
COSC 4P79 Expert Systems Project B. Ross, Winter 2012

Due date: End of term (TBA).

Objectives: An opportunity to apply the shell programming and knowledge
engineering principles discussed during the course.

Hand in: (i) A 7-8 page report describing your system: This should include a
description of the domain, a discussion of the system implementation, and a
drawing of the system architecture. (ii) A complete source listing, and some
example dialogs exercising main components of the system. (iii) Copy of all
source code and executables required to execute your system onto a CD or
DVD, with instructions on how to execute.

Group projects: You can work alone or in pairs for this project. If you work with
someone else, include a listing of what tasks were undertaken by each group
member.

System requirements:

1. Domain: This expert system is necessarily a toy system. However, you
should pick a domain of expertise that is sufficiently complex so that you can
implement a non-trivial system. You are not required to use a real "expert";
however, doing so would add substantially to the authenticity of the system.
When choosing a domain, one thing to consider is that you and your
acquaintances are probably experts in many areas. Although it isn't ideal for a
knowledge engineer to play the role of the expert, you can do this for the project
if necessary. There is much scope for the selection of a creative problem domain
for an expert system. You might consider talking to faculty in other departments
as potential experts for a problem in their domain area. If you are having
problems deciding on a topic, two possibilities are as follows.

(i) Course Advisor. An expert system to determine which course a computer
science major should take. This expert system encodes the knowledge taken
from the university course calendar. The knowledge would primarily encode the
different courses given by the department, and the relationships that courses
have for one another (pre-requisite, co-requisite, terminal courses, year in degree
...). The system would need to prompt the user for information such as their
intended degree, their year in the program, and the courses they have taken.
The advice given would be in the form of suggested computer science courses to
take, and why they are being advised (are they prerequisites to others? major or
minor requirements? electives?).

(ii) Automobile driver: an expert system that can drive a car. This is not as
trivial as you might expect! For example, there are many factors involved in
driving safely through intersections: stop signs or traffic lights; the number of
roads leading into the intersection; whether roads are one way or two way; the
number of lanes in each road; what cars are where on the intersection; are there

COSC 4P79 Expert Systems Project B. Ross, Winter 2012

malfunctioning lights, stalled cars, or other exceptional circumstances; and (most
importantly) where does the driver wish to drive?

2. Shell: The system is to be implemented in Prolog. The main requirements of
the system are as follows:

• The knowledge base and shell utilities should be clearly delineated and
modularized. The knowledge base must be declarative. The shell
programming should be as clean as possible.

• The system should prompt the user with clear messages. There should

be a measure of input checking. The system shouldn't crash if miss-
spelled data is entered. Menus are recommended.

• The system should incorporate an explanation facility appropriate to the

style of inference used. For backward chaining, the user can enter "why"
at any point, and the system should give an explanation of why a
particular question is being asked. The explanation should be
hierarchical: repeated "why" queries should result in higher-level
explanations. Note that forward-chaining explanation is more limited than
with backward chaining.

• The shell utilities should be properly commented with inline

documentation. Explain how each predicate in your program is to be
called and how it functions. A suggested format is the following:

/* member(Item, List):

 input/output: constant Item
 input: list List

 Member is satisfied if Item is found in List. Member is
 nondeterministic -- multiple solutions can be returned. */

Comments:

The above is a minimal requirement of the system. You can get full marks if the
above is implemented. However, you are welcome to implement any type of
expert system shell that you wish -- backward chaining, forward chaining,
probabilistic ... Enhancements to the above are encouraged.

Sicstus Prolog has a TCL/TK interface. You may wish to use it to create a GUI
for your system.

