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Abstract

We present a survey of clustering methods based on rough set data analysis.

1 Introduction to rough sets

The main application area of rough set data analysis is feature reduction and supervised learning. In most
cases, clustering methods based on rough sets assume one or more given partitions of the data set and then
aim to find a (cluster) variable which best represents the data according to some predefined measure.

Rough sets have been introduced in the early 1980s as a tool to handle uncertain information [32]. It is
based on the idea that objects can only be distinguished up to the features which describe them. More
formally, given an equivalence relation ✓ on a universe U, we assume that we know the world only up to
the equivalence classes of ✓ and have no other knowledge about the objects within a class. A pair hU,✓i is
called an approximation space; the set of equivalence classes of ✓ is denoted by P(✓). Given some X ✓ U,
the lower approximation of X is the set X✓ = {x 2 U : ✓(x) ✓ X} and the upper approximation of X is the set
X
✓
= {x 2U : ✓(x)\X , ;}; here, ✓(x) is the class of ✓ containing x. For the sake of clarity we will sometimes

write low✓(X) for X✓ and upp✓(X) for X
✓
. If ✓ is understood we will omit its index.

A rough set is a pair hX,Xi. We interpret the approximation operators as follows: If ✓(x) ✓ X, then we know
for certain that x 2 X, if ✓(x)\X = ; we are certain that x < X. In the area of uncertainty X \X we can make
no certain prediction since ✓(x) intersects both X and U \X.
⇤To appear in “Handbook of Cluster Analysis”, Eds. C. Hennig, M. Meila, F. Murtagh, R. Rocci
†The ordering of authors is alphabetical and equal authorship is applied.
‡Ivo Düntsch is grateful for support by the Natural Sciences and Engineering Reearch Council of Canada

duentsch@brocku.ca
gediga@uni-muenster.de


The primary statistical tool of rough set data analysis (RSDA) is the approximation quality function � : 2U !
[0,1]: If X ✓ U, then

�(X) =
|X|+ |U \X|
|U | , (1.1)

which is just the ratio of the number of certainly classified elements of U to the number of all elements of
U. The approximation quality � is a manifestation of the underlying statistical principle of RSDA, namely,
the principle of indi↵erence: Within each equivalence class, the elements are assumed to be randomly dis-
tributed. If �(X) = 1, then X = X = X; in this case, we say that X is definable. Another index frequently used
in RSDA is the accuracy measure which is defined as

↵(X) =
|X|
|X|
. (1.2)

The index ↵(X) is also called the roughness of X [28].

The main application area of RSDA is classification, i.e. supervised learning: An information system is a
tuple I = hU,⌦, (Vq)q2⌦, ( fq)q2⌦i, where U is a finite nonempty set of objects, ⌦ a finite nonempty set of
attributes, for each q 2 ⌦, Vq is a finite set of values which attribute q can take, and fq : U ! Vq is the
information function which assign to each object x its value under attribute q. Each subset Q of ⌦ defines
an equivalence relation ✓Q on U by setting

x ⌘✓Q y() fq(x) = fq(y) for all q 2 Q. (1.3)

The equivalence class of x with respect to the equivalence relation ✓Q will usually be denoted by Bx(Q).

A decision system is an information system I enhanced by a decision attribute d with value set Vd and
information function fd : U ! Vd. To avoid trivialities, we will assume that fd takes at least two values, i.e.
that ✓d has at least two classes. If Q ✓ ⌦ and X is a class of ✓Q we say that X is Q,d – deterministic, if there
is a class Y of ✓d such that X ✓ Y . The approximation quality of Q with respect to d is now defined as

�(Q,d) =
|S{X : X is Q,d – deterministic}|

|U | . (1.4)

�(Q,d) is the relative number of elements of U which can be correctly classified given the knowledge of Q.
If ✓d = ✓⌦, i.e. if the partition to be approximated is the partition given by the full set of attributes, we just
write �(Q).

Another prominent feature of RSDA is the reduction of the number conditional attributes required to ap-
proximate the decision attribute: A reduct of I with respect to d is a set Q of attributes minimal with respect
to the property

�(Q,d) = �(⌦,d). (1.5)

For a more complete treatment of rough sets we invite the reader to consult [9].
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1.1 The variable precision model

It is assumed in the rough set model that the boundaries of the equivalence classes are crisp, and thus, that
measurements are accurate. There are several possibilities to reduce the precision of prediction to cope with
measurement error. One such approach is the variable precision rough set model [42, 43] which assumes
that rules are valid only within a certain part of the population: Let U be a finite universe, X,Y ✓U, and first
define the relative degree of misclassification of X with respect to Y

c(X,Y) =

8>>><
>>>:

1� |X\Y |
|X| , if |X| , 0,

0, if |X| = 0.
(1.6)

Clearly, c(X,Y) = 0 if and only if X = 0 or X ✓ Y , and c(X,Y) = 1 if and only if X , ; and X\Y = ;. The
majority requirement of the VP – model implies that more than 50% of the elements in X should be in Y;
this can be specified by an additional parameter � which is interpreted as an admissible classification error,

where 0  � < 0.5. The majority inclusion relation
�
✓ (with respect to �) is now defined as

X
�
✓ Y () c(X,Y)  �. (1.7)

Given a family of nonempty subsets X = {X1, ...,Xk} of U and Y ✓U, the lower approximation Y� of Y given

X and � is defined as the union of all those Xi, which are in relation Xi
�
✓ Y , in other words,

Y� =
[
{X 2 X : c(X,Y)  �} (1.8)

The classical approximation quality �(Q,d) is now replaced by a three-parametric version which includes
the external parameter �, namely,

�(Q,d,�) =
|Pos(Q,d,�)|
|U | , (1.9)

where Pos(Q,d,�) is the union of those equivalence classes X of ✓Q for which X
�
✓ Y for some decision class

Y . Note that �(Q,d,0) = �(Q,d).

Unfortunately, �(Q,d,�) is not necessarily monotone [2, 10]. In [10] we show that �(Q,d,�) is a special
instance of Goodman–Kruskal’s � [13] and how a class of monotone measures similar to �(Q,d,�) can be
constructed.

The upper approximation within the variable precision model is defined in the following way:

Y
�
=

[
{X 2 X : c(X,Y) < 1��} (1.10)

Following this definition it is obvious that the restriction 0  � < 0.5 must hold. Given this definition, the
accuracy measure ↵ of the classical RSDA can be rephrased as

↵(Y)� =
|Y�|

|Y�|
(1.11)
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1.2 Rough Entropy and Shannon Entropy

In many situations Shannon Entropy may be used as a measure of the success of optimal guessing within
data, however, we have shown in [8] that this approach does not fit the theoretical framework of rough
set analysis. Using rough sets, the data are split into a deterministic part (lower approximation) and an
indeterministic part (upper approximation). Here, the deterministic part corresponds to “knowing” whereas
the indeterministic part still can be applied by “guessing”. Throughout this section we let A be an attribute
set, and ✓A be the equivalence relation in U based on A with associated partition P(A).

As described in section 3.2 below, Jiang et al. [16] exhibit a revised version of entropy for the purpose of
outlier detection using the rough set model.

Liang et al. [20] generalize the concept of rough entropy of Liang & Shi [19] to incomplete information
systems, which is simply

RE(A) = �
X

X2P(A)

|X|
|U | · log2(|X|). (1.12)

Quian & Liang [35] o↵er an alternative look on entropy, which they call combination entropy, defined by

CE(A) =
X

X2P(A)

|X|
|U | ·

 
1� |X| · (|X|�1)
|U | · (|U |�1)

!
. (1.13)

Similar to Shannon Entropy, CE increases as the equivalence classes become smaller through finer partition-
ing.

Liang et al. [21] o↵er a further alternative to the accuracy ↵(X) of (1.2). The accuracy ↵(X) does not take
into account what the granulation of the approximating sets look like. Therefore, an index proposed by [21]
is based on knowledge granulation of an attribute set A in the set U, defined by

KG(A) =
X

X2P(A)

|X|2
|U |2 . (1.14)

Then, the roughness of the approximation of X is a weighted ↵ measure given by

Roughness(X) = (1�↵(X)) ·KG(A) (1.15)

which results in a new accuracy measure ↵0(X):

↵0(X) = 1�Roughness(X) = 1� (1�↵(X)) ·KG(A) = ↵(X) ·KG(A). (1.16)

Any of the proposed measures in this section can be used within a reduct search method which may be
considered as a tool to find clusters as well. We will discuss this further in Section 2.2.

2 Methods of rough set clustering

The starting point of rough set clustering is an information system I with the aim of finding one attribute
which best represents all attributes according to some predefined criterion.
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2.1 Total roughness and min-min roughness based methods

Suppose that I = hU,⌦, (Vq)q2⌦, ( fq)q2⌦i is a given information system. If p,q 2 ⌦, p , q, and Vp =

{x1, . . . , xn}, the roughness of xk with respect to q is defined as

R(xk, p,q) =
low✓q ( f �1

p (xk))

upp✓q ( f �1
p (xk))

, (2.1)

and the mean roughness of p with respect to q is the value

MR(p,q) =
Pn

k=1 R(xk, p,q)
n

, (2.2)

The total roughness of attribute p [28] is defined as

TR(p) =
P

q2⌦,r,p MR(p,q)
|⌦|�1

. (2.3)

It is suggested in [28] to use the attribute with the highest total roughness as a clustering attribute. A
technique somewhat opposite to TR was proposed by Parmar et al [31] which purports to “handle uncertainty
in the process of clustering categorical data.” Define

mR(p,q) = 1�
Pn

k=1 R(xk, p,q)
n

, (2.4)

and

minR(p) =min{mR(p,q) : q 2⌦, p , q}, (2.5)

as well as

minminR =min{MR(p) : p 2⌦}. (2.6)

see [31] for details.

2.2 Reduct based clustering

A straight forward application of RSDA for cluster analysis are techniques related to the reducts of an
information system as defined in (1.5), which are mainly used for nominally scaled data sets. The method
is simple: Let the classes of the partition induced by all attributes be the sets to be approximated, and
use a subset of the given attributes to approximate these classes. A minimal subset of the attributes which
approximate the classes in an optimal way given a criterion C is called a C-reduct.

The partition which can be constructed by the attributes of the reduct can be interpreted as clusters. Note,
that there may be several C-reducts, which may generate di↵erent partitions as well.
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Given the criterion C def
= “�(Q) = 1”, a reduct needs to approximate the full partition ✓⌦ without any error,

in other words, any C-reduct will generate the full partition. This is a good way to preprocess the data for a
subsequent – conventional – cluster analysis, as any reduct gives the same information (in terms of Shannon-
entropy) as the full set of attributes. In Questier et al. [34] there is an application of this approach; they show
in an application that a set of 126 features can be reduced to 68 features using reducts of the RSDA.

Although reducing attributes is a nice feature on its own, reducts can be used for clustering as well: When
using a 0 < �⇤(Q) < 1 in the criterion C def

= “�(Q) = �⇤(Q)”, we may obtain reducts which produce partitions
with a number of subsets that is smaller or equal to the number of sets in the full partition. In the lower
limit (�⇤(Q) = 0), no attribute is needed for approximation and therefore the only cluster remaining is U.
The reduct search given a fixed 0 < �⇤(Q) < 1 will generally result in di↵erent reducts – and in most of the
cases – in di↵erent partitions as well. In this way we observe di↵erent sets of clusters, which can be used
to approximate the full data set with the minimal precision �⇤(Q). Scanning all reducts, a computation of
fuzzy-membership of any element to a cluster is possible by aggregation using the set of partitions generated
by the reducts.

Note, that the criterion of a reduced � is not the only base for a reduct search. Chen & Weng [4] applied
reduct search based on Shannon-Entropy, and Düntsch & Gediga [8] used rough entropy measures for their
reduct search method. A further application has been proposed by Mayszko & Stepaniuk [27], who used
Renyi-Rough-Entropy for searching an optimal partition of images.

Related approaches are the “maximum dependency of attributes” method of [14], and the “upper approxi-
mation based clustering” of [18].

2.3 Application of variable precision rough sets

Yanto et al. [39, 40] use the variable precision model to determine an attribute which can be used the find the
best cluster representation among a set of nominally scaled attributes. Suppose that ⌦ = {a1, . . . ,ar} is the set
of attributes and that Vi = {vi

1, . . . ,v
i
n(i)} is the set of attribute values of ai. To avoid notational cluttering, with

some abuse of language we denote the attribute function also by ai. The equivalence relation belonging to ai

is denoted by ✓i; note that ✓i has exactly ni classes, say, Xi
1, . . . ,X

i
n(i). Choose some error tolerance parameter

� < 0.5, and for each 1  j  r, i , j, 1  k  n(i) set

↵�(a j,vi
k) = |Xi

k✓ j,�
| / |Xi

k

✓ j,�|. (2.7)

The mean accuracy of ai with respect to a j is now obtained as

↵�(a j,ai) =
Pn(i)

k=1↵�(a j,vi
k)

n(i)
(2.8)

Finally the mean value aggregating over the attributes a j( j , i) results in the mean variable precision rough-
ness of attribute ai by:

↵�(ai) =
P

j,i↵�(a j,ai)
r�1

. (2.9)
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The attribute for clustering now is obtained by taking an ai for which ↵�(ai) is maximal.

Yanto et al. [39] use their clustering algorithm with the data sets Balloon, Tic-Tac-Toe Endgame, SPECT
heart, and Hayes–Roth from the UCI ML repository [12] and report that the result of the proposed VPRS
technique provides a cluster purity of 83%, 69%, 64% and 63%, respectively. Another application of apply-
ing reduct search in the variable precision rough set model using student anxiety data is given in [40].

Reduct based methods can be used as well as a pre-processing tool for mixture or cluster analysis in case of
a mutual high dependency of the variables. In [29] it is shown how rough set based algorithms for reduct
detection can be used as a starter for mixture analysis. The analysis shows that using rough set based pre-
processing results in a stable mixture estimation with smaller error and higher validity than using the full set
of variables.

2.4 Rough K – means

We start with a set of n elements x1, ...., xn and each element x is described by an m dimensional vector vx

of real valued (interval scaled) measurements. The classical K-Means algorithm consists of the following
iteration scheme:

1. Start with a random assignment of the n elements to cluster C0 = {C1, ...,Ck}. Set t = 0.

2. Compute values of the centroids of the k classes by

x̄j =

P
x2C j vx

|C j|
(1  j  k). (2.10)

3. For 1  i  n, 1  j  k compute the distances d(vxi , x̄j) = ||vxi � x̄j||. Here, ||.|| is usually the standard
Euclidian norm.

4. Re-assign the n elements according to the minimal distance to the k cluster, resulting in Ct+1.

5. If Ct+1 = Ct stop. Otherwise set t = t+1 and proceed with step 2.

The rough K – means method [26, 33, 24, 6] adopts the idea of a lower and an upper approximation of a set
which is somewhat less rigid than using classes of an equivalence relation: With each subset X of U a pair
hX,Xi of subsets of U is associated such that

1. Each x 2 U is in at most one X.

2. X ✓ X for all X ✓ U.

3. An object x 2 U is not in any lower bound X if and only if there are Y0,Y1 ✓ U such that Y0 , Y1 and
x 2 Y0\Y1.
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Applying this idea produces a cluster structure consisting of pairs of lower and upper approximations of the
cluster: C⇤ = {(C1,C1), ..., (Ck,Ck)}.

Given a pair (C j,C j) the values of the centroids of cluster j has to be computed.

The rough K – means (sometimes called rough C – means, e.g. in [41]) method uses a parameterized mean
by

x̄j =

8>>>>>><
>>>>>>:

(1�!)
P

x2C j v

|C j | +!

P
x2C j\C j

v

|C j\C j |
, if C j \C j , ;

P
x2C j v

|C j | , otherwise.
(2.11)

The parameter ! weights the influence of the upper approximation. If ! = 0, the upper approximation will
not be used for the centroid computation, and the iteration is identical to classical K – means method. Given
new centroids, the re-assignment of the elements to (now) lower and upper bounds of clusters has to be
described. In case of the lower bound, the standard rule from classical K–means is adopted. In order to find
suitable upper approximations, a second parameter ✓ � 1 is used. If x is assigned to C j, then x is assigned to

any C0j ( j0 , j), if

d(vi, x̄0j)

d(vi, x̄j)
 ✓. (2.12)

If one assigns concrete values to the parameters (!,✓) and randomly assigns each data object to exactly
one lower approximation, we find a start with C⇤0 = {(C1,C1), ..., (Ck,Ck)}, and the scheme of the classical
K-Means algorithm can be adopted for a rough K – means application.

[30] proposed an update of the parameters based on evolutionary optimization using the Davies-Bouldwin
index [3] as a measure of fit, which is a simple representation of the odd of within-cluster variability and
between cluster-variability. The parameters K and ! are under control of a genetic algorithm (GA; 10
bits in a chromosome, 20 chromosomes, crossover probability=0.8, mutation probability =0.02). The GA
is governed by the Davies-Bouldwin index as optimization and convergence criterion. The algorithm was
applied to several sets and compared to other clustering algorithms. The results show that the proposed
method is rather successful – and very promising when using it with gene expression data. It should be
noted, that [11] showed as well a successful treatment of gene expression data with rough set based clustering
methods.

The paper of [7] deals with interval set clustering, which is a generalization of the Rough-K-Means methods.
In this paper, the problem of outliers is treated. The method starts with the classical Rough-K-Means method.
Using the upper and lower bounds of the sets, an index LUFh(x) is defined – which captures the degree to
which object x is reachable from the h next neighbors. Fixing h and applying a threshold for LUFh, it is
possible to eliminate those objects from the lower approximation of a cluster which are too far away from
their neighbors. These objects will be assigned to the upper approximation of the cluster. Using the new
sets of lower and upper approximation, the centroids can be recalculated and the iteration will start again.
Applications to synthetic data and the Wisconsin breast cancer data support the applicability of this method.
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2.5 Tolerance Rough Set Clustering

Tolerance Rough Set Models [37] relax the transitivity requirement of equivalence relations, and are often
used in information retrieval to find clusters of index terms in large text data bases [15]. A tolerance space
is a pair hU,Ri, where U is a nonempty finite set, and R is a reflexive and symmetric relation. The tolerance
classes are the sets of the form R(x) = {y 2 U : xRy}. Unlike equivalence classes, di↵erent tolerance classes
may have a nonempty intersection. Lower and upper approximation of some X ✓ U are defined as in the
equivalence case.

As an example of tolerance rough set clustering we present the non–hierarchical document clustering pro-
posed in [15]. We start with a set of T = {t1, ..., tN} of index terms and a set D = {d1, ...,dM} of documents
each of which is indexed by a set Td of terms from T . The number of times a term ti occurs in document
d j is denoted by fd j (ti), and

PM
j=1

PN
i=1, the number of (indexed) terms occurring in document d, is denoted

by T ⇤d . The number of documents in which ti occurs is denoted by fD(ti), and the number of documents in
which index terms ti, t j both occur is denoted by nD(ti, t j).

Given a threshold ✓ which is the minimal acceptable number of common terms in documents we now define
a covering I✓ of T by

I✓(ti) = {ti}[ {t j|nD(ti, t j) � ✓}. (2.13)

Clearly, the sets I✓(ti) are the tolerance classes of a tolerance relation I✓ on T defined by

tiI✓t j() t j 2 I✓(ti). (2.14)

Given a set of terms X ✓ T we are now able to define a lower and upper bound of X with respect to I✓:

XI✓ = {ti|I✓(ti) ✓ X} (2.15)

X
I✓
= {ti|X\ I✓(ti) , ;} (2.16)

With each term ti and each document d j a weight w(i, j) is associated by

w(i, j) =

8>>><
>>>:

1+ log( fd j (ti)), if ti 2 d j,

0, otherwise.
(2.17)

If we have a set of (intermediate) representatives Ct = {X1, ...,Xk}, we are now able to calculate C⇤t =
{X1I✓

,X1
I✓ , . . . ,XkI✓

,Xk
I✓ } and use this information to find better representatives Ct+1.

Various measures of similarity between two documents may be used. One such index is the binary weight
Dice coe�cient is defined as

S (di,d j) =
2 ·C

T ⇤di
+T ⇤d j

, (2.18)
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where C is the number of index terms which di and d j have in common.

Suppose we are given a set of clusters C = {C1, . . . ,Ck} of documents. The algorithm constructs a represen-
tative Ri ✓ T for each 1  i  k such that

1. Each document d 2Ci has an index term in Ri, i.e. Td \Ri , ;.

2. Each term in Ri is possessed by a large number of documents in Ci (given by some threshold).

3. No term in Ri is possessed by every document in Ci.

3 Special topics

3.1 Validation based on rough sets

Using validation methods which does not take into account the special character of clusters build by rough
set methods might be biased. Note, for example, that in the result of the rough-k-means method an object
may belong to more than one cluster. Moreover, each cluster C j is represented by its lower approximation
low(C j) and an upper approximation upp(C j) and/or the boundary set upp(C j) \ low(C j).

Lingras et al. [24] start with an “action” function b j(xl), which assigns an element xl to a set of clusters from
a set Bj ✓ 2U . A simple loss function can been assigned by

Loss(b j(xl)|Ci) =

8>>><
>>>:

0, if Ci 2 Bj,

1, otherwise.
(3.1)

Let sim(xl,Ci) be a similarity function of element xl and cluster low(Ci), e.g. the inverse of the distance of
xl and the centroid of low(Ci). Assuming that the probability p(Ci|xl) is proportional to sim(xl,Ci) by

p(Ci|xl) =
sim(xl,Ci)P
j sim(xl,C j)

, (3.2)

we result in the risk function for assigning element xl to a set Bj of clusters by

R(b j(xl)|xl) =
X

i
Loss(b j(xl)|Ci)p(Ci|xl). (3.3)

As any element xl gets its own risk evaluation, we are ready to define risks for certain subsets: The risk for
lower approximation for the decision b j(xl) for any element of the lower approximation is given by

X

xl2low(Ci)

R(b j(xl)|xl). (3.4)

Furthermore the risk functions for elements of the upper approximation and the boundary are given by
X

xl2upp(Ci)
R(b j(xl)|xl) (3.5)
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and
X

xl2upp(Ci)\low(Ci)

R(b j(xl)|xl), (3.6)

respectively.

Applying the ideas to the synthetic and the Wisconsin breast cancer data, Lingras et al. [24] showed the
rough and crisp cluster analysis exhibit similar results on the lower approximation, but di↵er in the risk of
the assignment of boundary elements.

3.2 Outlier detection

In [16] it was shown that detecting outliers using the rough set model is at least as powerful as classical
distances based methods [17] or KNN based methods [36].

Jiang et al. [16] start with the idea of rough entropy presented in [8]. Let ✓ be an equivalence relation on
U with associated partition P(✓). Starting with an element x and its equivalence class Bx, they define a
leaving-out entropy of ✓x by

E(✓ \ {Bx}) = �
X

B2P(✓),B,Bx

|B|
|U |� |Bx|

· log2

 |B|
|U |� |Bx|

!
. (3.7)

Using the information E(✓) as a benchmark, it is straightforward to define the relative entropy of the class of
object x given ✓ by

RE(Bx|✓) =
8>>><
>>>:

1� E(✓\{Bx})
E(✓) , if E(✓) > E(✓ \ {Bx}),

0, otherwise.
(3.8)

[16] introduce the relative cardinality of class Bx in ✓ by the di↵erence of cardinality of Bx and the mean
cardinality of the other classes:

RC(Bx|✓) =
8>>><
>>>:
|Bx|� 1

|P(✓)|�1 ·
P

B2P(✓),B,Bx |B|, if |P(✓)| > 1,

0, otherwise.
(3.9)

Now we are ready to define the outlier degree of Bx given ✓ by

OD(Bx|✓) =

8>>>><
>>>>:

RE(Bx|✓) ·
q
|U |�|RC(Bx |✓)|

2|U | , if RC(Bx|✓) > 0,

RE(Bx|✓) ·
q
|U |�|RC(Bx |✓)|

2|U | , otherwise.
(3.10)

In the latter, RC(Bx|✓)  0 which means that if x is assigned to a smaller equivalence class of ✓, then the class
Bx has a higher possibility to be an outlier class than the other classes. Furthermore, the higher the relative
entropy of Bx, the greater is the likelihood of x to be an outlier.
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Up to now the outlier definition is given for a fixed equivalence relation ✓. As ✓ is normally obtained from a
set of attributes, we may take the attributes into account. Let A= {a1, ...,ak} be a set of attributes, A1 = A\{a1},
and A j = A j�1 \ {a j} for 1 < j < k. Then, Ak�1 ( . . . ( A1 ( A. Given any set of attribute Q and an element x,
we denote the equivalence class of x with respect to ✓Q by Bx(Q). The entropy outlier factor EOF(x) is now
defined by

EOF(x) = 1�
Pk

j=1

⇣
1�OD(Bx({a j})

⌘
·W{a j}(x)+

⇣
1�OD(Bx(A j)

⌘
·WA j (x)

2k
(3.11)

using the weights

WQ(x) =

s
|Bx(Q)|
|U | . (3.12)

As Bx(Q) changes with attributes in Q, EOF(x) is a function of x and describes a distance of x to the rest of
the elements of U in terms of an information function. Jiang et al. [16] show that applying EOF(x) to the
Lymphography data and the Wisconsin breast cancer data (which can be found in the UCI machine learning
repository [12]) shows a better performance than distances based or KNN based methods.

4 Conclusion and outlook

We have presented an introduction to clustering based on Pawlak’s rough set model and its associated data
type, the information system.

As the rough set model is a basic idea of many papers, the overview we have given cannot be exhaustive.
There exists a plethora of other approaches in the literature which share the idea of rough set analysis and
adopt other concepts to analyze the data. Some of these approaches are “less rough and more other”, for
example,

• Rough-fuzzy-clustering and shadowed sets [1, 41],

• Clustering by categorical similarity measures based on rough sets using a hierarchical clustering
scheme [5],

• A fast heuristic Rough DB–scan procedure [38].

We have shown that the rough set model as an – originally – symbolic data analysis tool has been devel-
oped into a viable system for cluster analysis. There are two main ideas of the rough set model which are
promising for applications: The first is the idea of an upper bound and a boundary of set approximation.
Tolerance Rough Set Clustering or Rough-K-Means Clustering use this idea. Although the application show
satisfactory results, the methods depends on several parameters and thresholds, which may be somewhat
problematic. The are some attempts to use these parameter as free parameters as well, but optimization can
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only be done by genetic algorithms or comparable methods. Here, further investigations are necessary. The
other idea is to use reduct based methods, either as pre-processing tool or as a tool for cluster generation.
These methods show a more direct connection to the roots of rough set analysis, but the problem of time
complexity has not been solved until now. As long as we are only interested in one reduct, the situation is
not complicated, but finding all reducts within a variable precision model is still an NP-complete problem.

Apart from the complexity problem, it is worthy to note that applying ideas of the rough set model in cluster
analysis seams to lead to stable and valid results in general. Furthermore, they o↵er new insights how
concepts such as “cluster”, “error” or “outlier” and even “validation” may be understood and defined. We
think that this is a value on its own.
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