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Abstract

In previous work we have presented a class of algebras enhanced with two contact
relation used in spatial reasoning on the basis of rough sets. In this paper we present
a relational logic for such structures in the spirit of Rasiowa – Sikorki proof systems.
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1 Introduction

In the context of spatial contact, we have proposed a class of algebras which resemble
algebras obtained from the approximation operators of rough sets [7]. It was shown that the
resulting class was definitionally equivalent to the class of regular double Stone algebras.
We used this setup to define approximations for contact relations and part of relations as
well, along with their appropriate algebraic and mereological structures. In the present
paper we fulfill the promise made in [7] and present relational logics for these systems.

Contact structures may be viewed as an extension of Leśniewski’s mereological structures
[9] – extensions primarily based on Whitehead’s notion of “connection” [20]. A contact
structure is a triple hU,P,Ci where P is a partial order on U and C a contact relation
satisfying 1 – 3 below:

C is reflexive. (1)
C is symmetric. (2)
If C(x) =C(y), then x = y. (3)

Here, for z 2W , we let C(z) = {t 2W : zRt}. By the extensionality axiom (3), a region is
determined by all regions to which it is in contact. The elements of U are considered as
regions in some geometrical or topological structure. We say that regions x and y overlap
if there is some z such that zPx and zPy. Usually, the set of regions carries, in addition, an
algebraic structure which is compatible with P or C in various degrees, such as Boolean
contact algebras, contact lattices etc, see [2] for an overview.

In many cases, regions cannot be exactly determined, but only described by approxima-
tions; a case in point are the regions of a computer screen determined by the chosen resolu-
tion, membership in which can only be described by a lower and an upper approximation.
To model our intuition of approximate region we follow the paradigm of rough sets [15]
and make the assumption that there is a collection B of crisp or definable regions, which
forms a Boolean algebra with natural order , such that P restricted to B coincides with
. The crisp regions delineate the bounds up to the granularity of which other regions can
be observed. The power of observation is expressed by pairs of the form ha,bi, a  b,
where a,b are definable regions. In other words, for each (unknown) region x there is a
lower bound i(x) = a and an upper bound h(x) = b, both of which are crisp, up to which
x is discernible. If i(x) = h(x), then x itself is definable. The pair hi(x),h(x)i is called an
approximating region. We also assume that the bounds hi(x),h(x)i are best possible; in
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other words

No definable region c with i(x)� c is a part of x, (4)
If c is definable and c � h(x), then x overlaps with �c. (5)

Using some additional assumptions which generalize the widely studied Boolean contact
algebras, we define an approximating algebra (AA) hL,+, ·,0,1, i,h,�i as a structure of
type h2,2,0,0,1,1,1i such that for all x,y 2 L,

AA1. hL,+, ·,0,1i is a bounded distributive lattice.

AA2. i is a dually normal multiplicative interior operator on L.

AA3. h is a normal additive closure operator on L.

AA4. i(h(x)) = h(x), h(i(x)) = i(x).

AA5. i(x) = i(y) and h(x) = h(y) imply x = y.

AA6. � is a partial unary operator defined on the set B(L) = {x 2 L|x = h(x)} of closed
elements such that

x ·�x = 0, x+�x = 1.

Observe that AA1 – AA4 axiomatise the lattice based version of a modal S5 algebra.

The class AA is definitionally equivalent to the class of regular double Stone algebras (see
Section 2.1. of [7]), and thus, to the class of subalgebras of full algebras of rough sets
[3, 13, 14].

To approximate a contact relation we need two extensions of structures with a crisp con-
tact: An approximate contact algebra (ACA) is a structure hL,+, ·,0,1, i,h,Ci,Chi such
that hL,+, ·,0,1, i,hi is an AA and Ci and Ch are binary relations on L such that

Ci =Ci ˘ , Ch =Ch ˘ (6)

10 ✓Ci \Ch, (7)

xCiy () i(x)Cii(y), (8)

xChy () h(x)Chh(y), (9)

h(x)Cih(y)() h(x)Chh(y), (10)

Ch(h(x))✓Ch(h(y))() h(x) h(y). (11)

For further details we refer the reader to [7].
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2 Relational proof systems

In many theories that are being developed in computer science one can observe that there is
an increasing tendency to use models based on algebras of relations or modal logics which,
as we know today, are closely related to the algebras of relations. Since the invention of
Kanger–Kripke semantics, modal logics are viewed as structures expressing an interplay
between relations and sets; moreover, modal logics can also be given a purely relational
semantics [10, 11]. In this way, any modal logic can be equivalently represented as a class
of algebras of relations. However, one can also observe that quite often for the relational
or modal models of the respective theories there is a need to introduce algebraic structures
which are not exactly standard algebras of relations, but algebras obtained from them by
adding or deleting some relational constants and/or operations, or by allowing only some
fixed relations as generators and/or by postulating various constraints on these generators.

A general framework for designing proof systems for theories whose models involve re-
lational structures is based on the methodology of relational proof systems in the style of
[17]. The systems consist of decomposition rules, specific rules and (sequences of) ax-
iomatic expressions. A decomposition rule when applied to an expression of the theory
returns a set of expressions which are syntactically simpler than the original one. These
rules provide definitions of relational operators. The specific rules are the counterparts of
relational constraints. It is worth mentioning that in the Hilbert-style proof systems for
the applied modal logics it is often the case that not all the relational constraints can be
explicitly expressed and axiomatised. In an RS system, proving a theorem amounts to
expanding a (proof) tree with the formula to be proved as the root, with the aim of closing
all branches with axiomatic sequences. Every step of the expansion is based on either a
decomposition rule or a specific rule. It should be mentioned that rules in RS systems go
in both directions, that is, they preserve and reflect validity of expressions. A transfer of
validity from the conclusion of a rule to the premise is needed for the soundness of the
system, whereas the other direction is required for completeness.

An important advantage of the relational proof systems is their modularity. A (standard)
algebra of relations is a combination of a Boolean algebra and an involuted monoid [8].
Thus, the rules for the Boolean operators and the monoid operators are common to all
the relational proof systems. Any particular algebra of relations usually requires some
additional rules reflecting its specificity, but the standard part remains unchanged. It can
possibly be reduced if, say, some standard operators are not needed, but once it is decided
how much of the standard relational resources will be used in a model of the theory under
consideration, we can use previously implemented rules.

The experience with relational proof systems designed until now shows that many con-
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straints which are not modally expressible receive an explicit representation in the form
of a relational rule or a relational axiomatic sequence. As a case in point, it was shown
in [6] that the extensionality axiom (2) of contact relations is not expressible in a classical
modal logic, nor, as shown in [5], in its sufficiency counterpart. As another example, the
fact that a relation is an intersection of other relations is not expressible in the standard
modal language but it is expressible in the form of a relational rule.
It is known that not only modal logics but many other non-classical logics have a purely
relational semantics where the formulas are interpreted as relations (as opposed to Kripke
semantics which interprets formulas as sets), and hence the relational proof systems are
an alternative way of developing deduction system for these logics. For a comprehensive
treatment of RS systems we invite the reader to consult [12], where, in particular, Chapter
25 describes the methodology.
For our approximating contact algebras we construct sound and complete relational logics
in two steps. First, relational versions of AA and ACA are obtained by expressing opera-
tors as relations with suitable arity and properties. In a second step, a sound and complete
proof system with these structures as intended models is exhibited.

3 Translating ACAs to relational structures

Following the remarks in the introduction we will first develop a relational version of
approximation algebras, where all operations are replaced by appropriate relations.
Recall that there are two equivalent ways of describing a lattice: First, as an algebra satis-
fying various axioms and the lattice ordering being defined by the operators. Second, one
can regard a lattice as a set X endowed with a partial order  such that supremum and in-
fimum exist for any two elements of X , and this is the route we shall pursue. Suppose that
 is a partial order on a set X . We denote the converse of  by �, and set �def

= \�10.
First, we want to express by relations the existence of a supremum and infimum for two
elements of X . Consider the following ternary relations on X :

S(x,y,z)() x  z and y  z and (8t)[x  t and y  t implies z  t], (12)
M(x,y,z)() z  x and z  y and (8t)[t  x and t  y implies t  z]. (13)

Clearly, S(x,y,z) if and only if z is the supremum of x and y, and analogously for M(x,y,z).
We need two axioms to ensure existence of supremum and infimum:

(8x)(8y)(9z)S(x,y,z), (14)
(8x)(8y)(9z)M(x,y,z). (15)
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We also want  to be bounded. Thus, we require constants 0X ,1X in X such that

(8x)0X  x, (16)
(8x)x  1X . (17)

Antisymmetry of  ensures that the elements 0X and 1X are unique. Thus far, hX ,
,S,M,0X ,1Xi relationally defines a bounded lattice, which we shall just denote by X if no
confusion can arise. As shown in [7], the distributivity laws are expressed as follows:

M(x,s, t)^S(y,z,s)() ((M(x,y,u)^M(x,z,v)) S(u,v, t)), (18)
S(x,s, t)^M(y,z,s)() ((S(x,y,u)^S(x,z,v)) M(u,v, t)). (19)

Seeing that, as functions, i and h are binary relations, all that we have to do is to trans-
late the system (AA2) – (AA5) into a relational form; we shall use H and I as relational
counterparts for h and i, respectively.

I ˘ ; I ✓ 10 I is functional. (20)
I ; V =V I is total. (21)

I ✓ � I is antitone. (22)
I ˘ ;  ; I ✓  I preserves order. (23)

I ; I ✓ 10 I is idempotent. (24)
1I1 I is dually normal. (25)

xIy^ sIt ^M(x,s, p)^M(y, t,q)) pIq I is multiplicative. (26)

Thus far, we have expressed (AA2), i.e. that I is a multiplicative dually normal interior
operator. Translating (AA3) we obtain

H ˘ ; H ✓ 10 H is functional. (27)
H ; V =V H is total. (28)

H ✓  H is monotone. (29)
H ˘ ;  ; H ✓  H preserves order. (30)

H ; H ✓ 10 H is idempotent. (31)
0H0 H is normal. (32)

xHy^ sHt ^S(x,s, p)^S(y, t,q)) pHq H is additive. (33)
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The equations (AA4) and (AA5) become, respectively,

(H ; I)[ (I ; H)✓ 10, (34)
(H ; H ˘)\ (I ; I ˘)✓ 10. (35)

For (AA6) we need to translate the conditions of the complementation � on B(L) which
we will denote by D. Thus, let

xDy () S(x,y,1) and M(x,y,0). (36)

The axiom which assures that closed elements (and only those) have a complement is

(D ; V )\10 = (H ˘ ; V )\10. (37)

This says that the domain of D is equal to the range of H. Note that D is functional, since
L is distributive, and thus, each x 2 L has at most one complement.

After this preparation we define an approximating frame (AF) as a structure

hX ,,S,M, I,H,10,D,0X ,1Xi

such that

1. hX ,i is a partially ordered set.

2. S and M are ternary relations of X defined by (12) and (13) which satisfy (14) and
(15).

3. 0X and 1X are elements of X which satisfy (16) and (17).

4. 10 is the identity relation on X .

5. I and H are binary relations on X which satisfy (20) – (35).

6. D is a binary relation on X which satisfies (36) and (37).

From the definitions, the following result is now immediate:

Proposition 3.1. 1. Let hL,_,^, i,h,�,0,1i be an AA, and let

X = L, 0X = 0, 1X = 1,
S(x,y,z)() z = x_ y, M(x,y,z)() z = x^ y,

xIy () y = i(x), xHy () y = h(x),
xDy () x 2 B(L) and y =�x.

Then, hX ,,S,M, I,H,10,D,0X ,1Xi is an AF.
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2. Let hX ,,S,M, I,H,10,D,0X ,1Xi be an AF, and set L = X, 0 = 0X ,1 = 1X . For
x,y 2 L let x_y be the unique z with S(x,y,z), and x^y be the unique z with I(x,y,z).
Define h : X ! L by letting h(x) be the unique y 2 X with xHy, and i : X ! L by
letting i(x) be the unique y 2 X with xIy. Furthermore, for x 2 ran(H), let �x be the
unique y 2 ran(H) with xDy. Then, hL,_,^, i,h,�,0,1i is an AA.

3. With these translations, the classes of AAs and AFs are mutually interpretable in
each other.

Next, we add the translations for the contact relations: An approximating contact frame
(ACF) is a structure hX ,,S,M, I,H,10,D,0X ,1X ,CI,CHi such that hX ,,S,M, I,H,10,D,0X ,1Xi
is an AF, CI and CH are binary relations on L for which the following hold:

CI =CI ˘ , CH =CH ˘ , (38)

10 ✓CI \CH , (39)

CI = I ; CI ; I ˘ , (40)

CH = H ; CH ; H ˘ , (41)

H ; CI ; H ˘ =CH , (42)

�(H ; CH)\res �(H ; CH) = H ;  ; H ˘ . (43)

Here, Q\res R is the residual of R by Q, defined as

x(Q\res R)y if and only if (8z)(yQz implies xRz). (44)

The conditions (38) – (43) are straightforward adaptations of (6) – (11) which is easily
seen.

4 The rules

The rules are formulated in the language of algebras of binary relations generated from
the relations , I,H,10,D,OX ,1X with the operations of union, intersection, composition,
complement, and the language of ternary relations generated from S,M with the operations
of union, intersection, and complement. We will define a proof system for the model class
ACF in the style of [17] (RS system). As the underlying language is clear from the rules,
we will not expand on these here. The general structure of such languages and many
examples can be found in [12].
There are two types of rules:
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1. Decomposition rules break up formulas into an equivalent sequence of formulas
with a simpler structure.

2. Specific rules modify a sequence of formulas, and have the status of structural rules.

In most instances, the rules are actually rule schemas. The role of axioms is played by
axiomatic sequences. In an RS system one attempts to verify a formula by closing the
branches of its decomposition tree with axiomatic sequences. Rules in RS systems go in
both directions: we call a rule correct, if

The upper sequence is valid if and only if the lower sequence(s) is (are) valid.

Here, a sequence of formulas is valid if its meta-level disjunction is valid.

The decomposition rules for the binary relational operations are given in Table 1, the
specific rules for lattice properties are given in Table 2, the AF specific rules for I are
given in Table 3, the AF specific rules for H are given in Table 4, the AF specific rules for
D are given in Table 5, and the specific rules for the contact relations are given in Table 6.
The decomposition rules for ternary relations with respect to [,\,� and �[,�\,�� are
analogous to those for binary relations.

([) G,x(R[Q)y,D
G,xRy,xQy,D (�[) G,x� (R[Q)y,D

G,x(�R)y,D | G,x(�Q)y,D

(\) G,x(R\Q)y,D
G,xRy,D | G,xQy,D (�\) G,x� (R\Q)y,D

G,x(�R)y,x(�Q)y,D

(˘) G,xR˘y,D
G,yRx,D (�˘) G,x(�R˘)y,D

G,y(�R)x,D

(��)
G,x(��R)y,D

G,xRy,D

(;) G,x(R;Q)y,D
G,xRz,D,x(R;Q)y | G,zQy,D,x(R;Q)y

(�;) G,x� (R;Q)y,D
G,x(�R)z,z(�Q)y,D where z is a new variable

Table 1: Decomposition rules for binary relations
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(refl )
G,x  y,D

G,x10y,D,x  y

(trans )
G,x  y,D

G,x  z,D,x  y | G,z  y,D,x  y

(antisym )
G,x10y,D

G,x  y,D | G,y  x,D

(S) G,S(x,y,z),D
G,x  z,D | G,y  z,D | G,x(�)t,y(�)t,z  t,D z, t new

(-S)
G,�S(x,y,z),D

x� z,y� z,x  t,D,�S(x,y,z) |
x� z,y� z,y  t,D,�S(x,y,z) | x� z,y� z,z  t,D,�S(x,y,z)

(M) G,M(x,y,z),D
G,z  x,D | G,z  y,D | G, t(�)x, t(�)y, t  z,D z, t new

(-M)
G,�M(x,y,z),D

x�� z,y�� z,x � t,D,�M(x,y,z) |
x�� z,y�� z,y � t,D,�M(x,y,z) | x�� z,y�� z,z � t,D,�M(x,y,z)

(18) ) G
G,M(x,s, t) | G,M(x,y,u) | G,M(x,z,v)| G,S(y,z,s)| G,�S(u,v, t)

(18) ( G
G,�M(x,y,u),�M(x,z,v),S(u,v, t) | G,�M(x,s, t),�S(y,z,s)

(19) ) G
G,S(x,s, t) | G,S(x,y,u) | G,S(x,z,v)| G,M(y,z,s)| G,�M(u,v, t)

(19) ( G
G,�S(x,y,u),�S(x,z,v),M(u,v, t) | G,�S(x,s, t),�M(y,z,s)

Q ✓ R
xRy

xQy,xRy

Q\res R
Q\res R

y(�Q)z,xRz

Table 2: Specific rules for lattice properties
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(20) : G,x10y,D
G,zIx,D,x10y | G,zIy,x10y (45)

(21) : G
G,x� Iz z new, (46)

(22) : G,x  y,D
G,yIx,D,x  y (47)

(23) : G,x  y,D
G,zIx,D,x  y | G,x  t,D,x  y | G, tIy,D,x  y (48)

(24) : G,x10y,D
G,xRIz,D,x10y | G,zIy,D,x10y (49)

(26) : pIq
xIy, pIq | sIt, pIq | M(x,s, p), pIq | M(y, t,q), pIq (50)

Table 3: Specific rules for I

(27) : G,x10y,D
G,zHx,D,x10y | G,zHy,x10y (51)

(28) : G
G,x�Hz z new, (52)

(29) : G,x  y,D
G,xHy,D,x  y (53)

(30) : G,x  y,D
G,zHx,D,x  y | G,x  t,D,x  y | G, tHy,D,x  y (54)

(31) : G,x10y,D
G,xRHz,D,x10y | G,zHy,D,x10y (55)

(33) : pHq
xHy, pHq | sHt, pHq | S(x,s, p), pHq | S(y, t,q), pHq (56)

Table 4: Specific rules for H
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(36) ): G
x(�D)y,G | S(x,y,1),G | M(x,y,0),G (57)

(36) (: xDy
S(x,y,1),xDy|M(x,y,0),xDy (58)

(37) ✓: G
zHx,G |x10y,G | x(�D)t,x(�10)yG t new (59)

(37) ◆: G
zDx,G |x10y,G | t(�H)x,x(�10)yG t new (60)

Table 5: Specific rules for D

(38): G, xCIy, D
G, yCIx, D ,

G, xCH y, D
G, yCH x, D (61)

(39):
G, x(�10)y, D

G, x(�CI)y, x(�CH)y, D, x(�10)y (62)

(40): G, x(�CI)y, D
G, x(�I)u, y(�I)w, u(�CI)w, D, x(�CI)y , u,w new, u 6= w, (63)

G, xCIy, D
G, xIu, D, xCIy | G, uCIw, D, xCIy | G, yIw, D, xCIy (64)

(41): G, x(�CH)y, D
G, x(�H)u, y(�H)w, u(�CH)w, D, x(�CH)y , u,w new, u 6= w, (65)

G, xCH y, D
G, xHu, D, xCH y | G, uCH w, D, xCH y | G, yHw, D, xCH y (66)

(42): G, xCH y, D
G, xHu, D, xCH y | G, uCIw, D, xCH y | G, yHw, D, xCH y (67)

G, x(�CH)y, D
G, x(�H)u, y(�H)w, u(�CI)w,D,x(�CH)y u,w new, u 6= w (68)

The next two rules define the auxiliary relation R = H ; CH used for (43)

G, x(�R)y, D
G, x(�H)u, u(�CH)y, D, x(�R)y u new (69)

G, xRy, D
G, xHu, D, xRy | G, uCH y, D,xRy (70)

(43): G
G, yRz, x(�R)z | G, x(�H)u, u(�)w, y(�H)w u,w,z new, distinct (71)

(72)

Table 6: Specific rules for CI and CH
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5 Soundness

The rules of our system are defined according to some general principles which tell us how
to assign a rule to a scheme of the condition that the underlying relations are assumed to
satisfy. The properties of the lattice order  as well as the conditions (20), . . . , (24), (27),
. . . , (31), (34), (35), (37), and (38) – (42) are instances of such schemes, which we will
now describe. By a relational literal we mean an expression of one of the forms R,�R,R˘,
where R is a relational variable or constant.

(s1). R1; . . . ;Rn ✓ Q1; . . . ;Qm.

(s2✓). �(R1; . . . ;Rn)✓ Q1; . . . ;Qm, i.e. (R1; . . . ;Rn)[ (Q1; . . . ;Qm) =V .

(s2◆). �(R1; . . . ;Rn)◆ Q1; . . . ;Qm, i.e. (R1; . . . ;Rn)\ (Q1; . . . ;Qm) =�V .

(s3). (R1
1; . . . ;R1

f (1))[ · · ·[ (Rn
1; . . . ;Rn

f (n))✓ P.

(s4). (R1
1; . . . ;R1

f (1))\ · · ·\ (Rn
1; . . . ;Rn

f (n))✓ P.

Here, n,m � 1, and P,Ri,Q j etc are relational literals.

The conditions (26) and (33) which involve both binary and ternary relations are formu-
lated in a first order language and have the following form:

(s5). (8x1, . . . ,xn)[F1 ^ · · ·^Fm =) F ].

Here, n,m � 1, and F1, . . .Fm,F are first order literals (i.e. atomic formulas or negations
of atomic formulas), whose variables are among x1, . . . ,xn. For the sake of simplicity we
present the schemes for the rules corresponding to the conditions above only for the case
n = m = 2.

(rs1). K,x(�R1)z,z(�R2)y,H
K,x(�Q1)t, t(�Q2)y,H,x(�R1)z,z(�R2)y

(rs2✓). K
K,x(�R1)z,z(�R2)y, | K,x(�Q1)t, t(�Q2)y

, z, t new

(rs2◆). K,x(�R1)t, t(�R2)y,H
K,xQ1z,H,x(�R1)t, t(�R2)y | K,zQ2y,H,x(�R1)t, t(�R2)y

(rs3). K,xPy,H
K,xR1z,xQ1t,H,xPy | K,zR2y,xQ1t,H,xPy | K,xR1z,xQ2t,H,xPy| K,zR2y,xQ2t,H,xPy
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(rs4). K,xPy,H
K,xR1z,H,xPy | K,zR2y,H,xPy | K,xQ1t,H,xPy| K, tQ2y,H,xPy

(rs5). K,F,H
K,F1,H,F | . . . | K,Fn,H,F

A particular case of ((s1)) is

(s1’). R;1 = 1.

We will treat this case separately, since a constraint of this form is often present in rela-
tional theories. The corresponding rule is

(rs1’). K
K,x(�R)y , y new

We now have the following result:

Proposition 5.1. 1. For i = 1, . . .5, a rule (rsi) is correct if and only if (si) is satisfied
in every ACF.

2. The axiomatic sequences are valid.

For lack of space we omit the proofs and refer the reader to [12] for application of the
general cases.

6 Completeness

Owing to the large number of rules and the limitations on space we shall just outline the
general procedure to show completeness. For a logic L , an L – proof tree for a formula
j is a tree such that each of its nodes is a set of formulas semantically interpreted as a
disjunction of its elements and constructed as

1. j is at the root of the tree.

2. Each node except the root is obtained by an application of a rule to its predecessor
node.
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3. A node does not have successors whenever its set of formulas is axiomatic or none
of the rules is applicable to its set of formulas.

A branch of an L – proof tree is complete whenever all the rules applicable to its nodes
have been applied. An L – proof tree is called complete whenever all of its branches are
complete. A branch is called closed whenever it contains a node with an axiomatic set of
formulas. A branch is said to be open whenever it is complete and non-closed.

For an open branch b of a complete proof tree, a branch structure is a structure hXb,mbi
such that its universe is the set of object symbols (individual variables + constants) of L
and for every binary relational symbol R, mb(R) = {hx,yi : xRy 62 b}, similarly for other
arities.

To prove completeness of a proof system we need to show the following three facts:

Closed branch property For every branch of an L – proof tree, if j and ¬j for an
atomic formula j belong to a branch, then the branch can be closed, that is both of
these formulas appear in the same node of the branch.

Branch model property Let b be an open branch of a complete proof tree. Then the
branch structure Mb is an L – model, referred to as a branch model, that is, it satisfies
all the constraints assumed in the models of L .

Satisfaction in branch model property Let b be an open branch of a complete L – proof
tree and let vb be the identity valuation in Mb. Then, for every formula j of L , if
vb satisfies j in Mb, then j 62 b.

7 Implementation

We have implemented the AA logic in Prolog1. In the RS proof system, proving a theorem
amounts to expanding a tree with the formula to be proved as the root, with the aim of
closing all branches with axiomatic sequences. Every step of the expansion is based on
either the decomposition rules or the specific rules. The number of rules is fairly large
(57 altogether) and hence the search space is huge. Therefore we need some heuristics to
reduce the search space to a manageable level. Since our implementation is intended as
a general theorem proving program, the heuristics employed should therefore be general
enough in the sense that they only prune unnecessary branches.

1The source code is available from the third author.
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1. Decomposition/specific heuristic: apply decomposition rules before specific rules
for any node (sequence) in the proof tree.

2. Whole/part heuristic: for any decomposed sequence (node), we first of all take the
sequence as a single entity and apply the distributive specific rules; then we look at
the individual formula in the sequence by applying other rules.

3. Specific/general heuristic: Some rules are specific to a particular algebra (e.g., con-
tact algebra) while some rules are general in that they are applicable to all algebras
in the class. In this approach, we apply less general rules before more general rules.

4. Non-repetitive heuristic: no rule is applied repetitively in any path in the proof tree.

Having these heuristics in mind we designed the following procedure for our implementa-
tion.

• Take the formula to be proved as the single root node

• For any node in the tree

1. Repetitively apply decomposition rules to the node until it can not be decom-
posed any further. This in effect expands the node into a number of new nodes,
thus having branched the proof tree.

2. For each decomposed node we apply the specific – general heuristic, then the
whole – part heuristic. The non-repetitive heuristic is observed throughout the
rest of the proof process.

8 Conclusion and outlook

In this paper we have presented a relational logic for approximate contact relations and
their algebras. These are a generalisation of Boolean contact algebras [19, 4], and were
first studied in [7]; similar work was presented in [18]. Our proof system was given in
the style of Rasiowa and Sikorski [17]. For lack of space, we have only indicated how
soundness and completeness can be proved; details of the procedures can be found in
[12]. In future work we shall investigate approximate proof systems for contact relations
which are not necessarily extensional. In this case, the mereological part–of relation is
not definable from the contact relation, and additional considerations are required. In this
context, we shall also explore the connection to rough mereology [16].
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