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Abstract. A comparative study of the performance of knee detection
approaches for the hierarchical clustering of 2D spatial data is under-
taken. Knee detection is usually performed on the dendogram generated
during cluster generation. For many problems, the knee is a natural indi-
cation of the ideal or optimal number of clusters for the given problem.
This research compares the performance of various knee strategies on
di↵erent spatial datasets. Two hierarchical clustering algorithms, single
linkage and group average, are considered. Besides determining knees
using conventional cluster distances, we also explore alternative metrics
such as average global medoid and centroid distances, and F score met-
rics. Results show that knee determination is di�cult, and that e�cacy
of knee strategies is very much problem dependent. Furthermore, knee
determination is often more e↵ectively applied on alternative distance
metrics and F scores. In summary, knee strategies are often a useful
heuristic, but not a general solution, towards optimal cluster detection.
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1 Introduction

Clustering is a popular and much studied classification technique in which data
is automatically grouped according to shared characteristics. Hierarchical clus-
tering is a method in which a hierarchy of clusters is incrementally generated for
a dataset. Unlike K-means clustering, which requires a target cluster size K to
be supplied, hierarchical clustering algorithms require the determination of an
appropriate number of clusters after the cluster hierarchy has been generated.
Often, the clustering dendogram is used for making this decision. Each node in
the dendogram denotes an incremental clustering step, in which two clusters are
merged into one. The node is labeled with a distance (or height) between the
two clusters being combined. Often, the knee (or elbow) is identified within the
dendogram, using a plot of the distance measures. The knee has been defined as
the point of maximal marginal rate of return [24]. Generally speaking, the knee
(when it exists) is the node in the dendogram that corresponds to the optimal
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number of clusters. A knee can be visualized, and the term “knee” itself refers
to the geometric bend on the dendogram distance plot that corresponds to the
optimal cluster position.

Although knees can be e↵ective for determining optimal clusterings, there is
no canonical rule for specifying the knee point, nor prescribed distance metric
on which to apply knee analyses [10]. The above definition of a knee presumes
it resides on the plot of monotonically increasing distances that arises with a
greedy clustering algorithm. Alternate metrics can be used, and di↵erent defini-
tions of knees may be necessary. Therefore, knees are primarily a heuristic for
determining an optimal cluster point within a given dendogram, and many dif-
ferent characterizations are found in the literature. Note that we are concerned
with knee-oriented analyses in this paper, and we are not considering the wider
body of techniques for cluster optimization (e.g. [7, 13]).

A selection of knee strategies are as follows. Tibshirani et al.’s gap statistic
generates a metric curve, which then looks for a maximal gap value that may
denote the optimal clustering [19]. Salvador and Chan iteratively split the den-
dogram plot in two, to find the point were two line segments fit to the data using
linear regression show a minimal RMSE between them and the data points [17].
The knee resides at the point of intersection of these line segments. Zhao et al. use
a Bayesian Information Criteria (BIC) metric plot, and apply an angle measure-
ment to identify a knee point [25]. Breaban and Iftene define the knee as the level
i in a dendogram exhibiting the maximum ratio of distance

i

/distance

i�1 [1].
Although knee identification is a popular tool, it is not a general solution to

the problem. Clustering is generally intractable, where determination of optimal
clusters for even K=2 is NP-complete [5]. Optimized clusters for alternative
distance measures are likewise NP-complete [18]. For many real-world datasets,
the identification of “optimality” may be ill-defined or subjective. Furthermore,
the dendogram’s utility for finding an optimal clustering wholly depends upon
the quality of the underlying dendogram.

This paper compares di↵erent knee strategies with respect to the clustering
of 2D spatial data. Our experiments consider various knee selection approaches
and spatial data sets refined from the literature. The spatial datasets used have
di↵erent problem characteristics and complexities. We do not evaluate the per-
formance of the underlying clustering algorithm, and we use both single-linkage
and group average clustering in our trials. We also investigate alternative dis-
tance measurements upon which knee analyses can be applied. For example, the
global average distance of cluster elements to medoids (and centroids), and the
F scores of same measurements, were used. Our results will confirm that many
problem cases do not exhibit identifiable knees, and hence knees can be a useful
heuristic method, but not a solution, for cluster optimization.

The paper is organized as follows. Section 2 reviews the clustering algorithms
and knee strategies used in the experiments. The spatial data used is described
in Section 3. Details of experiment design are discussed in Section 4. Results are
presented and discussed in Section 5. Conclusions and future directions for the
research are in Section 6.
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Table 1. Hierarchical Clustering Algorithm

Input: Si = (xi, yi), i = 1, ..., K

Output: Dendogram.

Initialization:
For i=1,...,K

Add new cluster C{i}
For all Ci, Cj (i 6= j)

Distance(Ci, Cj) DistanceMeasure(Si, Sj)

Cluster generation:
For i=1,...,K {

Find Cp, Cq with minimum dmin  Distance(Cp, Cq).
Dendogram.Disti  dmin

Dendogram.Clusti  (Cp, Cq)
Remove Cp and Cq.
Add new cluster Cp[q.
Update Distance table:

Remove all distances referring to Cp and Cq.
For all clusters Cw 6= Cp[q

Distance(Cw, Cp[q) DistanceMeasure(Cw, Cp[q)
}

Return Dendogram.

2 Background

2.1 Hierarchical Clustering

Table 1 shows pseudocode for hierarchical clustering algorithms. Hierarchical
clustering generates a complete clustering of a dataset. Initially, all data points
are considered individual clusters. A distance table Distance records the dis-
tances between all existing clusters. Using this table, the closest clusters are
determined. They are joined together to form a new cluster, which replaces the
two merged clusters. The distance table is updated to reflect this change. This
iteratively continues until a single cluster has been created.

The incremetal clustering process is modeled by a dendogram. Each node
denotes an incremental step, by recording which two clusters are joined. The
node is also labelled with the distance between these joined clusters, which the
clustering algorithm used in order to select them for merging.

The feature that defines di↵erent hierarchical clustering algorithms is the
method which is used to measure distances between clusters. This is denoted
in Table 1 by the function DistanceMeasure. We consider two methods. In
single linkage clustering, a distance between a cluster C

w

and new cluster C

p[q

is updated as:

Distance(C
w

, C

p[q) = minimum(Distance(C
w

, C

p

), Distance(C
w

, C

q

))
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The group average method uses:

Distance(C
w

, C

p[q) = average(Distance(C
w

, C

p

), Distance(C
w

, C

q

))

2.2 Distance Measures

We apply knee detection to 3 distance measurements associated with dendogram
nodes.

(i) Standard distance (Std): This is the distance used by the clustering algorithm
(Section 2.1). Each node of the dendogram indicates this distance, which is
always the minimum between all the clusters at that point in the clustering.

(ii) Global average medoid distance (Avg Med): Letting C

i

be cluster i (1  i 
K), MD

i

be the total distance between the medoid (the member that is on
average closest to the other members) and other elements of C

i

, and T be
the total number of elements in all clusters. Then,

AvgMed =
⌃

K

i=1MD

i

T

(iii) Global average centroid distance (Avg Cent): Like (ii), but let CD

i

be the
total distance of all elements in C

i

to the centroid (average coordinate of all
elements):

AvgCent =
⌃

K

i=1CD

i

T

2.3 Knee Determination

A knee is a point on a plot of dendogram measurements which identifies the
optimal number of clusters. Conventionally, the measurement is the distance
between the two clusters being merged at that node in the dendogram, where
this distance is that used by the clustering algorithm.

There are a number of proposals for identifying knees in dendogram plots.
Let n

i

be node i in the dendogram (1  i  K), and d

i

be the distance mea-
sure associated with n

i

. We assume that dendogram nodes are numbered in the
inverse order they were created; the root of the dendogram is therefor n1. The
knee methods considered in this paper are as follows.

(i) Magnitude: Node with maximum magnitude d

i+1 � d

i

.
(ii) Ratio: Node with maximum ratio d

i+1/d

i

.
(iii) Second derivative: Node with greatest second derivative [14].
(iv) Minimum: Node with minimal distance.
(v) L-method, L-method D, L-method S: This uses Salvador and Chan’s

L-method, which fits two lines segments to the plot using linear regression [17].
The first line starts at the root of the dendogram, and ends at node n. The second
line starts at n+1 and continues to node m (n < m). The ideal line placement is
one that minimizes the root mean square error (RMSE) between the regression
lines and the distances in the plot. We apply this L-method iteratively to points
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on the plot being analyzed. For best results, Salvador and Chan recommend using
a similar number of regression points for both line segments. They use divide-
and-conquer reduction to the points being regressed, until an equal spread is
obtained. Motivated by this recommendation, we implement two variations of
the L-method:

– L-method D (distance): If line 1 uses nodes 1 to n, then line 2 uses nodes
n + 1 to 2n.

– L-method S (sampling): If line 1 uses nodes 1 to n, then line 2 will sample n

nodes between n + 1 through k (last node). For example, if there are k = 11
nodes, and line 1 is fitted to nodes 1 to 4, then line 2 is fitted to nodes 5, 7,
9, and 11.

(vi) F score A, F score B: The F score is based on the F test of a one-way
analysis of variance (ANOVA) [8]:

F score = Between group variance

Within group variance

Between group variance =
P

K

i=1(Ȳi· � Ȳ )2/(K � 1)

Within group variance =
P

K

i=1

P
ni

j=1(Yij

� Ȳ

i·)2/(T �K)

where there are K clusters, T data samples (K < T ), Ȳ

i· denotes the sample mean
in the i-th cluster, and Y

ij

is the j

th data point in the i

th out of K clusters. The
above shares some similarity to Tibshirani et al.’s gap statistic, which also uses
the notion of within-cluster dispersion (variance) [19]. We plot the F score at
all nodes in the dendogram. We then find the latest point (furthest from the
root) that shows the first significant drop in F score, which suggests a decline in
measurable cohesion throughout the entire clustering. We use two methods for
finding this knee in the F score plot.

– F score A: This finds the highest i in which:

(f
i+1 � f

i

) > �

2
1...i

where �

2
1..i

is the standard deviation of the plotted F scores 1 to i.
– F score B: The highest i in which:

(f
i+1 � f

i

) > �

2
1...k

where �

2
1..k

is the standard deviation of all k F scores on the plot.

F score A looks for a drop (knee) that exceeds the standard deviation from the
end of the dendogram to that point in the dendogram. F score B is similar, but
uses the standard deviation of the entire dendogram, which usually defines a
larger threshold value. F score B typically finds knees closer to the root, and
hence smaller clusterings. Note that, although we do not assume that the data
points follow a normal distribution, we still use the ANOVA statistic, since
it provides suitable discriminatory power for knee determination. However, we
refrain from assessing the F scores in terms of statistical significance.
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3 Spatial Data

Table 2. Spatial Datasets. Boldface denotes a reasonable quality clustering.

# Nodes Target Cluster Size
Name Ref. Orig. Reduced Orig. Min Gavg

a1 [11] 3000 800 20 10 20

Aggregation [6] 788 788 7 5 7

Birch3 [23] 10000 800 100 47 69

Compound [22] 399 399 6 3 6

D31 [20] 3100 800 31 19 31

Flame [4] 240 240 2 - 2

Jain [9] 373 373 2 2 2

Pathbased [2] 300 300 3 - 3

R15 [20] 600 600 15 11 15

RRR - 54 54 3 3 3

Spiral [2] 312 312 3 3 3
t4.8k [12] 8000 800 6 - 6

t5.8k - 8000 800 6 3 6

t7.10k [12] 10000 800 9 - 9

t8.8k [12] 8000 800 8 2 8

Unbalance [16] 6500 800 8 7 7

Sixteen spatial datasets with di↵erent data sizes, shapes, complexities, and
target cluster sizes were selected (Table 2). Sources for the origin of most data
are given, are most are available for download at [3] and [15]. (The RRR set is
a trivial 3-cluster set used as a baseline.) Due to the computational overhead
of hierarchical clustering, datasets with more than 800 points were randomly
downsampled. Those with less than 800 points were left intact.

All the datasets have target cluster numbers associated with them (Orig
column in Table 2). In some cases, these values are intuitively obvious when
viewing scatter plots of the data. However, many datasets (e.g. the t4.8k family)
contain noise, and clustering quality is more di�cult to discern. In addition,
downsampling can reduce the integrity of original spatial patterns. These factors
make some datasets di�cult to intuit obvious optimal clusterings. It is also not
assured that single linkage or group average clustering will generate an optimal
cluster set for the given data. Therefore, it is unwise to use the supplied target
cluster numbers as “solution” targets for knee evaluation.

For these reasons, target cluster sizes for knee evaluation were obtained as
follows. The datasets were each evaluated with single linkage (Min) and group
average (Gavg) clustering at the supplied clustering target values. The result-
ing clusters were examined, and any clusters of size  3 were discarded. The
remaining clusters were taken to denote the target clustering for that dataset
and cluster algorithm. In some cases with single linkage clustering, only a sin-
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(a) A1 and Min, K=10. (b) A1 and Gavg, K=20.

(c) Spiral and Min, K=3. (d) Spiral and Gavg, K=3.

(e) t5.8k and Min, K=3. (f) t5.8k and Gavg, K=6.

Fig. 1. Example target clusterings for single linkage and group average. Points in (a)
and (e) belonging to clusters of size  3 are not used for target cluster size, and are
plotted with ”X”.

gle cluster resulted; these cases were not studied, and are left blank in Table 2.
Throughout, we do not consider the actual quality of clusterings when assessing
knee performance (other than ignoring cases with tiny clusters).

Example scatter plots of a few datasets with their colour-coded target clus-
terings are shown in Fig. 1. In plots (a) and (e) of single linkage clusterings, the
target K is less than the original target value, due to discarded small clusters.
Although both clusterings for Spiral satisfy the original target of 3 clusters, the
group average result is obviously not the intended one. Nonetheless, when ana-
lyzing knee performance, we do not ascribe value judgements on the underlying
quality of clusters.
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Fig. 2. Summary of knee performance with respect to clustering algorithm and distance
metric. Within 1 of target tallies when a knee strategy generated a clustering size at,
or within 1, of the target K. Closest to target tallies when a knee strategy generated
a clustering size closest to the target K value. A single result can be tallied as both
within 1 of target, and closest to target.

4 Experiment Design

The single linkage (Min) and group average (Gavg) hierarchical clusterings from
Section 2.1 are applied to the datasets in Section 3.

Before knee analysis, the size of each dendogram is reduced to its final 100
nodes (which denotes clusterings of sizes between 1 to 100). Knee solutions will
therefore never exceed 100 clusters. The RRR dataset has 54 points, and is not
reduced.

The L methods require a minimal number of points for linear regression.
For all datasets with target cluster numbers above 5, we set this minimum to
5, in order to infer suitable quality regression lines. Since such a minimum will
preclude finding clusterings of size less than 5, we set the minimum to 2 for
smaller target datasets.

5 Results

Figure 2 compares the quality of knee evaluations with respect to the distance
measurement used by the clustering algorithm. The summary shows that alter-
native distance metrics such as average global medoid and centroid distance are
e↵ective for knee identification.

Fig. 3 shows how frequently di↵erence knee strategies found the nearest value
to the target K associated with the dataset and clustering algorithm. The chart
shows separate tallies for single linkage and group average clusterings, and the
tallies sum the results of all datasets and distance measures. The Mag, Ratio,
and 2nd Deriv knee strategies were the most successful, followed by the F score
athe Min strategies. The L method was not successful on the datasets we studied,
and the L method variants were completely unsuccessful.
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Fig. 3. Frequency that knee strategies were closest to target cluster size. The nearest
for a dataset is selected from results of all knee strategies and distance measurements.

Table 3 show the performance of knee strategies with respect to the distance
metric and clustering algorithm. The table tallies the number of times when knee
strategies produced the closest clustering to the target size for that dataset and
clustering algorithm. Standard distances were only useful for the Mag, Ratio
and 2nd deriv knee methods; however, these methods were also successful on the
other distance metrics.

Fig. 4 shows two dendogram distance plots (standard distance, and F score of
global average medoid distance) from single linkage clustering on the Aggregation
dataset. The plots show how knee detection can di↵er for di↵erent strategies.
Magnitude, Ratio, and 2nd Derivative strategies found the knee for the standard
distance plot (orange). F score A, however, found the knee on the average medoid
distance plot. This knee was flagged by the drop (moving right-to-left) between
nodes at # clusters 5 and 4, which signalled a decrease in cluster coherence. The
drop between # clusters 7 and 6 after this point was not flagged, as the drop
was within the standard deviation threshold.

Fig. 5 shows the knees for the Aggregation dataset, but this time for the group
average clustering and the global average medoid and centroid distances. Both F
score strategies found the knees in both curves, again signaled by the first drop
(moving right-to-left) outside their respective standard deviation thresholds. Fig.
6 deconstructs the F score of the global average medoid curve (blue plot) of Fig.
5). The knee is primarily determined by the curve shape, which is in turn defined
by the Between group variance (see Section 2.3). The Within-group variance
plays the role of a scaling factor for the final F score.
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Table 3. Breakdown of performance of knee strategies with respect to clustering al-
gorithm and distance metric. Values denote the number of times each knee strategy
produced clusterings that were the closest to the target cluster size for a given dataset
and clustering algorithm (ties are possible).

Std Avg Med Avg Cent
Knee Min Gavg Min Gavg Min Gavg Total

Mag 5 4 3 1 0 4 18
Ratio 5 2 3 3 1 5 19

2nd deriv 5 4 3 5 0 5 22
Min 0 0 1 2 1 3 7

L-meth 0 0 0 1 0 0 1
L-meth D 0 0 0 0 0 0 0
L-meth S 0 0 0 0 0 0 0
F score A - - 1 2 1 3 7
F score B - - 2 5 1 3 11

Fig. 4. Comparison of di↵erent distance curves. The Aggregation dataset is used, and
single linkage (Min) clustering. The inset is a rescaled magnification of standard dis-
tance curve. Magnitude, Ratio, and 2nd Derivative strategies found the knee for the
standard distance plot (orange). F score A found the knee on the global average medoid
distance plot (blue).

6 Conclusion

This paper compared a variety of knee detection strategies, and the e↵ect of vari-
ables such as spatial datasets, hierarchical clustering algorithms, and distance
metrics. The results confirm that knee strategies are heuristics whose success
depends on a combination of many factors, the most basic of which is the spa-
tial data being processed. We show that alternative distance metrics are often
worth considering, and that a serendipitous match of dataset, clustering algo-



Comparison of Knee Strategies for Spatial Clustering 11

Fig. 5. Aggregation dataset, Group average clustering, F score (last 50 clusters) of
global average medoid and centroid distances. Arrows point to flagged knee via both
F score A and B variants.

Fig. 6. Decomposition of global average medoid curve of Fig. 5.

rithm, distance metric, and knee strategy can result in high quality hierarchical
clusterings. However, results must be evaluated in light of the computational
limitations of clustering algorithms in general, and knee detection in particular,
as in many instances dendograms may not exhibit identifiable knees.

There are many directions for future work. Other data besides 2D spatial
datasets should be explored, as well as other hierarchical clustering algorithms,
knee strategies, and distance metrics. However, we expect that the same con-
clusions as above will apply. More generally, a study of various mathematical
transformations of distance plots, with a goal towards e↵ective knee detection,
should be investigated. Given the many variables that determine the success of
knee detection, another avenue of research is to use machine learning (e.g. deep
learning) to determine more principled means for matching datasets with appro-
priate clustering and knee detection parameters (e.g. see [21] for an interesting
application).

Acknowledgements: This research was supported by NSERC Discovery Grant
RGPIN-2016-03653.
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