

Visual Hierarchical Task Analysis Software

with Imbedded KLM

Dave Bockus, Ryan Wilson
Brock University

Department of Computer Science
500 Glenridge Ave.

St.Catharines, Ontario Canada
L2S 3A1

Tel: 905-688-5550 x3281
bockusd@brocku.ca

ABSTRACT
Hierarchical Task Analysis (HTA) [1] is used to describe
the practice of a software system. When combined with a
KeyStroke Level Model (KLM) [2, 5] one can determine
comparative task efficiency. Software was developed to
allow the graphical representation of systems as a series of
tasks which are decomposed into elemental components of
operation (HTA). Cognitive descriptions of the task using
KLM strings are then imbedded to provide a relative timing
for each elemental task. These times are then combined with
the associated plans of the HTA to provide an overall task
efficiency rating.

General terms: Hierarchical Task Analysis, Keystroke-
Level Model, User Interface Design, System Efficiency
Analysis

INTRODUCTION
The spectrum of available tools to aid in the development of
a HTA when describing efficiency analysis was somewhat
lacking. A niche to this exists when applied to interface
analysis. Describing the task(s), the relative timing informa-
tion is imbedded to help describe the cognitive framework
for a typical user. This cognitive process is realized by the
control and data transfer between user and widget, which is
subsequently described by primitive keystrokes and actions.
Low level GOMS [2, 4, 5] attempts to describe the opera-
tors of this data transfer. This analysis is applied to the wid-
gets giving a more complete view of the task. When com-
bined with a HTA, the resultant task tree describes practice
of the task, cognitive framework and relative efficiency.

The term efficiency can be a surrogate for describing sim-
plicity. Often those tasks which are efficient while main-

taining basic design principles are also viewed as simple [3,
6, 7]. It then becomes important to include a keystroke level
model to describe process and efficiency of subtasks.

VISUAL TA

In most software descriptions the concept of consistency
and reuse are paramount to good development. What was
needed was a tool which could mirror this design methodol-
ogy promoting these very concepts.

Vis-TA was designed to allow a user to describe the process
of the interface as a HTA with imbedded KLM strings.
Each elementary task object is given a relative time based
on accepted motor and mental practices which are repre-
sented as key press times and mental thought process times.
The resultant strings represent the users’ relative efficiency
when using the interface widget.

Figure 1. A Y/N Confirm dialog box can be inter-
acted with using mouse controls or the keyboard. A
user will choose one of these methods. If empirical
studies show 80% of users prefer mouse then the
weighting will be 0.8*(by mouse) + 0.2*(by KBD).

Vis-TA is purely graphical, allowing the user to see the hi-
erarchy description of the root task. As KLM strings are
defined for the primitive tasks, Vis-TA computes the overall

 Keep this space free for the ACM copyright notice.

task time by summing the times of the individual tasks and
propagating the result upward though the tree. Plans define
how the times are processed. For instance, a Do-In-
Sequence implies that all subtasks must be completed, in
order, thus requiring the parent task to represent the sum of
the times of the child tasks. In cases where a user can
choose between 2 or more alternate methods of interaction,
a Choose-One-Of plan can assign probabilistic values ac-
cording to observed interaction. An example would be to
use keyboard controls verses a mouse, see Figure 1, to per-
form an interaction. The sum is a weighed calculation. Do-
In-Parallel and Do-In-Any-Order allow for further flexibil-
ity when describing tasks.

Figure 2, KLM editor. allow for complex strings to
be inputted. Strings may use brackets and constant
multipliers to enhance readability. The system cal-
culates the time based on the defined symbols. All
symbol times can be edited or custom symbols de-
fined in the options menu.

Keystroke Level Model strings define a relative timing of a
task for comparative rankings between designs when com-
paring systems. Vis-TA incorporates a KLM editor allow-
ing the user to define the KLM strings using common infix
syntax. This allows for repetition to be defined, example
4(M3K) implies 4 sets of 3 keystrokes each with mental
preparation.

MODULES
Large systems are composed of many simple widgets, many
of which are reused throughout the system. Vis-TA allows
for widgets to be packaged as modules. These modules re-
tain consistency over the system. If the module is edited,
then all instances of the module reflect the change. Any
HTA can be packaged and include other packaged modules
as well. Modules are stored as files making the transfer be-
tween projects seemless.

USABILITY FEATURES
Vis-TA was designed to be easy to use. Emphasis was put
toward a direct manipulation environment with object ac-
tion control. Context sensitive menus allow for easy access
to each task object.

Features include:
• Few static menus, interaction is object based.
• Direct Manipulation, everything in the environment can

be manipulated with the mouse. Drag and drop editing.
• Tabbed windows, allows for many HTAs to be opened

concurrently.
• Cut Copy Paste, on all objects, and object groups.
• Scroll wheel zoom, 4 levels of zoom completely con-

trolled by the mouse wheel.
• Canvas can be dragged, replacing scroll bars.
• Ability to package any HTA into a module.
• Integrated KLM editor, allow for complex strings to be

formulated for each elemental object.
• Auto update on all KLM calculations.
OPEN SOURCE
This project was pioneered with an open source architecture
in mind, and will be released under the GNU GPL. It is
expected that others can use this framework to further en-
hance and release updates, filling in some of the holes
which were overlooked.

ACKNOWLEDGMENTS
The authors would like to recognize Corrado Coia for his
contribution in pioneering the first version of Vis-TA.
Many of his ideas have been incorporated into this version.

REFERENCES

1. Alan Dix, J.F., Gregory D. Abowd, Russell Beale.
Human-Computer Interaction. in Hall, P.P. ed., 2004,
510-543.

2. Card, S.K., Moran, T. P., Newell, A. The Psychology
of Human-Computer Interaction. Lawrence Erlbaum
Associate, Publishers, London, 1983.

3. Feldman, A. Web Site Interface Design Theory: A De-
signer's Primer, 2006.

4. Kieras, D. A Guide to GOMS Model Usability Evalua-
tion using NGOMSL. in The handbook of human-
computer interaction, North-Holland, Amsterdam,
1997, 733-766.

5. Kieras, D. Using the Keystroke-Level Model to Esti-
mate Execution Times, 2001.

6. Norman, D. The Design of Everyday Things. Basic
Books, New York, 1988.

7. Raskin, J. The Humane Interface. Addison-Wesley,
2000.

