
Winter 2012   1 

COSC 4P79 Expert systems              Assignment #1                  B. Ross 
 
Due date:  Friday February 3, 12:00 noon; lates until Monday Feb 6, 12:00 noon (-25%). 
 
Objectives:  Prolog programming practice! All questions use Sicstus Prolog interpreter. 
(SWI Prolog and others should work too, with some modifications). For programming 
questions, hand in a source listing as well as a dialog listing (eg. use the 'script' utility of 
unix). 
 
1. (a) Construct Prolog rules defining the following family relations: 
 
 mother   father   son 
 daughter  child_of  grandmother 
 grandfather  grandson  granddaughter 
 grandchild  aunt   uncle 
 niece   nephew  cousin 
 second-cousin* sibling   great-grandparent 
 
(* more complicated than you might think  -- see Wikipedia page!) 
 
(b) Add to the database information about your own family tree, and run some queries to 
test the different predicates. Make sure a person is not his or her own sibling! 
 
2.  Write a Prolog program that solves the following arithmetic puzzle. The 16 empty 
squares represent the integers 1 through 16, with no repeats. No value is used more 
than once.  The first row represents the condition,  

(A + B - C) / D = 9 

 Your program should report the solution integers in row-major order (row 1, row 2, etc.). 
With backtracking, your program should report multiple solutions of the puzzle if they 
exist.   (Note: in Sicstus, the “/” operator always returns floats, while “//” returns integers). 

 



Winter 2012   2 

 
3. (a) Take the attached code from Clocksin and Mellish which does symbolic 
differentiation, type it into Prolog, and try it on some example expressions. 
 
(b) Write a new predicate simplify(Old, New). Old is an arithmetic expression as 
generated by the symbolic differentiation routine in (a). New is a simplified expression. 
The types of simplifying transformations can look as follows: 
 
 E + 0 → E  
 E * 0 → 0 
 E - E → 0 
 E + E → 2*E 
 E / 1  → E 
 etc. 
 
Think of a reasonable number of simplifying transformations, and implement them. You 
can test simplify/2 without using the differentiation routine. In general, you will have 
better results with your simplifier if you recursively simplify arguments before the parent 
expression. For example, 
 
 5*((2*3)-(2*3)) → 5*0   (using "E-E")      

→ 0   (using E*0) 


