

Brock University
Department of Computer Science

Online Image Classification
Using Graphics Processing Unit-
Based Genetic Programming

Mehran Maghoumi, Brian J. Ross

Technical Report # CS-16-02
August 2016

Brock University
Department of Computer Science
St. Catharines
Ontario Canada L2S 3A1
www.cosc.brocku.ca

1

Online Image Classification Using
Graphics Processing Unit-based Genetic

Programming
Mehran Maghoumi, Brian J. Ross

Abstract—A texture classification vision system implemented
with Graphics Processing Unit-based genetic programming is
described. An online learning environment is implemented, in
which genetic programming is automatically invoked when un-
classified texture instances are present in an image stream. Once a
segment is positively classified, the genetic programming classifier
expression is reapplied to frames of the image stream. System
performance is enhanced using population-parallel evaluation on
a graphics processing unit. Various experiments with textures of
varying difficulty were performed. Real-time performance was
often seen in cases using 4-segments of texture data, as correct
classifiers were evolved within seconds. In all cases, once evolved,
classifiers were easily applied to the image stream in real-time.
This research shows that high-performance real-time learning
environments for image classification are attainable with genetic
programming.

Index Terms—image classification, genetic programming, GPU
programming, online learning.

I. INTRODUCTION
Computer vision research is developing new methods to

automatically acquire, process, and analyze visual information
[1]. Object classification is the automatic recognition and iden-
tification of an object. Genetic programming (GP) [2][3] has
been used in computer vision problems. Object classification
has been studied with GP, in which an evolved expression is
applied to image data to be classified. Examples of research
in GP and computer vision include target discrimination [4],
image segmentation [5][6], face detection [7], texture classifi-
cation [8][9], and real-time object tracking in videos [10][11].
Although GP is distinguished by its ability to evolve exe-

cutable programs, one of its known shortcomings is its lengthy
computational time required to evolve programs. As with all
evolutionary computation algorithms, GP spends the majority
of its processing time on fitness evaluation [12], since the
evaluation of large tree expressions can be expensive. Con-
sequently, researchers have been accelerating GP execution
by using parallel hardware, and in particular, the graphics
processing unit (GPU) found on graphics cards [13][14].
A popular GPU programming interface is NVIDIA CUDA
[15], and GP has been successfully implemented in CUDA
[16][3][17].
The usual motivation for using GPU-based GP is to solve

more complex classes of problems. GPUs enable increases in
population sizes, maximum generation limits, and training set

Department of Computer Science, Brock University, St. Catharines, ON,
Canada, L2S 3A1

sizes, all with minimal effect on overall execution time. A sec-
ond, and perhaps less-often considered, benefit of GPU-based
GP is to improve the computational responsiveness of GP
processing itself. Rather than tackle more difficult problems,
GPU-based GP can be used to solve conventional problems
more quickly. In this sense, it is interesting to consider whether
GPU-based GP could become widely accepted for real-time
online learning environments.
Online learning is a machine learning approach in which

incremental learning proceeds immediately when training data
is available [18]. Subsequent data will enable the model to be
refined and corrected as necessary. This contrasts to offline
learning, in which a model is learned from all the available
data during a training phase, and thereafter is not further re-
fined. Online learning is conducive in dynamic environments,
where new and changing data may arise at any time. It also
lends itself well to real-time, interactive environments, since
learning can occur on the fly, and refine itself as necessary. The
GP literature in computer vision mentioned earlier uses offline
learning, in which GP is pre-trained on example cases, after
which the evolved solution is used to solve the problem. GP
training may take minutes, hours, or longer, before a solution
is obtained. There are no GP execution time requirements in
such situations.
We use GPU-based GP for online texture classification.

Classification is done on images from the Brodatz texture
library [19], which is a standard image set used in com-
puter vision research [20]. Brodatz textures are also used in
Song et al.’s seminal GP-based texture classification research
[8][6][21][22]. We implemented a GPU-based GP system in
NVIDIA CUDA [23]. The system inspects synthesized image
stream frames, and when unclassified or mis-classified textures
are detected, GP is immediately invoked to obtain classifiers.
The evolved GP classifiers are applied to the image stream as
they become available, resulting in a real-time online learning
environment.
The main motivation of this research is to explore the

feasibility of using GP for real-time texture classification. We
are interested in the speed at which GP can generate and
apply classifiers. Our GP system design (language, fitness
evaluation, training) is inspired by the work of Song [21],
which was highly effective at Brodatz texture classification.
Our results will show that GPU-based GP is a fast, real-time
machine learning paradigm, at least for the smaller problem
instances that we studied. This is a significant result, given that
GP is renown for being one of the slowest machine learning

2

algorithms. Computer vision problems are also computation-
ally involved, and showing that GP can be efficient in these
problems is noteworthy.
This research is not intending to compare GP’s performance

with other computer vision techniques. There is much related
research, for example, real-time Brodatz texture classification
using mainstream computer vision algorithms [20], non-real-
time Brodatz classification using neural networks [24], and
Brodatz texture boundary detection for real-time tracking [25].
Other approaches may be faster and more accurate than ours.
Although a comparative study of GP and other techniques is
overdue and worth pursuing, it is outside the scope of this
research. Further details about this research are in [26].

II. LITERATURE REVIEW

A. Genetic Programming and Image Classification

Because of its flexibility, GP has been adapted for various
image classification tasks. The research in GP and image
processing by Song et al. is the inspiration for our own
work. Song et al. [8][21] used GP for Brodatz texture clas-
sification. A block processing approach is used, in which
rectangular blocks of raw pixel data are processed by a
simple GP classifier using basic mathematical operators, and a
classification decision is made for the entire block. Song and
Ciesielski [6] used similar texture classifiers to perform texture
segmentation. They executed multiple classifiers on an image,
and recorded the number of times each pixel in a block was
classified correctly by each classifier. More recently, Song et
al. [27][11] used GP to evolve object detectors and trackers.
Other examples of using GP in computer vision applications

include the following. Tackett [4] was one of the first to use
GP in image classification, where GP was used to discriminate
target and non-target objects in a series of images. Poli
[5][28] used GP for feature detection and image segmentation.
Winkeler and Manjunath [7] used GP for face detection.
Howard et al. [29] used GP for detection of ships in synthetic
aperture radar (SAR) imagery. Harvey et al. [30] used GP
to detect golf courses in the aerial images. Zhang and Smart
[31] use GP for multiclass image classification using dynamic
decision boundaries. Smart and Zhang [10] used GP for real-
time object tracking in streaming videos. Krawiec and Bhabu
[32] use linear GP to evolve real-world 3-dimensional object
recognizers for raw image data. Zhang et al. [33] used GP
for object detection. Ross et al. [34] used GP for mineral
identification in hyperspectral images. Kowaliw et al. [35]
used Cartesian GP (CGP) to evolve image transforms. Al-
Sahaf et al. [36] presented a two-tier GP system in which
the first tier extracted complex features from images and the
second tier was responsible for image classification. Later, Al-
Sahaf et al. [9] used GP to extract features inspired by local
binary pattern [37] from textures. The extracted features were
then used as the input to various classifiers. Leitner et al. [38]
used CGP [39] to automatically classify geological features
on Mars. Harding et al. [40] demonstrated the robustness of
CGP for image processing.

B. GPU-based Genetic Progamming

Parallel computing is a form of computation in which
multiple operations and calculations are done simultaneously
[41]. Embarrassing parallelism is a model of parallelism in
which the tasks of an application rarely or never communicate
with each other. GP is also an example of an embarrassingly
parallel algorithm [3].
There are many examples of parallelizing GP, and the re-

sulting systems experienced significant speed gains. According
to Cano et al. [12], more than 85% of the execution of a
GP system is spent on fitness evaluation, while less than 1%
of a GP run is spent on genetic operations. Consequently,
any parallel model must focus on improving the performance
of the evaluation phase. There are mainly two approaches
to running GP on parallel hardware [16][3][17]. The first
approach is evaluating a single program on parallel fitness
cases (fitness-case parallel). The alternative approach is to
evaluating multiple programs in parallel (population parallel).
Population parallelism is more common in the literature.
In recent years, GPUs have been extensively used for

accelerating applications that demonstrate parallelism and GP
is no exception. Meyer-Spradow et al. [42] evolved pixel
shaders using short linear assembly language and used them
for real-time interactive rendering. Harding and Banzhaf [43]
ran evolved programs on GPUs to accelerate the evaluation
phase of GP in a fitness-parallel setup. Langdon and Banzhaf
[44] implemented a population-parallel scheme on GPUs, and
treated each GP individual as a single parallel program. Wilson
and Banzhaf [45] developed a linear GP system on Microsoft
Xbox 360 video game console to solve regression and clas-
sification problems using population parallelism. Comte [46]
used a Sony PlayStation 3 video game console to evolve
a parallel population. Agusto et al. [47] used a population-
parallel approach to evaluate all individuals in the population
using OpenCL [48]. Banzhaf and Harding [49] implemented
the Cartesian GP model with GPUs.
The CUDA framework by NVIDIA has also been used for

accelerating GP. Every CUDA program has one or more parts
that are either executed on the host (CPU) or the device (GPU).
The code that executes on the device is called the kernel
function. The kernel function can create many threads to solve
a problem. These threads are organized in groups called blocks,
and blocks are organized into grids.
One of the first efforts to incorporate CUDA in GP was

by Robilliard et al. [50]. They used CUDA to evaluate a
parallel population of 1000 individuals. Their work is notable
for combining the fitness and population parallelism together,
which they termed BlockGP. Later, Robilliard et al. [17]
successfully changed their breeding module in way that it
directly evolves linear postfix expressions. They showed that
this representation increased the performance up to 7 times.
Langdon [16] used a similar scheme to solve Boolean 20-
multiplexor and 37-multiplexor with 137 billion fitness cases.
Although it was estimated in [51] that the 20-multiplexor
problem would take 4 years to solve using GP, he solved it in
less than an hour.

3

C. Real-time Genetic Programming
At the time of writing, publications regarding real-time

and online GP systems are scarce. An example of a system
which used parallel methods is the work by Harding [52].
He used CGP to evolve image filters and his goal was to
evolve noise removal filters that performed better than the
traditional median filter. In a later work, Harding and Banzhaf
[53] used CGP to reverse engineer the image processing filters.
Nording and Banzhaf [54] used a real-time and online GP
system to evolve programs that would control the movements
of a miniature robot. Ebner [55][56] proposed an adaptive
online evolutionary visual system that could recognize various
objects. He later expanded the system in [57] and was able to
make the system fully automated and real-time.
Real-time evolutionary algorithms for computer vision have

been implemented. Kaufmann et al. [58] used a real-time
evolutionary algorithm for hand posture recognition. Boumaza
and Louchet perform real-time parameter exploration for 3D
robot vision using an evolutionary strategy called The Fly
algorithm [59].

III. THE LEARNING ENVIRONMENT
We are primarily concerned with evaluating GP’s perfor-

mance in quickly obtaining good-quality image classifiers
within an online setting. We do not intend to study all the
aspects of computer vision that are required in this problem do-
main. For example, topics such as image extraction from real-
world data, noise removal, image segmentation, and advanced
tracking algorithms, are outside our focus. Therefore, we
simplified the visual environment so that we could concentrate
exclusively on the issues of online GP classification.
One simplification we make is to use a synthesized image

stream, in which image data (frames) are generated by an
OpenGL application. This permits the quick generation of
noise-free images for training and testing. It gives us complete
control of the size and location of image objects in the frames.
It is also convenient for post-processing frames for evaluation
purposes, say, by colour rendering objects that have been
classified. We introduce new segments into the image stream
after previous frames have been fully processed. This results
in a data stream that gradually increases in difficulty during
the learning session.
The following constraints are placed on the visual environ-

ment:
1) Segments are squares (96-by-96 pixels), whose locations
are known in the image frame. The size and locations
of segments are used during GP training.

2) Each segment in a frame contains a unique texture
pattern. Duplicate textures are not permitted between
segments.

3) Once a segment is introduced to the image stream, it
never disappears.

4) Segments never occlude each other.
Point 1 represents the use of a “perfect” segmentation algo-
rithm. Points 2 and 3 help the machine learning environment
determine when classifiers are erroneous (they recognize com-
mon segments, or do not recognize any segment). Point 4
simplifies pixel data extraction and analysis.

D25 (easy) D42 (easy) D45 (easy) D88 (easy)

D102 (easy) D105 (easy) D106 (easy) D107 (easy)

D4 (hard) D9 (hard) D16 (hard) D17 (hard)

D30 (hard) D31 (hard) D103 (hard) D104 (hard)
Fig. 1. The selected Brodatz textures. Each image is 96×96 pixels and 256-
grey scale. Easy and hard categories based on work in [60].

Our image data is comprised of Brodatz textures [19], which
are 96-by-96 pixel 256-level grey-scale images that were
studied extensively by Song et al. [21][6][8]. The data we used
is in Figure 1. The labels “easy” and “hard” approximately
identify the degree of difficulty found with the images. We
assign these difficulty categories based on our earlier research
with GP to classify Brodatz textures, where some textures were
more challenging to classify than others [60]. The varying
difficulty of texture classification is consistent with other
research with Brodatz textures [24].
The learning environment is shown in Algorithm 1. The

GP-based vision system functions in an automated and unsu-
pervised manner, with a minimal level of human intervention.
The main goal is to obtain a collection of classifier expressions.
To perform multiclass classification with GP, we employed
the one-vs.-all scheme [61]. As such, there will be as many
classifiers as there are segments, and each classifier evolved by
GP will uniquely identify one of the segments in the current
frame. So long as each segment in the image is uniquely paired
with one classifier, the overall machine learning task has been
satisfied.
The GP expression is applied to the pixels of an image,

in order to determine its classification. Given a frame in
the image stream, all segments within it are identified. The
goal is that each segment should be associated with a single
classifier expression that uniquely identifies or “claims” that
segment. A classifier claims a segment if it positively classifies
the majority (>50%) of the segment pixels as true. If each
classifier uniquely claims one segment, then the image data is
correctly classified.

4

Algorithm 1: Automated learning environment
classifiers ←{}
segments ←{}

while true do
frame ←NextFrame()
Append(segments, SegmentsOf(frame))
orphans ← {}

foreach s in segments do
foreach c in classifiers do

Classify(c, s)
end

if NotClassified(s) then
Remove(segments, s)
Append(orphans, s)

end
end

foreach c in classifiers do
count ← 0

foreach s in segments do
count ← count + Classify(c, s)

end

if count ̸= 1 then
Remove(classifiers, c)

end
end

if IsIdle(GP-Engine) then
foreach s in orphans do

Append(classifiers, EvolveClassifier(s))
end

end

end

In order to evolve classifiers in the environment, the fol-
lowing occurs. Should a segment be unclaimed by any clas-
sifier, then it becomes an “orphan”, and requires a classifier.
Similarly, if multiple classifiers claim the same segment, then
that segment is being misclassified, and it is an orphan. An
orphan segment needs a classifier to be evolved for it, and an
invocation to GP is required. The system will use the existing
segments to construct positive and negative training data for
GP. After the GP run is through, an evolved classifier will
be returned. Hopefully the classifier will correctly classify the
segment, and it will no longer be identified as an orphan.
Sometimes errors will happen with classifiers. A classifier

expression may claim more than one segment, or claim no
segments at all. Such erroneous classifiers will be deleted, and
new invocations of GP will attempt to generate correct classi-
fiers to replace them. It is also possible that some challenging
textures may confound GP. For example, the “hard” images in
Figure 1 can be difficult to classify. We set a maximum limit
of 25 failed attempts in invoking GP to evolve a classifier for
a segment. Should a segment still be unclassified after 25 GP
invocations, then it is labelled a “permanent orphan”, and will
be ignored for the rest of the session.
To summarize the processing done by Algorithm 1, the

following situations may occur during a learning session:
1) If all segments are uniquely classified by separate clas-
sifiers, then are no problems and no GP training is

necessary.
2) If after running all available classifiers on the frame there
is a segment that is orphan, then a new classifier must be
evolved for it. The texture of the orphan segment is given
to GP as positive example data, while all other segments
in the frame, and background pattern, are treated as
negative image data.

3) If a classifier has claimed more than one segment or
a segment is claimed by more than one classifier, the
problematic classifier(s) are removed. Segments that
were claimed by them will become orphans, and new
classifiers will be evolved for them.

4) Conservative classifiers that do not claim any segments
are removed.

Note that the system resolves conflicts in a sequential manner.
Only one classifier is evolved at a time by GP. Orphan seg-
ments automatically invoke GP training, and so the evolution
of a new classifier is issued on a “need only” basis. Likewise,
should all segments be uniquely identified by the current
ensemble of classifiers, GP will not be invoked.
Each classifier is applied to all the segments in the frame.

The resulting information from the classifier (true or false)
will detemine whether a segment claimed by the classifier, or
is a negative segment. When a segment is claimed by a single
classifier, it is rendered on the frame with a distinguished
color. This indicates that it is correctly classified from the
other segments.
Our environment can cope with dynamic changes in the

image stream. For example, as soon as a new segment is
introduced, it will be detected as a new orphan, and GP will
be automatically invoked to find a classifier for it. Similarly,
should a texture of a segment suddenly change, a new invo-
cation of GP can occur.

IV. SYSTEM ARCHITECTURE
Our design philosophy was to make a straight-forward

system architecture, and basic GPU implementation. In the
future, a more sophisticated implementation involving micro-
optimization of the kernel code would result in greater per-
formance gains. Even with our simple but sub-optimal use of
the GPU hardware, impressive performance gains will be seen
(Section VI).
The GP system uses the Java-based ECJ environment [62].

The GPU coding uses NVIDIA CUDA v5.5 [15]. JCuda [63]
is used for Java/CUDA interoperability. Following JCuda’s
convention, the CUDA kernel code for this system is written
in C. All source code for our implementation is available,
including a small library called TransScale, which allows
agile CUDA development for CUDA using JCuda, and CUDA
extensions for ECJ 1.
Population parallelism is used, in which the fitness of as

many individuals as possible is evaluated in parallel. Before
an individual is evaluated, it needs to be transferred to the
GPU memory. As done in [44][50], we use postfix notation
for tree representation in our GP system. A stack-based postfix
expression evaluator was implemented in CUDA. To evaluate
1https://www.github.com/Maghoumi/

5

a GP tree, it is first converted to postfix in ECJ, transferred
to the GPU, and the CUDA evaluator parses and executes the
postfix expression.
Since CUDA memory transfers are very slow, it is a

good practice to pre-allocate all the memory that is required.
Therefore, for any evolutionary run, the coordinates of the
training points along with all the data that are required for
fitness calculation, are transferred to the GPU memory, and
a reference to the allocated space is stored throughout the
run. All the data is flattened and stored in contiguous memory
addresses. Thus, the whole population will be evaluated in a
single CUDA kernel call.
For evaluation, we adopted the method in [50], in which

each block is responsible for evaluating a single individual
on all fitness cases. Depending on the total number of fitness
cases, a CUDA thread is responsible for performing the re-
quired calculations for one or more of the fitness cases. When
the kernel has concluded, an array of fitness values is returned
from the kernel. Each element of this array corresponds to
the fitness value of a single individual in the population. This
fitness array is copied back to the main memory, which ECJ
uses to assign fitness to the population.

Fig. 2. System architecture. The Invoker takes image data from the Feeder,
and calls the GP Engine whenever segments need to be classified. The GP
Engine (ECJ) evolves a classifier for a segment. It calls the GPU using CUDA
to quickly evaluate classifier expressions on the image stream. The Visualizer
applies evolved classifiers to image frames, and uses the GPU to accelerate
classifier execution.

The system is comprised of various modules (Figure 2).
The GP Engine (ECJ) manages the GP evolution call requests.
The GP system runs on its own host thread and monitors a
job queue. To initialize evolution, a job must be added to
this queue. Each job contains a positive and negative image
segment(s). As soon as a job is added to the GP system’s
queue, the evolution process begins asynchronously. When
evolution has concluded, the solution classifier is returned.
The GPU takes postfix classifier expressions from the GPU

engine via CUDA, and runs them on image frames during
fitness evaluation. The Visualizer will invoke the GPU in order
to quickly evaluate evolved classifier expressions on an image.
The Invoker module is the link between all other modules

in the system. This module manages the communications be-
tween the Visualizer and the GP Engine. The Invoker module
obtains a single image frame from the Feeder, passes that
frame to the Visualizer and handles the GP Engine invocation

requests. When the evolution results are ready, the Invoker
takes the results and passes them back to the Visualizer.
The purpose of the Feeder module is to obtain image frames

from a host and to pre-process the frame. At the Invoker’s
request, the Feeder will pass the next processed frame to the
Invoker. As discussed in Section III, the segment locations
and boundaries are known in advance. In the future, an actual
segmentation algorithm could be used.
The Visualizer module applies the evolved classifiers on

the image frame. It enforces the automatic learning rules
that were outlined in Algorithm 1. The Visualizer prioritizes
the evolution of classifiers for orphan segments, and resolves
conflicts between classifiers otherwise. The order in which the
orphan segments are selected for training is arbitrary. For the
visualization of the results of the evolution, currently the GP
trees are only executed on the segment pixels, and not the
image background .

V. EXPERIMENTS
A. GP Language
The GP language used is shown in Table I. The language

performs pixel classification, in that it makes a classification
decision about a single pixel of interest. It is strongly-typed
[64], and supports float and integer expressions. Operators
consider both spectral (single pixel values) and spatial (image
area, shape) features of the image. When a GP tree is eval-
uated, positive or zero values from the root are considered
as positive classification, and negative values are negative
classification. Most of the operators are standard in the GP
vision literature. Protected division is used to prevent divide-
by-zero errors; zero is returned in such cases. The Avgk and
Stdevk terminals are convolution filters that evaluate k-by-k
square areas of the image surrounding the centre pixel, where
k can be 15, 17 or 19. Average will blur an image, while
standard deviation is similar to an edge detection filter. Both
filters are computed on the fly during tree expression execution
on the GPU.
We chose the language in Table I based on a comparative

study of GP classification languages [60]. We found that this
language was one of the best performing one in terms of
solution quality and efficiency. It is also easy to implement in
CUDA. The language is inspired by Song’s GP language used
in Brodatz texture classification [8][21]. He used a simple set
of mathematical and conditional operators to analyze blocks
of pixels, and makes a classification decision for the entire
block at once. Our language differs from Song’s in that we
classify single pixels, rather than entire pixel blocks. We also
use spatial image processing filters (Avgk and Stdevk), unlike
Song. Using the same Brodatz image data used in this paper,
we found that this language outperformed Song’s and other
variations [60].

B. Training and Fitness Evaluation
Each GP run has sets of positive and negative segment

instances or examples. Examples are randomly sampled pixels
used for training. The negative examples are uniformly sam-
pled from all negative segments. Each instance is assigned a

6

TABLE I
GP LANGUAGE

Type Name Ret. Type Arg. Type Description

Function Add I/F I/F addition
Sub I/F I/F subtraction
Mul I/F I/F multiplication
Div I/F I/F protected division
Neg F F negation
Exp F F e raised to the operand
IfGT F F,F,F,F if a > b then c else d

Max F F,F maximum
Min F F,F minimum
Sin F F sine
Cos F F cosine

Terminal ERC F - ephemeral random constant
between [0, 1]

Intensity F - pixel luminosity
Avg F - average of k × k area
Stdev F - standard deviation

of k × k area

Ret. Type and Arg. Type are the return and the argument types respectively
(I=integer, F=float, k ∈ {13, 15, 17})

classification label. After selection, the instances are shuffled
and transferred to GPU memory. When the CUDA evaluation
kernel is invoked, these samples are used as fitness cases for
the evaluation function.
We use Song’s classification accuracy [8] as the fitness

function for the experiments. The classification accuracy is
defined as:

fitness =
TP + TN
Total

× 100

where TP is the number of true positives, TN is the number of
true negatives, and Total is the total number of pixels tested.
We used a 1:3 ratio of positive to negative classes, which we
found gave better performance.

C. GP Parameters

TABLE II
RUN PARAMETERS

Parameter Value

Population size 1024
Generation size 100
Crossover rate 90%
Mutation rate 10%
Selection method Tournament (size=4)
Elites 2
Positive examples 512
Negative examples 1024
GP invocation limit 25
Number of runs/experiment 20

Table II summarizes the GP system parameters. Most of
them are standard in the literature [2]. Positive and negative
examples refer to the number of pixel samples from the
segments used for training.

TABLE III
SUMMARY OF THE EXPERIMENT SETS

Mode Difficulty Num. Textures Label

All Easy 4 All-easy-4
8 All-easy-8

Hard 4 All-hard-4
8 All-hard-8
12 All-hard-12
16 All-hard-16

One Easy up to 8 One-easy-8
Hard up to 16 One-hard-16

Eager various various various

All experiments are performed on a Windows 7 x64 ma-
chine with an Intel Core-i5 3570 processor (four cores running
at 3.40GHz), 8GB of RAM, GeForce GTX 660 graphics
processor (960 CUDA cores clocked at 1033MHz with 2GB
of GDDR5 RAM clocked at 6008MHz), CUDA v5.5 with
GeForce v335.23 drivers.

D. Experiment Variations
Three types of environments for experimentation were used.

In the first set, which we call “All-at-once”, the image stream
presents all the segments simultaneously. Using the automated
learning rules from Section III, the Visualizer attempts to
evolve unique classifiers for all the segments. A session is
successful if all segment textures – with the exception of
permanent orphans – are uniquely classified.
Another session variant, named “One-at-a-time”, involves

an image stream in which new random segments are added
incrementally. A session begins with two textures. This mini-
session is processed until both textures (other than permanent
orphans) have unique classifiers. When the mini-session ends,
another texture is added to the mix. Then a classifier is
evolved for it, using the procedure in Algorithm 1. Since the
appearance of a new texture will likely cause errors for existing
classifiers, retraining will be necessary. This process continues
until a maximum number of textures have been added. Since
the ordering of textures can affect classifier performance, we
randomize the ordering in each run.
A final environment was designed, which is called “Eager”.

The All-at-once and One-at-a-time sessions will always run
GP until the maximum generation limit. However, Eager ses-
sions quit GP evolution immediately when a correct classifier
is found.
Table III summarizes the experiments undertaken. Experi-

ments vary in the number of textures selected, and the diffi-
culty of textures used. “Easy” experiments will select random
textures exclusively from the textures labelled easy in Figure
1. “Hard” experiments randomly select from both the easy
and hard textures. We use the notation [S-D-C] in which “S”
signifies the experiment set, “D” signifies the difficulty of the
textures used in the experiment and “C” signifies the number
of textures used in the experiment. Therefore the notation “All-
hard-12” means that the experiment was carried out for the
first experiment set, with 12 textures from the difficult set.

7

VI. RESULTS
This section examine different performance features of the

experiments. Where applicable, the results are averaged over
20 runs.
There are two closely related aspects to consider when

evaluating performance of the system. The first is the quality of
solutions obtained by GP. This factor relates to the difficulty of
the image classification problem as presented to GP. Should
GP have difficulty in finding acceptable classifiers, then the
online learning environment will require multiple invocations
of GP runs, which of course results in delays in the session.
The second aspect is the speed at which GP runs are executed
on the GPU hardware, as well as the speed at which evolved
classifiers are executed by the GPU on the image stream.
Faster throughput will result in an overall speedup of sessions.

A. GP Invocations Required for Training

TABLE IV
AVERAGE NUMBER OF GP INVOCATIONS (95% CONFIDENCE).

Experiment Invocations Evaluations Normalized
Avg. ±

All-easy-4 4.00 0.00 409,600 1.00
All-easy-8 17.00 4.02 1,740,800 2.12
All-hard-4 9.20 4.52 942,080 2.30
All-hard-8 39.80 9.57 4,075,520 4.97
All-hard-12 96.80 14.76 9,912,320 8.06
All-hard-16 185.52 10.76 18,997,248 11.59
One-easy-8 23.45 2.67 2,401,280 2.93
One-hard-16 192.25 9.27 19,686,400 12.01

Evaluations is the number of GP trees evaluated: avg # invocations × 100
(generations) × 1024 (population size). Normalized values are the average
values divided by the number of textures in the experiment.

Fig. 3. Plot of average GP invocations per texture. In this and other plots,
the bars represent the range of measured values.

Table IV shows the number of GP invocations required for
each set of experiments. The confidence level value specifies
the range of numbers of GP invocations required for a par-
ticular data set with a confidence of 95%. Figure 3 plots the
data according to experiment type. The plot shows a trend
with respect to the number of segments K. The 3 “easy”
texture experiments show lower invocations than the “hard”
ones for the same K values. Examining the table, the “easy”

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

D25 D42 D45 D88 D102 D105 D106 D107

Nu
m

be
r o

f G
P

Ca
lls

Texture

(a) All-easy-8

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Nu
m

be
r o

f G
P

Ca
lls

Texture

(b) All-hard-8
Fig. 4. GP invocations per texture

texture experiments require between half to a third of the GP
invocations than their “hard” equivalents. The number of GP
invocations is also proportional to the number of textures being
considered. This makes sense, given that a greater number
of texture objects represent a more difficult classification
problem. The One-at-a-time runs require more invocations
than the All-at-once. Gradually adding textures acts like a
“moving target” for evolution. New texture objects introduce
errors with existing classifiers, requiring their replacement. In
All-at-once runs, the learning task is unchanged from the start.
Figure 4 shows the average and range of GP invocations per

texture for the All-easy-8 and All-hard-8 runs. This confirms
the difficulty level of the selected textures set. Note that the
“easy” texture D107 is apparently more difficult than we had
previously assumed.

B. Permanent Orphans
A permanent orphan is a segment that cannot be classified

correctly after 25 separate invocations of GP. Table V sum-
marizes the number of permanent orphans seen at the end of
each experiment run. The supplied ranges show the confidence
interval at 95%. Higher number of textures will result in
a greater number of permanent orphans. The likelihood of
having a permanent orphan is more dependent on the number
of textures in the image frame and less on the difficulty
of the textures. Although the All-hard-8 set contains more

8

TABLE V
AVERAGE NUMBER OF PERMANENT ORPHANS (95% CONFIDENCE)

Experiment Permanent Orphans

Avg. ±

All-easy-4 0.00 0.00
All-easy-8 0.10 0.14
All-hard-4 0.10 0.14
All-hard-8 0.65 0.38
All-hard-12 2.20 0.61
All-hard-16 5.40 0.53
One-easy-8 0.00 0.00
One-hard-16 5.15 0.43

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

Fig. 5. Percentage of time a texture was a permanent orphan (One-hard-16).

challenging textures than the All-easy-8 set, they result in the
same number of permanent orphans. For some of the harder
experiment sets, the number of textures that were distinguished
(i.e. non-permanent orphans) is roughly 10. This suggests
that 10 is a practical maximum number of textures that we
can competently classify, at least using our system setup and
image data. Improvements to the system design (GP language,
training strategy, etc.) would have to be explored to increase
this limit.
Figure 5 depicts the average percentage of time each texture

was a permanent orphan during the One-hard-16 experiments.
Note that most of the “easy” textures from Figure 1 were
never permanent orphans, other than D105 and D107. Those
textures became more challenging when other “hard” textures
were included. Permanent orphans never arose in the One-
easy-8 runs.

C. Incremental Introduction of Textures
The One-at-a-time runs also show interesting behaviour with

regards to the number of orphans seen. Recall that a mini-
session is the portion of a session during which a newly
added segment is classified. Figure 6 provides a timeline for
the mini-sessions. Each step on the horizontal axis shows the
current number of textures in the stream. Since we start the
experiments with 2 initial textures, the system always has
2 orphans at the beginning of the run. (This step has been
omitted from the plots for simplicity.) After the mini-session
containing the two textures has concluded successfully, one
texture is added until the maximum number of textures is

0
1
2
3
4
5
6
7
8
9

10

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Nu
m

be
r o

f O
rp

ha
ns

Number of Textures on Canvas

Fig. 6. Number of textures vs. number of orphans: One-hard-16

0

1

2

3

4

5

6

7

3 4 5 6 7 8 9 10 11 12 13 14 15 16

Nu
m

be
r o

f P
er

m
an

en
t O

rp
ha

ns

Number of Textures on Canvas

Fig. 7. Number of textures vs number of permanent orphans: One-hard-16

reached. As can be seen in Figure 6, classification difficulty
increases as the number of textures increases. This indicates
that the problem complexity is increasing, and that earlier
evolved classifiers often become erroneous when new textures
arrive.
Figure 7 shows the relationship between the number of

textures and the number of permanent orphans for the One-
hard-16 experiments. The number of permanent orphans in the
system increases with the introduction of additional textures.
This is again a product of increasing problem complexity, as
there were no permanent orphans in the One-easy-8 runs.

D. Eager Termination
We did some experiments using Eager mode. Although the

maximum number of GP generations is still 100, an Eager
run immediately terminates when a correct classifier is found.
We ran the All-hard-8 experiments with Eager termination
enabled.
We found that Eager termination is a sensible means for

improving performance. The average execution time of Eager
version of All-hard-8 runs were an average of 8.2 times faster
than the normal versions. Frame rates of these Eager runs were
an average of 17.0 frames/sec, while normal runs had frame
rates of 11.2 frames/sec. This is due to trees being smaller in
the Eager runs, since for some textures, fewer generations are
necessary to find suitable classifiers.

9

A t-test at the 95% significance level revealed that the
number of permanent orphans did not change significantly in
the experiments with the eager termination.

E. Frame Rate and Tree Size

TABLE VI
AVERAGE FRAME RATE AND TREE SIZE FOR DIFFERENT EXPERIMENTS.

Experiment FPS
(during)

FPS
(final)

Tree
Size

Correl.
Coeff. Normalized

All-easy-4 10.85 25.35 219.46 -0.88 6.33
All-easy-8 6.67 11.37 250.13 -0.72 5.68
All-hard-4 9.97 25.24 238.49 -0.77 6.31
All-hard-8 5.76 11.56 244.81 -0.12 5.78
All-hard-12 4.72 6.68 226.38 -0.02 5.01
All-hard-16 3.97 5.46 240.08 0.00 5.46
One-easy-8 8.63 11.52 241.21 -0.70 5.76
One-hard-16 4.93 5.87 230.40 -0.37 5.87

Normalized is the final frame rate multiplied by K/16, for any case where
K < 16. Normalization is done separately for the all and one experiments.

0

50

100

150

200

250

300

350

400

4 9 14 19 24 29 34

Av
er

ag
e

Tr
ee

 S
ize

Framerate (frames per second)

Fig. 8. Frame rate vs. tree size: All-easy-4

We also examined the execution speed of the system. One
measure of responsiveness is the frame rate of the visualizer
during and at the end of a session. The frame rate is affected
by the number of textures that were used for the run. More
classifiers need to be evolved and executed for higher number
of textures. Frame rate is also affected by the tree size of
evolved classifiers, as well as the number of GP invocations.
Table VI shows the average frame rate and tree size of each

experiment both during the evolutionary run and at the end of
a session. The “during” frame rate was measured when a GP
invocation was issued and the GP engine started running. The
“final” frame rate was measured when the session was suc-
cessful and all no further GP invocations were necessary. The
table reveals that GP invocation affects the frame rate, since
the values in the second column of Table VI are lower than
those in the third column. Furthermore, the more difficult a set
is, the lower is the corresponding frame rate. We calculated the
correlation coefficient of frame rate (at the end of the run) and
the average tree size based on 20 observations. As expected,
higher frame rates generally correlate with smaller trees.
Table VI also shows that the number of textures in each

experiment affects the measured frame rates. To account for

this, we normalized the values of the final frame rate for
experiments having K textures (K < 16), by multiplying the
scale factor K/16. This is done separately for the “all” and
“one” experiment variations. For example, if an experiment has
8 textures, its frame rate is divided by 2 since the experiment
with 16 textures has twice as many textures. The normalized
frame rates are closer, and show that the raw final framerate is
indeed inversely proportional to the number of textures being
processed.
Figure 8 plots the frame rates versus average tree size for the

All-easy-4 experiment. The trend lines show the relationship
between the two, and confirm the correlation between frame
rate and tree size. Other experiments showed similar linear
correlations.

TABLE VII
EXPERIMENT THROUGHPUT

Experiment Average
Permanent Orphans Throughput

All-easy-4 0.00 0.82
All-easy-8 0.10 1.65
All-hard-4 0.10 0.86
All-hard-8 0.65 1.53
All-hard-12 2.20 1.63
All-hard-16 5.40 2.04
One-easy-8 0.00 1.63
One-hard-16 5.15 2.16

Hardware is Intel Core-i5 3570 at 3.4 GHz, and GeForce GTX 660 at 1.033
GHz. Throughput is billion GP operations per second.

Table VII shows the total throughput of the system for
different experiments. Note that the GPU applies every clas-
sifier to every segment in each image: for m textures, m×m
classifiers are executed on 96×96 pixels. For example, for 8
textures, there are 8 × 8 × 96 × 96 = 589824 applications of
classifiers to pixels per frame in the image stream. These rates
are in line with similarly reported ones for GPU-accelerated
GP in image processing [65]. During a classifier expression
execution, six relatively large spatial filters are calculated on
the fly, possibly multiple times. Therefore, there is clearly
significant amount of computation occuring during sessions.
To better grasp the advantage of using the GPU for tree

evaluations, we re-ran the All-easy-8 experiments on the main
CPU without GPU support. The average evaluation time per
generation was 39.8 milliseconds for GPU runs, and 3.20
seconds for non-GPU accelerated runs. GPU accelerated runs
are 80 times faster on average.

F. Example Videos
Example videos showing the system in action are available2.

Figure 9 is a screen capture of one such video. The image
shows the end of a session in which 8 textures have been
correctly classified. As they animate left-to-right, they are
rendered in different colours, indicating their success. In the
videos, the text window will scroll, showing the current status
of the GP system. Usually the text flies by fast, showing the

2http://www.cosc.brocku.ca/∼bross/GPVisionCuda/

10

Fig. 9. Screen capture of a session.

speed at which GP is executed. However, typical runs will
show the segment colours change according to classifier errors
and difficulties.
Within all our videos, the 4-texture runs, and particularly the

Eager variants, show very fast completion of classification. In
many instances, solutions are obtained within seconds. In all
instances, evolved classifier expressions are applied efficiently
to the image data via the GPU, resulting in real-time frame
rates.
The speed of runs degrades when 8 or more textures are

used, due to the number of GP invocations required to find
correct classifiers. The OpenGL video application also shows
the current frame rate as the session proceeds, which we find
to be a useful visual cue to the computation effort being
undertaken by the GPU.

VII. EVALUATION AND COMPARISONS
The results in Section VI revealed two important insights.

Firstly, texture classification with GP is a difficult problem.
We knew that this would be the case, as earlier work in [60]
showed that multi-texture classification of Brodatz textures
is challenging. In this work, we found that the practical
maximum number of textures that could be classified was
10. Furthermore, the style of learning session (All-at-once vs.
One-at-a-time) impacted the effectiveness of evolution. The
quality of our GP system is also affected by factors such
as image data, GP parameters, training strategies, and GP
language. Although our experimental design decisions were
based on earlier trials, we do not claim that we have found an
ideal configuration. In fact, it is likely that a more sophisticated
GP language would produce better classifiers.
The second insight is that our quest for “real-time” GP was

successful, but only for the smallest 4-segment experiments
undertaken. In various 4-segment runs, correct classifiers were
often obtained within seconds. The Eager experiments were
particularly fast. We feel that this represents a significant

milestone towards considering GP as a contender as a real-time
machine learning paradigm for computer vision. On the other
hand, it is debatable what it means for a system to be “real-
time”. Whether this means that the system should determine
a solution in a fraction of a second, or a few seconds, or a
few minutes, is unclear. Perhaps a system is real-time when the
generation of a solution does not try the patience of the human,
and does not result in a catastrophe within the application
environment in which it is running.
In the course of our research, we discovered that system

scalability was quickly overwhelmed by larger and more
complex data sets. Thanks to the GPU support, frame rates
seen in more complex experiments were often acceptable,
and individual GP invocations might not take long to finish.
However, overall session time suffered due to the dozens, if
not 100’s, of GP invocations. required to find correct classifiers
for multiple texture objects. Scalability was hindered by the
difficulty of correctly classifying greater numbers of textures.
Research regarding real-time evolution of GP systems for

computer vision applications is scarce. Most of the literature
involves the application of an offline pre-evolved solution in a
real-time environment. We too found that our evolved solutions
could be executed with real-time performance. Related to our
work is research in GP and tracking in [10][27][11]. Smart and
Zhang [10] used GP to evolve vectors that could best describe
the location of the object in the new frame. While their evolved
programs were suitable for real-time applications, their learn-
ing method was offline. In contrast, our online system which
can correct its behavior dynamically. Moreover, their evolved
solutions were only capable of detecting the moving objects,
and were not intended to perform classification on them.
Similarly, the motion plane features that were used by Song
and Fang [27] were unable to discriminate different objects.
Their pixel intensity features detected the motions of a specific
object. Later, Pinto and Song [11] used the motion plane
features for more complex videos. Although their evolved
solutions were successful at detecting the motion of a specific
class of objects (e.g. moving cars on a freeway), they did not
discriminate between objects that belonged to the same class.
We anticipate that the implementations in [10][27][11]

could be used as a pre-processor for our implementation. By
detecting object motion, the pre-processor would be able to
provide the image segment information to the GP engine. This
segment information is then used for evolving classifiers that
can uniquely identify each segment from all other segments.
This would result in a full tracking environment.
Nordin and Banzhaf [54] used a real-time and online GP

system to evolve control programs for a miniature robot.
Although the problems they worked on are inherently different
from ours, many aspects of their system are similar, such as
multiple invocations of the GP system or real-time evaluation
of the fitness using the problem’s environment. Their system
was built for embedded applications which restricted the
available computational power, while ours requires an actual
CUDA compatible hardware.
Ebner [57] developed an automated GP system for object

detection. His initial research required user intervention, and
was capable of achieving 4.5 fps on a 320×240 video [56].

11

His implementation worked by classifying objects, while ours
depends on finer-detail texture images. His approach relied
on frame differencing in order to detect moving objects while
our implementation requires a segmentation algorithm that can
feed segment information to the GP engine.
We are unaware of any studies comparing GP with other

techniques in computer vision applications. The Brodatz tex-
ture library is well known in computer vision research. Picard
et al. use principal components analysis and autoregressive
algorithms on the Brodatz database [20]. They report 99% ac-
curacy and real-time performance, although no time measure-
ments are given. Diazi-Pernas et al. trained neural networks
in a supervised, non-real-time environment on sets of Brodatz
textures [24]. Classification accuracy ranged from 100% to less
than 60%, depending on the texture images. They mentioned
that texture D30 was one of the most difficult textures, which
we also found to be the most challenging one (Figures 4
and 5). This gives some circumstantial evidence that neural
networks and genetic programming may have similar classifi-
cation capabilities in this problem domain. Other researchers
have examined real-time learning with neural networks [66].
Many are working on GPU acceleration of neural networks,
for example, for object tracking [67]. We are certain that GPU
acceleration will benefit neural networks in computer vision
applications such as this one.

VIII. CONCLUSIONS AND FUTURE WORK

We have described an online GP-based texture classification
system. The system showed real-time performance in the
simpler experiments. Although the more difficult experiments
were not real-time, they achieved a throughput of around 2
billion GP operations per second.
There are many directions for future work. GP’s classi-

fication power will greatly benefit with the use of a more
sophisticated GP language for image classification. Some of
the image processing done elsewhere could be incorporated
into the language [20][24]. The effect of noise on images
should also be considered [68]. The OpenCV CUDA library
could be worth consideration in accelerating a more advanced
GP classifier language. Many spatial operators are imple-
mented in OpenCV, and using them could be beneficial. More
advanced training strategies (e.g. fitness sharing) are also
worth considering. Other kinds of image data, including colour
images, could be considered instead of the Brodatz textures.
In the future, the realization of real-time GP will benefit

from the fact that graphics cards continue to get faster and
cheaper. By micro-optimizing the CUDA kernel, and expand-
ing the kinds of parallelism used, we would see even greater
performance gains.
Another direction for future research is to improve the

sophistication of the computer vision architecture of our
system. Our synthetic image stream could be replaced with
real video, in which a segmentation algorithm analyzes the
frames before being processed by GP. This would be a natural
“next stage” of this research, and especially if the segmentation
implementation could be GPU supported. Motion detectors
could be used in a pre-processor stage for our implementation.

Using ideas from [10][27][11], the processor supplies the GP
engine with a list of objects that are currently moving. Using
this information, GP can evolve a unique classifier for each
moving object. This could be used for object tracking.
Acknowledgements: Thanks to Cale Fairchild for his assistance
with hardware issues. This research was partially supported by
NSERC DG 138467.

REFERENCES

[1] R. Szeliski, Computer Vision: Algorithms and Applications. Springer,
2010.

[2] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[3] R. Poli, W. W. B. Langdon, and N. F. McPhee, Field Guide to Genetic
Programming. Lulu Enterprises Uk Limited, 2008.

[4] W. A. Tackett, “Genetic programming for feature discovery and image
discrimination,” in Proc 5th Intl Conf on Genetic Algorithms. San
Francisco, CA: Morgan Kaufmann, 1993, pp. 303–311.

[5] R. Poli, “Genetic programming for feature detection and image segmen-
tation,” in Evolutionary Computing, ser. LNCS, T. Fogarty, Ed. Springer
Berlin Heidelberg, 1996, vol. 1143, pp. 110–125.

[6] A. Song and V. Ciesielski, “Fast texture segmentation using genetic
programming,” in Proc. CEC ’03, vol. 3. IEEE, 2003, pp. 2126–2133.

[7] J. F. Winkeler and B. Manjunath, “Genetic programming for object
detection,” in Proc. Genetic Programming 1997. Morgan Kaufmann,
1997, pp. 330–335.

[8] A. Song, T. Loveard, and V. Ciesielski, “Towards genetic programming
for texture classification,” in AI 2001: Advances in Artificial Intelligence,
ser. LNCS, M. Stumptner, D. Corbett, and M. Brooks, Eds. Springer
Berlin Heidelberg, 2001, vol. 2256, pp. 461–472.

[9] H. Al-Sahaf, M. Zhang, M. Johnston, and B. Verma, “Image descriptor:
A genetic programming approach to multiclass texture classification,”
in Evolutionary Computation (CEC), 2015 IEEE Congress on. IEEE,
2015, pp. 2460–2467.

[10] W. Smart and M. Zhang, “Tracking object positions in real-time video
using genetic programming,” in Proc. of Image and Vision Computing
Intl Conf., 2004, pp. 113–118.

[11] B. Pinto and A. Song, “Motion detection in complex environments by
genetic programming,” in Proc GECCO ’09 Late Breaking Papers. New
York, NY: ACM, 2009, pp. 2125–2130.

[12] A. Cano, A. Zafra, and S. Ventura, “Speeding up the evaluation phase of
GP classification algorithms on GPUs,” Soft Computing, vol. 16, no. 2,
pp. 187–202, 2012.

[13] W. Banzhaf, S. Harding, W. B. Langdon, and G. Wilson, “Accelerating
genetic programming through graphics processing units.” in Genetic
Programming Theory and Practice VI. Springer, 2009, pp. 1–19.

[14] W. B. Langdon, “Graphics processing units and genetic programming:
An overview,” Soft Comput., vol. 15, no. 8, pp. 1657–1669, Aug. 2011.

[15] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.

[16] W. B. Langdon, “A many threaded CUDA interpreter for genetic
programming,” in Proc. EuroGP’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 146–158.

[17] D. Robilliard, V. Marion, and C. Fonlupt, “High performance genetic
programming on gpu,” in Proc. BADS ’09. ACM, 2009, pp. 85–94.

[18] C. Sammut and G. I. Webb, Encyclopedia of Machine Learning, 1st ed.
Springer, 2011.

[19] P. Brodatz, Textures: a photographic album for artists and designers.
Dover New York, 1966, vol. 66.

[20] R. Picard, T. Kabir, and F. Liu, “Real-time recognition with the entire
Brodatz texture database,” in Proc. IEEE Conf on Computer Vision and
Pattern Recognition, 1993, pp. 638–639.

[21] A. Song, “Texture classification: a genetic programming approach,”
Ph.D. dissertation, RMIT University, April 2003.

[22] A. Song and V. Ciesielski, “Texture analysis by genetic programming,”
in Proc. CEC ’04, vol. 2. IEEE, 2004, pp. 2092–2099.

[23] D. B. Kirk and W. H. Wen-mei, Programming massively parallel
processors: a hands-on approach, 2e. Morgan Kaufmann, 2012.

[24] F. Diaz-Pernas, M. Anton-Rodriquez, and J. Diez-Huguera, “Texture
classification of the entire Brodatz database through an orientational-
invariant neural architecture,” in Proc. IWINAC 2009. Springer, 2009,
pp. 294–303.

12

[25] A. Shahrokni, T. Drummond, and P. Fua, “Texture boundary detection
for real-time tracking,” in Proc. ECCV 2004. Springer, 2004, pp. 566–
577.

[26] M. Maghoumi, “Real-time automatic object classification and tracking
using genetic programming and NVIDIA CUDA,” Master’s thesis, Brock
University, Dept of Computer Science, 2014.

[27] A. Song and D. Fang, “Robust method of detecting moving objects in
videos evolved by genetic programming,” in Proc. GECCO ’08. New
York, NY: ACM, 2008, pp. 1649–1656.

[28] R. Poli, “Genetic programming for image analysis,” in Proc. of the First
Annual Conference on Genetic Programming. MIT Press, 1996, pp.
363–368.

[29] D. Howard, S. C. Roberts, and R. Brankin, “Target detection in SAR
imagery by genetic programming,” Adv. Eng. Softw., vol. 30, no. 5, pp.
303–311, May 1999.

[30] N. Harvey, S. Perkins, S. Brumby, J. Theiler, R. Porter, A. Cody Young,
A. Varghese, J. Szymanski, and J. Bloch, “Finding golf courses: The
ultra high tech approach,” in Real-World Applications of Evolutionary
Computing, ser. LNCS, S. Cagnoni, Ed. Springer Berlin Heidelberg,
2000, vol. 1803, pp. 54–64.

[31] M. Zhang and W. Smart, “Multiclass object classification using genetic
programming,” in Proc. EvoWorkshops 2004. Springer, 2004, pp. 369–
378.

[32] K. Krawiec and B. Bhanu, “Visual learning by evolutionary and coevo-
lutionary feature synthesis,” IEEE Trans on Evolutionary Computation,
vol. 11, no. 5, pp. 635–650, October 2007.

[33] M. Zhang, U. Bhowan, and B. Ny, “Genetic programming for object
detection: A two-phase approach with an improved fitness function,”
Electronic Letters on Computer Vision and Image Analysis, vol. 6, no. 1,
pp. 27–43, 2007.

[34] B. Ross, A. Gualtieri, F. Fueten, and P. Budkewitsch, “Hyperspectral
image analysis using genetic programming,” Applied Soft Computing,
vol. 5, no. 2, pp. 147–156, 2005.

[35] T. Kowaliw, W. Banzhaf, N. Kharma, and S. Harding, “Evolving novel
image features using genetic programming-based image transforms,” in
Proc. CEC ’09. IEEE, May 2009, pp. 2502–2507.

[36] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Extracting image
features for classification by two-tier genetic programming,” in Proc.
CEC 2012. IEEE, 2012, pp. 1–8.

[37] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern recognition, vol. 29, no. 1, pp. 51–59, 1996.

[38] J. Leitner, S. Harding, M. Frank, A. Forster, and J. Schmidhuber,
“icVision: A modular vision system for cognitive robotics research,”
in Proc. 5th CogSys, Feb 2012.

[39] J. Miller and P. Thomson, “Cartesian genetic programming,” in Proc.
EuroGP 2000, ser. LNCS, R. Poli, W. Banzhaf, W. Langdon, J. Miller,
P. Nordin, and T. Fogarty, Eds., vol. 1802. Springer Berlin Heidelberg,
2000, pp. 121–132.

[40] S. Harding, J. Leitner, and J. Schmidhuber, “Cartesian genetic pro-
gramming for image processing,” in Genetic Programming Theory and
Practice X, R. Riolo, E. Vladislavleva, M. D. Ritchie, and J. H. Moore,
Eds. Springer, 2013, pp. 31–44.

[41] V. Kumar, Introduction to Parallel Computing, 2nd ed. Boston, MA:
Addison-Wesley Longman, 2002.

[42] J. Meyer-Spradow and J. Loviscach, “Evolutionary design of BRDFs,”
in Eurographics 2003 Short Paper Proceedings, M. Chover, H. Hagen,
and D. Tost, Eds., 2003, pp. 301–306.

[43] S. Harding and W. Banzhaf, “Fast genetic programming on GPUs,” in
Proc. EuroGP’07. Springer-Verlag, 2007, pp. 90–101.

[44] W. B. Langdon and W. Banzhaf, “A SIMD interpreter for genetic
programming on GPU graphics cards,” in Proc. EuroGP’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 73–85.

[45] G. Wilson and W. Banzhaf, “Linear genetic programming GPGPU on
Microsoft’s Xbox 360,” in Proc. CEC 2008. IEEE, 2008, pp. 378–385.

[46] P. Comte, “Design & implementation of parallel linear GP for the IBM
Cell Processor,” in Proc. GECCO ’09. ACM, 2009, pp. 1–8.

[47] D. A. Augusto and H. J. Barbosa, “Accelerated parallel genetic program-
ming tree evaluation with OpenCL,” Journal of Parallel and Distributed
Computing, vol. 73, no. 1, pp. 86–100, 2013.

[48] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” IEEE Des. Test, vol. 12,
no. 3, pp. 66–73, May 2010.

[49] S. Harding and W. Banzhaf, “Implementing Cartesian genetic program-
ming classifiers on graphics processing units using gpu.net,” in Proc.
GECCO ’11. New York, NY: ACM, 2011, pp. 463–470.

[50] D. Robilliard, V. Marion-Poty, and C. Fonlupt, “Population parallel gp
on the G80 GPU,” in Proc. EuroGP’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 98–109.

[51] M. Yanagiya, “Efficient genetic programming based on binary decision
diagrams,” in Proc. CEC ’95, vol. 1. IEEE, 1995, pp. 234–246.

[52] S. Harding, “Evolution of image filters on graphics processor units using
Cartesian genetic programming,” in Proc. CEC ’08, J. Wang, Ed. Hong
Kong: IEEE, 1-6 Jun. 2008, pp. 1921–1928.

[53] S. Harding and W. Banzhaf, “Genetic programming on GPUs for
image processing,” International Journal of High Performance Systems
Architecture, vol. 1, no. 4, pp. 231 – 240, 2008.

[54] P. Nordin and W. Banzhaf, “Real time control of a Khepera robot using
genetic programming,” Control and Cybernetics, vol. 26, pp. 533–562,
1997.

[55] M. Ebner, “An adaptive on-line evolutionary visual system,” in Proc.
SASOW ’08. Washington, DC: IEEE, 2008, pp. 84–89.

[56] ——, “A real-time evolutionary object recognition system,” in Proc.
EuroGP ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 268–279.

[57] ——, “Towards automated learning of object detectors,” in Proc. EvoAp-
plicatons’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 231–240.

[58] B. Kaufmann, J. Louchet, and E. Lutton, “Hand posture recognition
using real-time artificial evolution,” in Proc. EvoApplications 2010.
Springer, 2010, pp. 251–260.

[59] A. Boumaza and J. Louchet, “Dynamic flies: Using real-time Parisian
evolution in robotics,” in Proc. EvoWorkshops 2001. Springer, 2001,
pp. 288–297.

[60] M. Maghoumi and B. J. Ross, “A comparison of genetic programming
feature extraction languages for image classification,” in Proc. SSCI.
Orlando, FL: IEEE, December 2014, pp. 1–8.

[61] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[62] S. Luke, “ECJ: A Java-based evolutionary computation research
system,” 2015, version 23, Accessed: 2015-07-28. [Online]. Available:
http://cs.gmu.edu/∼eclab/projects/ecj/

[63] M. Hutter, “JCuda: Java bindings for CUDA,” may 2014, accessed:
2014-05-30. [Online]. Available: http://www.jcuda.org/

[64] D. Montana, “Strongly typed genetic programming,” Evolutionary Com-
putation, vol. 3, no. 2, pp. 199–230, 1995.

[65] W. Langdon, “Large-scale bioinformatics data mining with parallel ge-
netic programming on graphics processing units,” in Massively Parallel
Evolutionary Computation on GPGPUs, ser. Natural Computing Series,
S. Tsutsui and P. Collet, Eds. Springer, 2013, pp. 311–347.

[66] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Real-time learning capability
of neural networks,” IEEE Trans on Neural Networks, vol. 17, no. 4,
pp. 863–878, July 2006.

[67] M. Tarkov and S. Dubynin, “Real-time object tracking by CUDA-
accelerated neural network,” Journal of Computer Sciences and Appli-
cations, vol. 1, no. 1, pp. 1–4, 2013.

[68] S.-S. Liu and M. Jernigan, “Texture analysis and discrimination in
additive noise,” Computer Vision, Graphics, and Image Processing,
vol. 49, pp. 52–67, 1990.

