, it is a subset of the scope of syntactic
constraint done within more general grammatical GP systems.

The problem of generating random trees having particular size and shape
constraints has been investigated elsewhere2). Iba gives a linear algorithm for
generating random grow trees for GP21). He shows that the basic grow tree
generation algorithm of24) does not produce a uniform distribution of trees across
a range of depths. His tree generation algorithm generates trees with a more
uniform distribution of depths, and this is shown to have a positive influence
on evolution. The algorithm is designed around Koza’s basic CFG with one
nonterminal, and it is not directly applicable to more complex CFG’s.

Böhm and Geyer-Schulz address random tree generation for grammati-
cal GP5). Rather than consider the exact shape or depth of trees, their metric
for tree size is the number of derivation steps required by the grammar to derive
a tree. A combinatorial view of context–free languages is taken, in which trees

Logic–based Genetic Programming with Definite Clause Translation Grammars 27

that can be generated in a set number of derivation steps are said to belong
to the same partition of the language’s search space. Their algorithm uses this
knowledge about word partitions to randomly derive a tree within a particular
partition. By deriving trees within different partitions, a variety of trees can be
randomly generated. The implementation of their algorithm is nontrivial, and
the use of partition spaces does not guarantee depth or breadth characteristics of
trees. In comparison, the algorithms given in this paper are simple to implement,
and result in acceptably variable random tree shapes. Grammar analyses is re-
lated to work in abstract interpretation, which is applied to programs in order to
automatically determine such things as termination and typing characteristics9).

§6 CONCLUSION
This paper has discussed the implementation of a logic–based GP system

that uses a DCTG to encode the syntax and semantics of the target language.
DCTG-GP builds upon earlier approaches, extending LOGENPRO system43) by
using DCTG’s, and using established techniques for maintaining grammar cor-
rectness during reproduction16, 41). The system analyzes a user’s grammar for
information about the termination and minimal–depth characteristics of rules,
which is required for effective random tree generation. Recently, DCTG-GP
has been used successfully elsewhere in research investigating the use of fitness
sharing in genetic programming29, 30). In that work, grammars are defined in
DCTG-GP that permit the evolution of list membership and multiplexer pro-
grams.

As illustrated in our example experiment, two practical uses of a DCTG’s
semantics are to simplify the grammatical definition of the language, and to en-
code the operational semantics of the target language. Many languages have
compositional operational semantics, and defining an interpretation procedure
for them within a DCTG is straight–forward. Although syntactic problem con-
straints can be defined with the grammatical definition of the language, this can
be unwieldy and complex, as will be the resulting parse trees for the programs.
The DCTG can parameterize syntactic properties of the grammar with seman-
tic rules, which substantially simplifies the grammar. Of course, the DCTG
semantics can encode much more complex semantic constraints of programs, for
example, actually interpreting partial subtrees of the programs in order to de-
termine their acceptability. This must be done with caution, however, as the
benefits in pruning the search space in this manner may be outweighed by the

28 Brian J. ROSS

resulting overhead in performing reproduction. In addition, if the search space
is overconstrained, evolution will not be successful. Further investigation on the
use of semantic constraints during GP is necessary.

There are a number of enhancements possible. Gruau’s normal form for
productions16) is worth consideration. For example, one normal form transforma-
tion ensures that all terminals have nonterminal ancestors. After this and other
correctness–preserving transformations are performed on the grammar, there
are more robust opportunities for sensible node selection for directed crossover.
Whigham’s experiments41, 42) in evolving new productions during evolution are
intriguing, as they suggest that grammars themselves can be evolved in order to
discover more useful instances. Further work is necessary in this topic, and to
this end, attention should be directed towards the substantial body of work in
grammar evolution26, 28, 40).

Both Prolog and Lisp are AI languages, whose symbolic paradigms make
them ideal for genetic programming implementations. However, being inter-
preted, they are very slow compared to GP systems programmed in compiled
languages. It is interesting to consider a DCTG–style interface for a GP system
implemented in a lower–level but faster language than Prolog, such as C++.

Acknowledgement: Helpful comments from anonymous referees are gratefully
acknowledged. This work is supported though NSERC Operating Grant 138467-
1998.

References

1) H. Abramson and V. Dahl. Logic grammars. Springer-Verlag, 1989.

2) L. Alonso and R. Schott. Random Generation of Trees. Kluwer Academic
Publishers, 1995.

3) D. Angluin. Computational Learning Theory: Survey and Selected Bibliog-
raphy. In Proceedings of the 24th Annual ACM Symposium on the Theory of
Computing, pages 351–369. ACM Press, 1992.

4) W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone. Genetic Programming:
An Introduction. Morgan Kaufmann, 1998.

5) W. Bohm and A. Geyer-Schulz. Exact Uniform Initialization for Genetic Pro-
gramming. In R.K. Belew and M. Vose, editors, Foundations of Genetic Algo-
rithms 4. Morgan Kaufmann, 1997.

6) S. Brave. Evolving deterministic finite automata using cellular encoding. In
John R. Koza et al, editor, Proc. Genetic Programming 1997, pages 39–44,
Stanford University, CA, USA, 1997. Morgan Kaufmann.

7) E. Charniak. Statistical Language Learning. MIT Press, 1993.

Logic–based Genetic Programming with Definite Clause Translation Grammars 29

8) W.F. Clocksin and C.S. Mellish. Programming in Prolog (4th ed). Springer-
Verlag, 1994.

9) P. Cousot. Abstract Interpretation. ACM Computing Surveys, 28(2):324–328,
June 1996.

10) P. Dupont. Regular Grammatical Inference from Positive and Negative Sam-
ples by Genetic Search: the GIG method. In 2nd Intl. Coll. on Grammatical
Inference and Applications, pages 236–245. Springer-Verlag, 1994.

11) J.J. Freeman. A Linear Representation for GP using Context Free Grammars.
In J.R. Koza et al., editor, Proc. Genetic Programming 1998, pages 72–77. Mor-
gan Kaufmann, 1998.

12) K.S. Fu and T.L. Booth. Grammatical Inference: Introduction and Survey –
Part I. IEEE Transactions on Systems, Man, and Cybernetics, 5(1):95–111,
January 1975.

13) V.K. Garg, R. Kumar, and S.I Marcus. Probabilistic Language Framework for
Stochastic Discrete Event Systems. Technical Report 96-18, Institute for Sys-
tems Research, University of Maryland, April 1996. http://www.isr.umc.edu/.

14) A. Geyer-Schulz. Fuzzy Rule-Based Expert Systems and Genetic Machine Learn-
ing. Studies in Fuzziness and Soft Computing, v.3. Physica-Verlag, Heidelberg,
1996. 2nd revised edition.

15) A. Geyer-Shulz. The Next 700 Programming Languages for Genetic Program-
ming. In John R. Koza et al, editor, Proc. Genetic Programming 1997, pages
128–136, Stanford University, CA, USA, 1997. Morgan Kaufmann.

16) F. Gruau. On Using Syntactic Contraints with Genetic Programming. In P.J.
Angeline and K.E. Kinnear, editors, Advances in Genetic Programming II, pages
377–394. MIT Press, 1996.

17) T.D. Haynes, D.A. Schoenefeld, and R.L. Wainwright. Type Inheritance in
Strongly Typed Genetic Programming. In P.J. Angeline and K.E. Kinnear,
editors, Advances in Genetic Programming II, pages 359–375. MIT Press, 1996.

18) J.H. Holland. Adaption in Natural and Artificial Systems. MIT Press, 1992.

19) J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 1979.

20) T.S. Hussain and R.A. Browse. Attribute Grammars for Genetic Representa-
tions of Neural Networks and Syntactic Constraints of Genetic Programming.
In AIVIGI’98: Workshop on Evolutionary Computation, 1998.

21) H. Iba. Random Tree Generation for Genetic Programming. In H.-M. Voigt,
W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel Problem Solving
from Nature IV, Proc. of the International Conference on Evolutionary Com-
putation, pages 144–153. Springer-Verlag, 1996.

22) C. Jacob. Evolving Evolution Programs: Genetic Programming and L-Systems.
In J.R. Koza et al, editor, Proc. Genetic Programming 1996, pages 107–115. MIT
Press, 1996.

23) T.E. Kammeyer and R.K. Belew. Stochastic Context-free Grammar Induction
with a Genetic Algorithm Using Local Search. In R.K. Belew and M. Vode,
editors, Foundations of Genetic Algorithms IV. Morgan-Kaufmann, 1997.

30 Brian J. ROSS

24) J.R. Koza. Genetic Programming. MIT Press, 1992.

25) J.R. Koza. Genetic Programming II. MIT Press, 1994.

26) M.M. Lankhorst. Grammatical Inference with a Genetic Algorithm. Proceed-
ings of the 1994 EUROSIM Conference on Massively parallel Processing Appli-
cations and Development, pages 423–430, 1994.

27) T. Longshaw. Evolutionary learning of large grammars. In J.R. Koza et al,
editor, Proc. Genetic Programming 1997, pages 406–409, Stanford University,
CA, USA, 1997. Morgan Kaufmann.

28) S. Lucas. Structuring chromosomes for context-free grammar evolution. In
Proceedings 1st International Conference on Evolutionary Computation, pages
130–135. IEEE Press, 1994.

29) R.I. McKay. Fitness Sharing in Genetic Programming. In D. Whitley et al.,
editor, Proc. GECCO 2000. Morgan Kaufmann, 2000.

30) R.I. McKay. Partial Functions in Fitness-Shared Genetic Programming. In
A. Zalzala, editor, Proc. Congress on Evolutionary Computation. IEEE Press,
2000.

31) D.J. Montana. Strongly Typed Genetic Programming. Evolutionary Compu-
tation, 3(2):199–230, 1995.

32) F.C.N. Pereira and D.H.D Warren. Definite Clause Grammars for Language
Analysis – A Survey of the Formalism and a Comparison with Augmented Tran-
sition Networks. Artificial Intelligence, 13:231–278, 1980.

33) W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C. Cambridge University Press, 2 edition, 1992.

34) L.R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. Proceedings of the IEEE, 77(2):257–286, February 1989.

35) B.J. Ross. Probabilistic Pattern Matching and the Evolution of Stochastic
Regular Expressions. Applied Intelligence, 2000. In press.

36) C. Ryan, J.J. Collins, and M. O’Neill. Grammatical Evolution: Evolving Pro-
grams for an Arbitrary Language. In W. Banzhaf et al., editor, Proc. First Eu-
ropean Workshop in Genetic Programming (EuroGP-98), pages 83–96. Springer-
Verlag, 1998.

37) Y. Sakakibara. Recent Advances of Grammatical Inference. Theoretical Com-
puter Science, 185:15–45, 1997.

38) M. Schwehm and A. Ost. Inference of Stochastic Regular Grammars by Mas-
sively Parallel Genetic Algorithms. In Proc. 6th Intl. Conf. on Genetic Algo-
rithms. Morgan-Kaufmann, 1995.

39) SICS. SICStus Prolog V.3 User’s Manual, June 1995.
http://www.sics.se/isl/sicstus.html.

40) B. Svingen. Learning Regular Languages Using Genetic Programming. In
J.R. Koza et al, editor, Proc. Genetic Programming 1998, pages 374–376. Mor-
gan Kaufmann, 1998.

41) P.A. Whigham. Grammatically-based Genetic Programming. In J.P. Rosca,
editor, Proceedings Workshop on Genetic Programming: From Theory to Real-
World Applications, pages 31–41, 1995.

Logic–based Genetic Programming with Definite Clause Translation Grammars 31

42) P.A. Whigham. Inductive Bias and Genetic Programming. In A.M.S. Zalzala,
editor, 1st International Conference on Genetic Algorithms in Engineering Sys-
tems: Innovations and Applications (GALESIA), pages 461–466, 1995.

43) M.L. Wong and K.S. Leung. Evolutionary Program Induction Directed by Logic
Grammars. Evolutionary Computation, 5(2):143–180, 1997.

44) H. Zhou and J.J. Grefenstette. Induction of Finite Automata by Genetic Algo-
rithms. In Proc. 1986 IEEE Intl. Conference on Systems, Man, and Cybernetics,
pages 170–174, Atlanta, GA, 1986. IEEE Press.

