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Abstract— The automatic synthesis of aesthetically pleas-
ing images is investigated. Genetic programming with multi-
objective fitness evaluation is used to evolve procedural texture
formulae. With multi-objective fitness testing, candidate tex-
tures are evaluated according to multiple criteria. Each criteria
designates a dimension of a multi-dimensional fitness space.
The main feature test uses Ralph’s model of aesthetics. This
aesthetic model is based on empirical analyses of fine art, in
which analyzed art work exhibits bell curve distributions of
color gradients. Subjectively speaking, this bell-curve gradient
measurement tends to favor images that have harmonious
and balanced visual characteristics. Another feature test is
color histogram scoring. This test permits some control of
the color composition, by matching a candidate texture’s color
composition with the color histogram of a target image. This
target image may be a digital image of another artwork. We
found that the use of the bell curve model often resulted in
images that were harmonious and easy-on-the-eyes. Without the
use of the model, generated images were often too chaotic or
boring. Although our approach does not guarantee aesthetically
pleasing results, it does increase the likelihood that generated
textures are visually interesting.

I. INTRODUCTION

The automatic synthesis of aesthetically pleasing images
is investigated. This research contributes to the body of work
using evolutionary computation to generate procedural tex-
tures. We use genetic programming to synthesize procedural
texture formulae [1]. Principles of Darwinian evolution are
applied to a dynamic population of textures. Those that
generate images with desired visual features are likely to
reproduce, and have offspring with even more desireable
features. During the evolution process, the rendered output of
texture expressions are evaluated by two independent feature
analyses. The first analysis uses a novel model of aesthetics
by Ralph [2]. This model is derived from an empirical study
of fine art, in which it was discovered that many examples
of art work exhibit a normal distribution of colour gradients.
The other feature analysis is colour histogram scoring, which
compares an image’s colour distribution histogram to that of
a target image. By matching the texture’s colour distribution
with another image, we are borrowing another artist’s colour
sensibilities. The combined result of these tests are images
that conform to both the bell curve aesthetic and desired
colour composition.

The paper is organized as follows. Related work in evo-
lutionary texture synthesis is reviewed in Section II. Section
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III describes Ralph’s aesthetic model, which is used as one
of the feature tests by the GP system. System design and
experimental details are described in Section IV. Section V
presents some example results. Concluding remarks are given
in Section VI.

II. RELATED WORK

Evolutionary texture and image synthesis is well es-
tablished [3][4]. Most systems are supervised, in which
the user interactively views and rates texture images from
the population, and possibly controls the rate of muta-
tion [5][6][7][8][9]. Interactive evolution is less suitable for
evolving preconceived styles of textures, than it is as a
creative tool for discovering new textures. Moreover, it can
quickly exhaust the user, who must manually view and
evaluate every generated texture.

Automatic texture evolution removes the user from the
loop [10][11][12]. Image analysis functions evaluate rudi-
mentary image features such as colour, luminosity, and shape.
These scores are then matched with those of a target texture.
Another approach is in [13], which evolves procedural tex-
tures for 3D models. Instead of image analysis, this system
uses training sets of example texture points.

Automated aesthetic texture evolution has not been widely
studied. A pioneering work is [14], which uses an artificial
neural network (ANN) as an image evaluation function
within a GA. Before evolution, the ANN is trained on sets
of example images that have been deemed to be aesthetically
appealing. Their system does generate textures according
to the evaluation by the ANN. It is unclear whether their
ANN has learned any relevant aesthetic principles or useful
patterns, especially given the vast quantity of training data
used.

More recently, genetic programming using a fitness func-
tion encoding a model of aesthetics has been used in the
NEvAr system [15]. That model posits that images are
aesthetically pleasing if they are both visually complex, as
well as easy for the brain and visual system to perceive
and interpret. Two mathematical measurements are used: (i)
image complexity is measured by the JPEG compression
ratio; (ii) visual self-similarity is indicated by the fractal
compression ratio. Their aesthetic model was applied to the
TDA test (Test of Drawing Appreciation), which is a stan-
dardized psychological test used to evaluate art appreciation
[16]. The results were impressive, as the model scored better
than typical art students.

Recently, an aesthetic distance metric was proposed as
a means for measuring the information proximity between
candidate images and a library of images preclassified to be



aesthetically pleasing [17]. Although the metric was success-
fully tested against user preferences during interactive texture
evolution, it has not been tested extensively in automatic
texture evolution.

Measurable aspects of artificial and natural phenomena
often exhibit particular kinds of mathematical distributions
[18]. For example, the well known 1/f or pink noise dis-
tribution is widely found in diverse areas such as physics
[19], natural images [20], and human cognition [21]. One
famous example examining 1/f noise in the arts is [22]. In
the music examples analyzed, they show that the differences
in successive pitches in notes (pitch gradients) exhibit 1/f dis-
tributions. Furthermore, stochastically-generated music based
on 1/f noise generators is more aesthetically pleasing than
that generated by pure random or white noise generators.

III. A MATHEMATICAL MODEL OF AESTHETICS

A mathematical model characterizing an aspect of fine
art has been proposed by Ralph [2]. The following gives
a simplified overview of the theory. After analyzing hun-
dreds of examples of fine art, it was found that many
works consistently exhibit functions over colour gradients
that conform to a normal or bell curve distribution. This
is seen with many artists, such has Cezanne and Seurat,
who create “painterly” images. On the other hand, the visual
responses to photographs and graphic design work usually
do not have normal distributions. This normal distribution
of gradient response is claimed to be difficult to realize,
since it is essentially characterizing the global distribution
of gradient throughout an entire image: local changes affect
the distribution found throughout the entire painting. It is
hypothesized that this bell curve distribution has been an
implicit aesthetic ideal of many painters throughout history.

The bell curve model posits that a viewer’s response
to an image is largely determined by his or her psycho-
neurological reaction to visual stimuli. When viewing an
artwork, a viewer’s visual system is stimulated by the details
of the image. The bell curve model suggests that a viewer is
most attracted to changes in an image, for example, the edges
between different colours. The areas with constant colours
are of less interest. Furthermore, larger changes are more
noticeable than smaller ones. Since it is known that our ner-
vous system tends to have a logarithmic reaction to stimuli,
this model likewise treats measurements logarithmically.

An image’s bell curve gradient is computed in three steps.
Step 1: An image’s colour gradient is found. This is done

by computing the following for each pixel (i,j) of an RGB
image (ignoring the extrema row and column of the image
buffer):

|∇ri,j |
2 =

(ri,j − ri+1,j+1)
2 + (ri+1,j − ri,j+1)

2

d2

where ri,j is the red value at pixel (i,j). Similar computations
are done for the green and blue channels. The d value is
a scaling factor that is used to scale the result for images
having different dimensions. We take it to be 0.1% of half

the diagonal length, scaled for typical pixel densities on CRT
monitors. The overall gradient or stimulus S is then:

Si,j =
√

|∇ri,j |2 + |∇gi,j |2 + |∇bi,j |2

for the separate RGB channel gradients. Finally, the response
R is computed as:

Ri,j = log(Si,j/S0)

where S0 is the threshold of detection, which is taken to be
2. If Si,j = 0 (no change in colour at a pixel), it is ignored.

Step 2: The distribution of the response values for an
image is determined. The calculation of the distribution is
based on the hypothesis that the probability that a viewer
pays attention to a detail of an image is proportional to
the magnitude of the stimulus that resides at that detail.
Hence we use a weighted mean and standard deviation, with
Ri,j being the weight value for each response. The normal
distribution of R is then estimated using a weighted normal
distribution, defined by a mean (µ) and standard deviation
(σ2):

µ =
∑

i,j
(Ri,j)

2

∑

i,j
Ri,j

σ2 =
∑

i,j
Ri,j(Ri,j−µ)2
∑

i,j
Ri,j

Once µ and σ2 are found for an image, the actual distribution
of all Ri,j for all pixels in the image is tabulated. Using a
bin width of σ/100, a histogram is calculated, where each
Ri,j updates its corresponding bin using a weight of Ri,j .

Step 3: The closeness of fit between the response actual
distribution and the hypothesized bell distribution is calcu-
lated. This is called the deviation from normality or DFN,
and it is calculated as:

DFN = 1000
∑

pilog(
pi

qi

)

where pi is the observed probability in the ith bin of the
histogram, and qi is the expected probability assuming a
normal distribution with the computed mean and standard
deviation above. When qi = 0, that bin is ignored. A DFN
value of 0 means that a perfect normal distribution exists,
while higher DFN values indicate poorer fits to the normal
distribution.

There are a number of practical advantages of the bell
curve model. The DFN score is easily incorporated as a
fitness score within the genetic algorithm. The bell curve
model also permits a means for characterizing general artistic
styles. As discussed in [2], different styles of art are often
characterized by their bell curve fit, as well as the associated
mean and standard deviation of the distribution. Many paint-
ings with good DFN’s tend to have bell curves with a mean
around 3.0 and a standard deviation of 0.75. Photographs
have poor bell distributions, with means of around 4.2 and
standard deviations of 1.2 or more. Graphic designs have
even higher values. These values can be used by the genetic
programming system as general stylistic target areas for
evolved images.



Float (f):
Terminals: x, y, ephem
Basic math: plus(f,f), minus(f,f), diff(f,f), mult(f,f),

div(f,f), neg(f)
Other math: sin(f), cos(f), mod(f,f), log(f), pow(f,f)
Relational: min(f,f), max(f,f), if-then-else(f,f,f)
Noise: noise(f,f), turb(f,f), turbflow(f,f,f),

cloud(f,f,f,f)
Misc: tilerad(f,f), lum(v), chn(v), ichn(f,v)

RGB vector (v):
Terminals: colgrad, ephem
Noise: marble(f,f,v)
Transform: warprel(f,f,v), warpabs(f,f,v), kaleid(v),

vtile(f,f,v)
Other: rgb(f,f,f), if-then-else(f,v,v), forv(f)

TABLE I
TEXTURE LANGUAGE

IV. EXPERIMENT

A. Texture language

The texture language used is similar to one used by Sims
[5]. A summary of the language is given in Table I. The
genetic programming system uses strong typing, and so
all language components respect the data type conventions
specified in the table. Two data types are used – float (f),
and RGB vector (v), which is a tuple of 3 float values that
is interpreted as an RGB colour.

The float primitives compute floating point values. The
terminals include x and y, which are the current pixel
coordinates whose texture colour is being computed. The ter-
minal ephem denotes ephemeral random constants [1]. These
constants are initialized with a random number generator, and
retain the initialized value throughout the remainder of their
existence within the run. Their range is between -1.0 and 1.0.
Most of the math and relational operators are straightforward.
The if-then-else(f,g,h) expression evaluates expression f. If
f > 0, then the value of g is returned. Otherwise the value of
h is returned. The noise operators use a pink noise or Perlin-
like noise generator. The basic generator is noise(f,g) [23].
It takes 2 explicit arguments, the frequency f and a random
seed g, and 2 implicit arguments, the current x and y pixel
coordinates. Turb, Turbflow, and Cloud use turbulence and
cloud modeling formulae [23][24]. Tilerad generates a tiling
effect.

The vector functions return RGB vectors as evaluated
results. Vector terminals include ephemeral constants, as
well as colgrad, which computes an RGB gradient based
on the current pixel coordinates. The other vector primitives
perform a variety of texture and tiling effects, vector con-
struction and deconstruction, and vector iteration.

B. Feature evaluation

The relative worth of a texture image will be measured by
its performance on a suite of feature tests. One feature test is
the bell curve analysis from Section III. The deviation from
normality (DFN) determines how well an image’s gradient
fits to a normal distribution, and hence shares the gradient

characteristics found in many works of art. The gradient
analysis also computes mean and standard deviation scores.
The mean denotes the range of gradient seen in an image. The
standard deviation represents the changes in gradients seen,
ranging from gradual shifts to sharp jumps in colour. We find
it useful to include one or both of these measurements with
the DFN when analyzing images.

The other feature test, CHISTQ, is a colour analysis
that compares the colour distribution of a texture image
with that of a target image. It uses quadratic histogram
fitting for colours, which is a test often used in query by
image content systems such as VisualSEEk [25]. The image
is first quantized into 1000 colours. Then a histogram of
quantized colour frequencies is tabulated. The histograms for
two images are compared with one another, and an overall
distance between them is calculated. All the histogram entries
in both images are compared exhaustively with one another,
to determine how closely the colours distributions match.
This test is fairly relaxed with respect to colour fitting. It is
also position independent, meaning that colours do not have
to coincide with respect to their placement on an image.

C. Multi-objective fitness scoring

A multi-objective problem is characterized by having two
or more fitness criteria [26]. Multi-objective search strategies
consider each feature test as an independent dimension in the
search space. This contrasts to approaches that merge scores
together, perhaps by a weighted sum. Weights are usually
ad hoc, introduce undo bias into the search, and can be
detrimental to most nontrivial problems.

We interpret the evaluation of textures using the multi-
objective approach from [12]. When textures are added to a
new population, the DFN and CHISTQ tests are performed
on the generated texture from each formulae, and the fitness
scores (including mean and standard deviation scores) are
saved. These scores are then used to determine a Pareto
ranking of all the individuals in the population. Pareto
ranks are based on the idea of domination. One individual
dominates another if it is at least as good in all the scores,
and better in at least one. Using the notation u < v to mean
score u is more optimal than v, then u dominates v if:

∀i ∈ (1, ..., k) : ui ≤ vi ∧ ∃i ∈ (1, ..., k) : ui < vi

Individuals having rank 1 are undominated, and are the
current best solutions in the population. Those of rank k
> 1 are dominated by all the individuals of ranks < k. All
the individuals in a rank are incomparable with one another.
At the end of a run, all those with rank 1 are considered as
valid solutions to the problem.

After the Pareto ranks are determined, the individuals in
each rank are evaluated with respect to their diversity. Tex-
tures in a Pareto rank are considered superior if they are more
diverse with respect to their location in the multi-dimensional
search space, as indicated by the fitness scores in each feature
test. The idea is that a texture with unique characteristics,
likely has correspondingly different feature vector values.
Likewise, textures that are duplicates or minor variations of



each other probably have very similar or identical feature test
scores.

An indicator of diversity in feature space is the nearest-
neighbour distance between feature vectors. Because feature
tests differ widely between each other in terms of valuations,
the raw scores in the vectors are not used to determine
distances. Rather, these distance scores are abstracted into
ranks, and the average distance rank is computed instead.
This approach will give all feature scores equal weight when
determining distance. The following steps are performed to
determine diversity for all the textures in each Pareto rank
set:

1) For each feature test dimension, the nearest-neighbour
distance is determined.

2) All the distances are ranked, with the largest distance
assigned the lowest rank (1). Each individual ends up
with a vector of distance ranks, with one distance rank
per feature test.

3) The average distance rank is deterined for each dis-
tance rank vectors. This is used as the “diversity score”,
where lower averages are preferred.

Once these steps are computed, the textures within each
Pareto rank set are re-assigned fitness scores, such that more
diverse individuals in the rank have better scores compared
to others in the rank set. The desired outcome is a diversity
of generated images. Note that diversity is only applied
within the Pareto sets, and the Pareto ranks themselves are
maintained. In other words, diversity does not affect the
overall Pareto ranking between Pareto rank sets.

D. Other experimental parameters

Parameter Value
Population size 1000
Generations 50
Runs/experiment 5
Initialization ramped half&half
Initial ramped tree depth 2 to 6
Max. tree size (nodes, depth) 200, 20
Crossover rate 0.9
Mutation rate 0.1
Selection scheme tournament (size 3)

TABLE II
GENETIC PROGRAMMING PARAMETERS (TYPICAL)

Table II lists other typical parameters used in the exper-
iments. Most are standard within the genetic programming
literature [1]. Five separate runs using new random number
seeds were done per experiment, using a population of 1000
texture expressions. A maximum of 50 generations were
used. The initial population is generated using the ramped
half-and-half tree generation algorithm, which creates a pop-
ulation of random trees having an assortment of sizes and
shapes. Initial trees have depths between 2 to 6 levels. During
reproduction, trees can have a maximum of 200 nodes, and
a maximum depth of 20. Crossover is used 90% of the
time, and mutation is selected the remaining 10%. Fitness-
based selection is performed via tournament selection. Here,

3 random formulae are selected from the population, and
the one with the highest fitness is retained for reproduction.
Crossover applies tournament selection twice, to find two
parents.

Images rendered during the run are by necessity small,
given the computational time needed for their generation and
analysis. We often used run-time images with resolutions of
approximately 125 by 100, and final rendered output of 1250
by 1000, or 100 times the area. Although smaller run-time
images greatly speed up a run, a price is paid in feature test
accuracy. A larger resolution image has much more visual
detail, which affects the DFN and other scores. Therefore,
larger run-time images will result in more accurate results.
If an appropriately-scaled Gaussian blur filter is applied to
a large image before feature tests are performed, the results
obtained are closer to what are seen with smaller resolution
versions of the image.

V. RESULTS

Figure 1 shows some results.1 The search uses four target
objectives: DFN=0.0, mean=3.75, std dev=0.75, and colour
matching with the image in (a) (ie. CHISTQ=1.0). Textures
that are to be analyzed in the run are rendered at a resolution
of 126 by 98. The final results are rendered at 1260 by
980. One result is the image in (b). When processed with
a 3 by 3 gaussian filter (to approximate the detail in the
smaller image analyzed in the run), the resulting statistics
are DFN=6.4, mean=1.8, std dev=0.68, CHISTQ=0.82. Such
results are typical with multi-objective searches, in which
some scores are strong, while others are weak (in this case,
the mean score). Usually a CHISTQ score above 0.80 means
that the image colour yields an acceptable match to the
target. Image (c) shows the gradient response filter applied
to the solution image. Figure 2 shows the distribution of
the gradient response for this solution. Figure 3 shows how
the DFN stays low as the gaussian filter is increased, which
simulates the eye viewing the image at farther distances.

Images (d), (e) and (f) in Figure 1 are other results using
the same target image as above. Image (d) has a DFN=7.9,
mean=3.7, std dev=0.54, and CHISTQ=0.92. Image (e) has
a DFN=15.0, mean=4.6, std dev=0.72, and CHISTQ=0.90.
Image (f) is taken from an earlier generation (25). Less
evolved images such as this one are typically bolder, more
primitive, and less refined than latter ancestors, since their
scores are still far from the target values.

Figure 4 shows some results from an experiment in which
a greyscale image in (a) is used as the colour target.

In Figure 5, the Union Jack in (a) is the colour target. That
image is detrimental to both the CHISTQ and DFN tests, as
both prefer richer gradients than the 3 colours in the image.
One interesting result is in (b). To get a lower DFN score,
a 3D smoke effect was placed between the red and yellow
bands, as is seen in the detail in (c).

1Full-sized colour images can be seen at www.cosc.brocku.ca/ ∼

bross/DFN gallery/.



(a) Colour target. (b) One result. (c) Colour gradient of (b).

(d) (e) (f)

Fig. 1. Results for Monet sea image palette in (a).

(a) Greyscale target. (b) (c)

(d) Detail from (b). (e) Detail from (c)

Fig. 4. Greyscale colour target experiment

A classic painting by Monet is used as the target in Figure
6. Image (b) is one result, and a detail from it is in (c).

Figure 7 shows various results from other experiments.
Images (a) and (b) are examples of poor results having high
DFN scores. The chaotic nature of image (a) gives it a
DFN=129. On the other hand, image (b) is overly bland.

It was evolved in a run that ignored DFN scores, and its
DFN is over 1400. Images in (c) and (d) show how the
DFN scoring can produce subtlety and balance. Image (e)
is a detail from an image that had a wood-block print effect.
The image in (f) is from a run in which the target DFN was
inadvertently set too high. The resulting artistic style is more



(a) Colour target. (b) Result. (c) Detail from (b).

Fig. 5. Union Jack experiment

(a) Colour target. (b) Result. (c) Detail from (b).

Fig. 6. Monet experiment

(a) DFN=129 (b) DFN > 1400 (c)

(d) (e) (f)

Fig. 7. Miscellaneous results



Fig. 2. Gradient plot for Fig.1 (b)

Fig. 3. DFN vs blurring for Fig.1 (b)

graphic design-oriented than the more ambient and painterly
styles seen with images having low DFN’s (see discussion
of Figure 8 below).

Fig. 8. Gradient response space for art work and evolved images

The research in [2] characterizes the observed normal
distributions of art work with the graph in Figure 8. The dark
blue pyramid demarcates the area within which the response
curves of paintings are often found. Paintings with low
DFN scores consistently have means and standard deviations
within a “sweet spot” in the pyramid, marked with the
red circle. Amateur artists very rarely create pieces that
reside in this locale. This suggests that the sweet spot is

an aesthetic ideal implicitly striven for by many classical
painters. Graphical art and photographs tend to be in the
area marked with the green circle, and did not have strong
DFN scores. We found that our evolved images tended to
reside in the light blue rectangle. When the colour palette
scoring was not performed, the DFN scores were consistently
in the bottom-left of the triangle, in the area of low mean
and standard deviation. The sweet spot was occasionally hit
by our images. As with human artists, the sweet spot is also
technically challenging for genetic programming.

VI. CONCLUSION

This paper has shown that aesthetic texture evolution
benefits from Ralph’s bell curve response model [2]. We
conjecture that the area of image space defined by low DFN
scores is more densely populated with interesting images,
than the areas where the DFN is high. When experiment
parameters were appropriately tuned, we conservatively es-
timate that 10% of our results were visually interesting. On
the other hand, when the bell curve analysis is removed, the
resulting images are chaotic or bland, artificial, mathematical,
and rarely appealing. Thus, the bell curve score is a heuristic
that directs the search into regions of texture space that are
more likely to be balanced, harmonious, painterly, and “easy
on the eyes”. This is important for automatic synthesis, where
the user has no control over the direction of search. Never-
theless, the user still makes the ultimate decision whether
the synthesized images are appealing. Art is in the eye of
the beholder.

Ralph’s bell curve response models the degree of visual
non-uniformity that is resident in a large number of classical
paintings. This is not to suggest, however, that all synthetic
images with low DFN’s are necessarily interesting. For
example, we performed runs in which the DFN was the
sole criteria, and the colour score was ignored. Although
the resulting images had excellent DFN scores, they were
inevitably bland and boring, due to the use of a narrow band-
width of RGB space. This was advantageous for obtaining
low DFN scores, but not very interesting to the human eye.
The colour test introduces the need for a palette of colours,
which is the norm in visual art. In fact, the mood of a target
image as intended by the original artist is often injected into
the texture image, visaviz the colour palette.

Interestingly, we found that some images with unusually
poor scores were visually fascinating. This does not suggest
that the fitness criteria is irrelevant. These particular im-
ages have visually pleasing traits inherited from more well-
behaved and refined ancestors. Furthermore, sometimes the
chosen colour target image is “DFN unfriendly”. In such
cases, the DFN and colour tests work against each other.
The resulting “creative tension” often produces the most
surprising results (image (c) in Figure 5).

The images in [15] share some stylistic characteristics with
many of our results. The aesthetic models of both systems are
unfavourable to images that are either too static or chaotic.
Their model’s use of fractal compression tends to favour



images that are self-similar in nature. The NEvAr system
uses greyscale, while we work with a target colour palette.

Both the Bell distribution and NEvAr’s aesthetic models
likely reside within 1/f space. The 1/f distribution is applica-
ble to a wide variety of phenomena that reside between total
order and total chaos [18]. Its generality makes it too coarse
for modeling more refined phenomena, such as fine art.

Research in [27] has applied many of this paper’s ideas,
including the Bell curve aesthetic model, toward the evolu-
tion of non-photorealistic image filters. The results of that
research confirm that the Bell curve model acts as a taming
influence to the kinds of filter effects obtained. Furthermore,
that research discovered that paint brush strokes are con-
ducive to Bell curve gradient distributions. This partially
explains why we occasionally obtained paint stroke effects
on textures, which are not an easy effect to obtain with our
GP texture language and its noise generators.

There are a number of future directions for this research.
Other measurable aspects of aesthetics could be incorporated
that address composition and colour selection in more detail.
The evolution of images that have non-normal distributions
(higher DFN’s) is worth considering. Image (f) in Figure 7
shows that interesting graphical designs are possible with
non-bell distributions. New texture languages would result
in new styles of images. The language used here is predomi-
nated by noise generators, which directly influences the style
of abstract art obtained.
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