
MWSCCS: A Stochastic Concurrent Music Language

BRIAN J. ROSS

Brock University
Department of Computer Science

St. Catharines, Ontario, Canada L2S 3A1
bross@sandbanks.cosc.brocku.ca

Abstract

The paper describes a music composition language MWSCCS – the Musical Weighted Synchronous
Calculus of Communicating Systems. MWSCCS is a stochastic language based on Tofts’ WSCCS
and Milner’s SCCS algebra. Main features of MWSCCS are its straight-forward approach to
probabilistic execution, the ability for processes to generate musical events autonomously or to
communicate amongst each other, the ability to write prioritized reactive processes, and its concise,
hierarchical set of operators. MWSCCS diverges from the pure WSCCS algebra by introducing
various devices useful for music, for example, a MIDI mappable event space, and stream repetition
for the generation of repetitive melodies and rhythms. MWSCCS’s execution engine consists of
a search mechanism, which replaces the pure algebra’s denotational semantics over streams. The
implementation of the language benefits from the formal semantic definition of the original process
algebra. The language is implemented in Prolog. Work is under way in creating compositions with
MWSCCS that exhibit interesting chaotic and self-organizing behaviours.

1 Introduction

The perspective of music as a concurrent activity is well established. Music models using Petri nets

(Haus & Rodriguez, 1988; Haus & Sametti, 1992) and algebraic interleaving (Chemillier & Timis, 1988;

Chemillier, 1990) are rooted in the concurrent computation paradigm to different extents. This papers

contribution is to suggest a music programming language based on a process algebra. The process

algebra model considers music as comprised of discrete, concurrent behaviors that can be observed

and reacted upon by musical processes. This can be intuited by considering a small improvisational

jazz band. A competent musician does not play independently with respect to the rest of the band,

but rather, reacts to musical events and cues from the other musicians. Such cues can range from

maintaining step with subtle tempo drifting, to compositional cues such as the playing of notes that

fulfil melodic or harmonic obligations with the notes played by other instrumentalists. We therefore

identify a musical event as being an observable discrete phenomena that can be observed by others,

and which can ellicit reactions. We identify the ability to observe, recognize, and react to such events

as being an important ingredient to human and computer music processing and composition.

The music programming language discussed in the paper is the Musical Weighted Synchronous

Calculus of Communicating Systems, or MWSCCS. It is an implementation of the MWSCCS process

algebra, enhanced with features useful for music composition. Some benefits of the language include a

concise yet powerful set of basic primitives, the ability to create abstract hierarachical musical systems,

and an intuitive mechanism for specifying complex stochastic behaviours of musical processes.

1

The format of the paper is as follows. A brief discussion of the process algebra foundation of

MWSCCS is in section 2. Section 3 discusses the MWSCCS language, and section 4 gives some

example MWSCCS compositions. A discussion concludes the paper in section 5.

2 Process Algebra

An agent or process is an abstract mechanism whose behavior is characterised by discrete actions.

Process algebra are mathematical formalisms for modelling processes. There are many process algebra

in the literature (eg. (Hoare, 1985; Hennessy, 1988; Milner, 1989)), each of which establish different

perspectives and styles for modeling concurrency. Process algebra are effective models of concurrency

because of the high degree of abstraction possible with them, as well as their intuitive “program-

ming language” feel. Along with process algebra, two other algebraic models of concurrency include

Petri Nets (Peterson, 1977) and trace theory (Aalbersberg & Rozenberg, 1988). Although all three

formalisms share much in common – they all define finite automata – they do differ in the nature

of their semantics and subsequent analyses. For example, process algebra tend to be more abstract

and specification-oriented than Petri nets, while the latter describe concurrency at a more intricate

structural level.

The MWSCCS process algebra is described in detail in (Ross, 1995a; Ross, 1995b). MWSCCS

is a musically-extended version of Tofts’ WSCCS algebra (Tofts, 1990), which is in turn a stochastic

version of Milner’s SCCS (Milner, 1989). SCCS (synchronous calculus of communicating systems) is

a process algebra in which processes contribute their visible activity synchronously, or in other words,

in unison with a global clock. The algebra also contains operators for structuring process definitions,

renaming and inhibiting actions, and permitting nondeterministic choices of behaviour. WSCCS adds

to SCCS a mechanism useful for stochastic and reactive control of nondeterministic choice. Finally,

MWSCCS adds to WSCCS some denotations useful in a musical context, for example, an event space

mappable to MIDI. The algebraic semantics of all these algebra are defined in terms of transitional

rules of inference. Each rule describes the behaviour of an operator in terms of the relation it defines

with respect to a transition over the stream of observable events. A discussion of these rules is beyond

the scope of this paper (please see the aforementioned references). However, it is worth noting that a

transitional inference rule semantics is invaluable for creating a correct implementation for the algebra

as done in this research.

MWSCCS treats music as a stream of observable discrete events. When applied to music, this

stream denotes the horizontal structure of music – the relative sequential order of events with respect

to each other. The vertical component of music – event simultaneity – is naturally denoted by the event

domain of multi-particle actions. A particle is the smallest visible atomic event definable . Multiple

particles can coalesce to produce an action. When multiple processes synchronously communicate their

actions, their constituent actions are combined to form new actions. The process ab.cd represents two

actions, ab followed by cd. Particles have two polarities (eg. a and a), which cancel themselves if they

2

coincide in one action. ’1’ is the identity action, and represents silence. ’0’ represents termination.

Then the expression

a.b.c.d.0 # ab.cd.1.0 # ab.de.f.0

represents three processes communicating concurrently via the composition operator #. The expression

reduces to aabab.bcdde.c1f.d00, which in turn simplifies to aaa.bce.cf.0. Note how the d in the first

term is not generated, because the other two processes have already terminated. The power of this

representation is that it naturally models musical activity. Each particle above can be considered to

be a musical note, and composite notes in turn denote chords. We can colour the notes to denote

particular voices or instruments if desired. A ramification of this musical interpretation is that a whole

composition quits as soon as one process (instrument, voice, musician) quits.

Another useful feature of the algebra, inherited from WSCCS, is its representation of stochastic

processes. In the choice expression,

2ω2ab + 3ω2cd + 4ω1ef.g + 5ω1h

the first two terms are considered before the last, as their priority value ω2 is higher than ω1. The first

and second terms are selectable with probabilities of 2/(2 + 3) = 2/5 and 3/5 respectively, and the last

terms with probabilities 4/9 and 5/9 respectively.

3 The MWSCCS Language

3.1 The event space

Section 2 introduced particles and actions, and how they coalesce and cancel during synchronous

communication. MWSCCS supports the following event space A:

A = { Generic Actions } ∪ { Music Notes } ∪ { 1,
√
, −√ }

Generic actions are vanilla process algebraic communications, and normally are lower-case constants.

Musical Notes uses notation for identifying standard 12-semitone multi-octave notes. For example, as5

is A-sharp octave 5. In addition, notes can be coloured with a channel (between 1 and 16) and velocity

(between 0 and 255), as in as5 ch 3 vel 155. In order to map to MIDI events, note actions can be

interpreted as Note On and Note Off messages. In this interpretation, as5 and as5† denote A-sharp On

and A-sharp Off respectively. The action 1 denotes silence. All actions (except 1) have positive and

negative polarities, for example, a and −a. The reserved particle
√

denotes “active termination” of a

process. This termination differs from absolute termination (0) in that the process does not end, but

remains silent throughout the rest of the composition, having become equivalent to a process Silent:

Silent = d = 1.Silent

A process that emits
√

just before becoming silent is called well-behaved.

3

Composite actions are denoted by tuples. The term (c3, e3, g3) represents the chord C-major. The

language permits simple function expressions over particles, which is useful in concert with parameter

passing. The term f(X + 2) denotes the musical note two semitones above note X.

Probability and priority codes may prefix terms. In (F, P)∆(Action), F is the relative frequency

and P is the priority. If P is missing as well, the priority is taken to be 1. If F is missing, then F is 1.

The expression

(2, 2)∆(as5, −bf) + (3, 2)∆(a5, −bf) + (4, 1)∆(c5) + (5, 1)∆(d5)

therefore treats the first two terms as higher priority than the other two. Probabilities are assigned as

described in section 2.

3.2 Operators

The language E of agent expressions over an event space A is defined by the grammar

E ::= 0 | X | (F, P)∆α.E | EdA | E\A | E[f] | E1 + E2 | E1#E2 |
Elabel(t̃) | !E | N rep E | inf rep E | (N)

where E,Ei ∈ E ; F, P,N are integers > 0; A are particles; α is an action; f is a particle renaming

function; t̃ is a parameter list; and Elabel is a process name. Processes definitions are defined by:

Elabel = d = E

The null process 0 is the process that has absolutely terminated. The prefix operator in α.E

represents the process that can perform the action α, thereafter becoming the process E. The expression

α.0 abbreviates to α.

The permission operator in EdA denotes the process that performs the particles that are members

of the set A. In effect, the permission operator prunes all actions not in A. The restriction operator

in E\A is the converse of permission, except that it lists the actions which cannot be generated by E.

In fact, E\A = Ed(A−A).

The relabelling operator in E[f] renames particles according to f , while leaving weights alone. For

example, E[b/a] replaces particle a with b in each action emitted by E.

The choice operator E1 + E2 represents the choice of execution of a set of processes according to

priority and probability prefixes on the terms, as described above.

The parallel composition operator in E # F forces concurrent processes E and F to synchronously

communicate with one another. We let E # F = F # E. If both E and F have no probability or

priority information, then a new action is formed by their combined actions:

a.E # b.F = ab.(E # F)

When prefixes are involved, rules from the MWSCCS algebra describe how to combinate them to create

new prefixes for the results.

4

Wherever a process variable X is found, the E expression bound to it is used. A reference to a

process Elabel defined with an expression = d = causes that process definition to be invoked, possibly

with parameter passing.

!E denotes the infinite invocation of an expression. E is invoked until it absolutely terminates, at

which time it is reinvoked. On the other hand, inf rep E invokes E until it terminates, and then

infinitely repeats the stream generated by E. Therefore, !E generates in an indefinite stream of varying

behaviour, while inf rep E gives an indefinite stream of repetitive behaviour.

Finally, the notation (N) represents a delay of N clock ticks. For example (4), is equivalent to

1.1.1.1. Because compositions usually require lengthy pauses between notes or between note on/off

messages, this notation is very convenient.

3.3 Useful Extensions

Sometimes it is useful to model asynchronous processes. Unlike the processes above, asynchronous

processes may nondeterministically wait or stall before elliciting their observed behaviour. We can

represent an asynchronous process by the following meta-operator:

•(P) = d = P + 1. • (P)

Here, P can either execute, or wait. As can be seen in this recursive definition, an asynchronous process

may very well stall forever, although this is statistically unlikely.

The strict sequential execution of musical events is often required. To play sequentially, one

musician’s musical part should end before the next musician commences. A sequential composition

operator “;” is useful for this purpose:

X ; Y = d = (X[c/
√

] # • (−c.Y)) \{c}

where c is a new particle not generated by X or Y . The ; operator takes two processes X and Y as

arguments, where X must be well-behaved. Here, X will play until it is done, at which time it generates

the termination signal
√

. This is renamed to c when it is seen, and Y has this same c prefixed to it.

When used with the restriction of c, the expression disallows c from appearing. Fortunately, when c is

finally generated by the left-side, it synchronizes with c on the right, and that particle disappears, ie.

(−c, c) = 1. Then Y may proceed to play. Note that we do not want X to literally die (reduce to 0),

or else the whole expression will quit, since 0#E = 0. Rather, X should be well-behaved, remaining

silently active in order for the whole composite expression to execute to completion.

3.4 Other implementation issues

MWSCCS has been implemented in MacProlog 32 and SICSTUS Prolog under IRIX 5.3 Unix. The

implementation uses a meta-interpreter over MWSCCS expressions. The implementation of various

operators were directly derivable from the transitional inference semantics of the original algebra. The

5

utility of this formal semantic specification for the language cannot be overstated, as it permitted the

the quick derivation of a correct and functional implementation.

However, the denotational semantics of concurrent composition # in the process algebra is defined

over an exhaustively complete universe of behaviour. This definition is not suitable for use in the

implementation, since exponential space and time is required for its construction. Therefore, concurrent

composition is implemented with depth-first inferential search. The advantage of this is the avoidance

of exponential resource usage; the possible disadvantage is inefficient run-time execution search should

an MWSCCS program be ill-structured. This implies that MWSCCS programs should be structured

for efficient execution in mind, rather than rely on the execution engine to find results. The use of

search is, of course, naturally supported by Prolog.

4 Example

4.1 Grammatical composition structure

Using the notion of well-behaved termination, WSCCS can duplicate the expressiveness of regular

grammars, and therefore permits grammatical description of composition (Roads, 1979) For example,

we might like to structure a composition as:

Tune = d = Prelude ; Main ; Finale
Prelude = d = 2ccdce.

√
.Silent + cdcee.

√
.Silent

Main = d = FirstPart ; SecondPart ; Climax ; Resolution
FirstPart = d = 2ccdce.F irstPart + cdfee.F irstPart + g.

√
.Silent

...
F inale = d = d.d.b.d.ceg.

√

Here, there are one of two possible preludes possible, followed by the main body and finale. FirstPart

has the regular expression form (X + Y)∗Z.

4.2 A more complex example

Music = d = ((Melody [x/e5, x † /e5†, b/√]
Acc 7 9(x, e5, b) \{α, x, x†, b}) [y/ef5, (y†)/(ef5†), b/√]
Acc 7 9(y, cf5, b)) \ {α, y, y†, b}

Melody = d = (M1 ; M2) ; (M2 ; M1) ; 0
M1 = d = (2, 1)∆(c5, e5, g5).1.(c5†, e5†, g5†,√).Silent

+ (1, 1)∆(cf5, ef5, g5).1.(cf5†, ef5†, g5†,√).Silent
M2 = d = (2, 1)∆(c5, ef5, g5).1.1.(c5†, ef5†, g5†,√).Silent

+ (1, 1)∆(c5, ef5, gs5).(c5†, ef5†, gs5†,√).Silent
Acc 7 9(α, β, π) = d = (1, 2)∆(−π,√).Silent

+ (3, 1)∆(−α, β, f(β + 7)).Rel 7 9(R,X, 7, π)
+ (2, 1)∆(−α, β, f(β − 9)).Rel 7 9(R,X,−9, π)
+ (1, 0)∆1.Acc 7 9(α, β, π)

Rel 7 9(α, β, γ, π) = d = (1, 2)∆(−π,−α†, β†, f(β + γ)†,√).Silent
+ (1, 1)∆(−α†, β†, f(β + γ)).Acc 7 9(α, β, π)
+ (1, 0)∆1.Rel 7 9(α, β, γ, π)

This example uses both grammatical structure, stochastic nondeterminism, and reactive commu-

nication. It also uses the Note On and Note Off notation suitable for MIDI generation. The main

6

musical process is Music, which plays a basic melodic line (Melody) along with two accompaniment

processes (Acc 7 9). Melody uses two subprocesses M1 and M2, which stochastically generate simple

chords. Music then uses particle renaming when invoking Acc 7 9, and restricts the renamed particles

so that they will be invisible to the audience. This style of relabelling of events and restricting their

emmission is a technique used by process algebras to control communication. The calls to Acc 7 9

make generous use of argument passing, to make that process as general as possible.

Acc 7 9 does three things, which are prioritized as follows. Firstly, the (1, 2)∆ term checks if

Melody has terminated, and if so, it quits as well. Otherwise, it checks if Melody has generated the

event α. If so, it chooses to generate either a note 7 semitones higher, or a note 9 semitones lower.

The process Rel 7 9 is used to release the accompanied tone previously generated. Finally, if neither

of the above cases have occurred, Acc 7 9 waits until the next communicated event.

The use of priorities in Acc 7 9 and Rel 7 9 serves two purposes. Firstly, they allow the processes

to behave correctly. For example, if we used the same priority value in all the terms of Acc 7 9, it

is possible that the silent waiting term might be selected when in fact Melody has terminated, which

prevents the generation of the note off and termination signal actions. Secondly, from an efficiency

point of view, priorities greatly reduce the need for search. The most critical actions to take have

higher priority and are tried first.

5 Conclusion

Work is under way in using MWSCCS for serious music compositions. One composition being under-

taken uses MWSCCS to simulate self-organizing behaviour. In particular, Tofts’ WSCCS simulations

of ant colony behaviours in (Tofts, 1992) have interesting applications in music. One such MWSCCS

composition exploits autosynchronizing behavior which, in a stochastic setting, generates interesting

cyclic musical activity. MWSCCS will also be used to formally analyze compositions written in it.

A concurrent music language similar to spirit to MWSCCS is the Petri net (PN) language in

(Haus & Sametti, 1992). The similarities and differences between it and MWSCCS are reflected in the

inherent differences between process algebraic and Petri net models of concurrency (Nielsen, 1987).

Possible advantages of MWSCCS over Petri nets are its more abstract view of musical behaviour, it’s

lean but powerful set of operators, and its intuitive execution semantics. It is also worth mentioning the

similarity between MWSCCS and other conventional music programming languages (Loy & Abbott,

1985), especially those using object-orientation. The main advantage shared by WSCCS and the PN

language in comparison to other music languages are their well-defined mathematical foundation, which

permits direct formal analyses of systems built with them.

Acknowledgement: Support through NSERC Operating Grant 0138467 is gratefully acknowl-

edged.

7

References

Aalbersberg, I.K., & Rozenberg, G. 1988. Theory of Traces. Theoretical Computer Science, 60, 1–82.

Chemillier, M. 1990. Solfege, Commutation Partielle et Automates de Contrepoint. Math. Inf. Sci.

Hum., 28(110), 5–25.

Chemillier, M., & Timis, D. 1988. Toward a theory of formal musical languages. Pages 175–183 of:

ICMC 95.

Haus, G., & Rodriguez, A. 1988. Music Description and Processing by Petri Nets. Pages 175–199 of:

Rozenberg, G. (ed), Advances in Petri Nets (LNCS 340). Springer-Verlag.

Haus, G., & Sametti, A. 1992. ScoreSynth: A System for the Synthesis of Music Scores Based on Petri

Nets and a Music Algebra. Pages 53–77 of: Baggi, D. (ed), Computer-Generated Music. IEEE

Computer Society Press.

Hennessy, M. 1988. Algebraic Theory of Processes. MIT Press.

Hoare, C. A. R. 1985. Communicating Sequential Processes. Prentice–Hall.

Loy, G., & Abbott, C. 1985. Programming Languages for Computer Music Synthesis, Performance,

and Composition. Computing Surveys, 17(2), 235–265.

Milner, R. 1989. Communication and Concurrency. Prentice Hall.

Nielsen, M. 1987. CCS - and its Relationship to Net Theory. Pages 393–415 of: Brauer, W. (ed), Petri

Nets: Application and Relationship to Other Models of Concurrency (LNCS 255). Springer-Verlag.

Peterson, J.L. 1977. Petri Nets. Computing Surveys, 9(3).

Roads, C. 1979. Grammars as Representations for Music. Computer Music Journal, 3(1), 48–55.

Ross, B.J. 1995a (February). A Process Algebra for Stochastic Music Composition. Tech. rept. CS-95-

02. Brock University, Dept. of Computer Science.

Ross, B.J. 1995b. A Process Algebra for Stochastic Music Composition. In: Proc. International

Computer Music Conference.

Tofts, C. 1990. A Synchronous Calculus of Relative Frequency. In: Baeten, J.C.M., & J.W.Klop (eds),

CONCUR 90. Amsterdam, The Netherlands: Springer-Verlag LNCS 458.

Tofts, C. 1992. Describing Social Insect Behavior Using Process Algebra. Transactions of The Society

for Computer Simulation, 9(4), 227–283.

8

