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Abstract

Discrete dualities are developed for n-potent MTL–algebras and for 2-potent
BL–algebras. That is, classes of frames, or relational systems, are defined
that serve as dual counterparts to these classes of algebras. The frames
defined here are extensions of the frames that were developed for MTL–
algebras in [25], [26]; the additional frame conditions required are given here
and also the proofs that discrete dualities hold with respect to such frames.
The duality also provides an embedding from an n-potent MTL–algebra, or
2-potent BL–algebra, into the complex algebra of its canonical frame, which
is a complete algebra in the lattice sense.
Keywords: Non-classical logics, Discrete duality, MTL–algebra, BL–algebra,
Residuated lattice, n-potent law

1 Introduction

Discrete duality is a type of duality where a class of abstract relational systems is a
dual counterpart to a class of algebras. These relational systems are referred to as

1



‘frames’ following the terminology of non-classical logics. There is no topology
involved in the construction of these frames, so they may be thought of as having a
discrete topology and hence the term: discrete duality. Having a discrete duality for
an algebraic semantics for a logic often provides a Kripke-style semantics for the
logic. In many cases it can also be used to develop filtration and tableau techniques
for the logic. Another typical consequence of such a discrete duality in the case of
lattice-ordered algebras is that we obtain a method of completing the algebras, i.e.,
an embedding of algebras into ones that are complete in the lattice sense.

Establishing discrete duality involves the following steps. Given a class of algebras
Alg (resp., a class of frames Fr) we define a class of frames Fr (resp., a class of
algebras Alg). Next, for any algebra L from Alg we define its ‘canonical frame’
Cf(L) 2 Fr and for each frame X in Fr we define its ‘complex algebra’ Cm(X ) 2
Alg. A duality between Alg and Fr holds provided that the following facts are
provable:

• Every algebra L2Alg is embeddable into the complex algebra of its canoni-
cal frame.

• Every frame X 2Fr is embeddable into the canonical frame of its complex
algebra.

Discrete dualities are developed for MTL–algebras in [25], [26] building on the
work of [5]. The underlying order structure of MTL–algebras is a distributive
lattice and hence the frames associated with these algebras are based on posets as
is well known in the duality for distributive lattices [27]. To capture the properties
of the operations of a residuated lattice an additional relation is required satisfying
the appropriate conditions and hence the MTL–frames are structures of the form
hX ,,Ri where R is a ternary relation on X . The canonical frame of an MTL–
algebra is the set of prime filters (in the lattice sense) together with the inclusion
relation and a canonical form of R determined by the monoid product. The complex
algebra of an MTL–frame is the family of upward closed subsets of X with the
union and intersection of sets as the lattice operations. The operations of product
and residuation are defined in terms of the relation R in such a way that they satisfy
all the MTL–algebra axioms. The two discrete representation theorems for the
MTL–algebras and MTL–frames hold.

In this paper we give the additional frame conditions needed to characterize the
frames of n-potent MTL–algebras (that is, satisfying xn = xn+1) and establish that
the discrete duality for MTL–algebras extends to the n-potent case. Thereafter,
we consider BL–algebras; in this case there is no additional frame condition that
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would extend the discrete duality for MTL–algebras to BL–algebras. If such a du-
ality were to exist, it would provide a completion method for BL–algebras, contra-
dicting a result from [22]. In [4] it is shown that the only varieties of BL–algebras
admitting completions are the n-potent ones for some n � 1. This observation,
in part, motivated the current research. A complete solution for all the n-potent
varieties of BL–algebras is not obtained here, however we do obtain a discrete du-
ality for 2-potent BL–algebras (that is, satisfying x2 = x3) that extends the discrete
duality for MTL-algebras.

2 Preliminaries

If hP,i is an ordered set, and Q ✓ P, we let " Q df
= {p 2 P : (9q)[q 2 Q and q  p]}

be the order filter generated by Q. If Q = {u}, we just write " u instead of " {u}.
Note that " /0 = /0. A set Q ✓ P is called "-closed if " Q = Q. For undefined
concepts in lattice theory we invite the reader to consult [17].

By a residuated lattice we mean an algebra L = hL,_,^,⌦,!,0,1i such that the
reduct hL,_,^,0,1i is a bounded lattice, hL,⌦,1i is a commutative monoid, and
! is the residual of ⌦ with respect to the lattice ordering , i.e.,

(8a,b,c 2 L)[a⌦ c  b () c  a ! b].

Such an algebra is sometimes called a bounded, integral, commutative residuated
lattice in the literature.

By a monoidal t-norm based logic–algebra (MTL–algebra) we mean a residuated
lattice L= hL,_,^,⌦,!,0,1i in which the prelinearity identity holds:

(8a,b 2 L)[(a ! b)_ (b ! a) = 1].

Since its origin in 2001 in [11] the logic MTL has been a subject of extensive
study motivated by the facts that it is complete with respect to the class of lattices
endowed with left-continuous t-norms and their residua, and that the necessary and
sufficient condition for a t-norm to be residuated is left-continuity.

If an MTL–algebra L satisfies additionally

DIV (8a,b 2 L)[a^b = a⌦ (a ! b)] (Divisibility)

it is called a BL–algebra. The class of BL–algebras is the algebraic counterpart of
Hajek’s basic logic [18, 19]; it is a common generalization of the classes of Gödel
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algebras, product algebras, and Wajsberg algebras. For recent surveys we invite
the reader to consult [16] or [9].

The class of MTL–algebras is a variety which we denote by MTL; the class of
BL–algebras is also a variety, which we denote by BL.

The associativity of ⌦ in both MTL–algebras and BL–algebras allows us to write
products a1⌦a2⌦ . . .⌦an unambiguously for a1,a2, . . . ,an 2 L. For a 2 L we shall
write a1 = a, and an+1 = an ⌦a for n � 1.

Theorem 2.1. [11, Proposition 3] Each MTL-algebra is a subdirect product of
linearly ordered MTL-algebras.

A consequence of the above theorem is that an identity holds in the variety of
all MTL–algebras if and only if it holds in all linearly ordered MTL–algebras. A
further consequence is that the underlying lattice structure of every MTL-algebra is
distributive. The following lemma collects some well known properties of MTL–
algebras, see e.g. [2, 11, 25].

Lemma 2.2. Let L= hL,_,^,⌦,!,0,1i be an MTL–algebra, and a,b,c 2 L.

1. a⌦b  a.

2. b  a ! b.

3. a⌦ (a ! b) b.

4. If a  b, then a⌦ c  b⌦ c.

5. a ! (b_ c) = (a ! b)_ (a ! c).

6. a⌦ (b_ c) = (a⌦b)_ (a⌦ c).

7. a⌦ (b^ c) = (a⌦b)^ (a⌦ c).

8. a^ (b_ c) = (a^b)_ (a^ c).

9. a_b = ((a ! b)! b)^ ((b ! a)! a).

10. a  ((a ! b)! b).

11. ((a ! b)! b) = ((b ! a)! a) if and only if ((a ! b)! b) (a_b).

It is well known that axiom DIV can be expressed in various ways, as in the fol-
lowing lemma. The proofs are straightforward and are left to the reader:

4



Lemma 2.3. Let L = hL,_,^,⌦,!,0,1i be an MTL–algebra. The following are
equivalent:

1. DIV.

2. (8a,b 2 L)[b � a implies a⌦ (a ! b) = b].

3. (8a,b 2 L)[b � a implies there is some c 2 L such that b = a⌦ c].

4. (8a,b 2 L)[a⌦ (a ! b) = b⌦ (b ! a)].

5. (8a,b 2 L)[(a ! b)_ (b ! a⌦ (a ! b)) = 1].

3 Filters in MTL–algebras

Throughout we suppose that L = hL,_,^,⌦,!,0,1i is an MTL–algebra and F is
its set of (lattice) filters, that is, "- and ^-closed nonempty subsets of L. We note
that in MTL–algebras, the notion of ‘filter’ usually refers to a subset that is "-closed
and ⌦-closed - as in, e.g., [19] and [11]. A filter F is called proper if 0 62 F , and it
is called prime if it is proper and for all a,b 2 L we have a_ b 2 F implies a 2 F
or b 2 F . The set of all prime filters of L is denoted by Prim(L).

With some abuse of notation, we extend the operator ⌦ to subsets of L:

If A,B ✓ L then A⌦B df
= {a⌦b : a 2 A,b 2 B}.

The associativity of ⌦ extends to products of subsets so we may write A1 ⌦A2 ⌦
. . .⌦An unambiguously for A1,A2, . . . ,An ✓ L. For A ✓ L, we write A1 = A and
An+1 = An ⌦A for n � 1.

Lemma 3.1. Let F,G,H 2 F. Then, F ⌦G ✓ H ()" (F ⌦G)✓ H.

Proof. “)”: Suppose that F ⌦G ✓ H, and let a 2" (F ⌦G). Then, there are
b 2 F,c 2 G such that b⌦ c  a. Since b⌦ c 2 H by the hypothesis, and H is a
filter, we have a 2 H.

“(”: Obvious, since F ⌦G ✓" (F ⌦G).

Lemma 3.2. Let F1,F2, . . . ,Fn 2 F. Then, " (F1 ⌦F2 ⌦ . . .⌦Fn) 2 F.
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Proof. The case n = 2 was proved in [15, Lemma 6.8]. Let a 2" (F1 ⌦F2 ⌦ . . .⌦
Fn). Then, there are bi 2 Fi such that b1⌦b2 . . .⌦bn  a. If a d, then b1⌦b2 . . .⌦
bn  d and d 2" (F1⌦F2⌦ . . .⌦Fn). Next, let c 2" (F1⌦F2⌦ . . .⌦Fn), and di 2 Fi
such that d1 ⌦ d2 . . .⌦ dn  c. Now, bi ^ di 2 Fi, thus (b1 ^ d1)⌦ . . .⌦ (bn ^ dn) 2
F1 ⌦F2 ⌦ . . .⌦Fn. Hence,

(b1 ^d1)⌦ . . .⌦ (bn ^dn) (b1 ⌦b2 . . .⌦bn)^ (d1 ⌦d2 . . .⌦dn) a^ c,

and, therefore, a^ c 2" (F1 ⌦F2 ⌦ . . .⌦Fn).

Lemma 3.3. Let F1,F2, . . . ,Fn 2 Prim(L). Then, " (F1 ⌦F2 ⌦ . . .⌦Fn) 2 Prim(L).

Proof. By Lemma 3.2, " (F1 ⌦F2 ⌦ . . .⌦Fn) is a filter, and all that is left to show
is that it is prime. Since " (" (F ⌦G)⌦H) =" (F ⌦G⌦H), it is sufficient to
consider the case n = 2. Let a_ b 2" (F1 ⌦ F2); then, there are c 2 F1,d 2 F2
such that c⌦d  a_b. Since L is residuated, we have d  c ! (a_b), and thus,
from Lemma 2.2(5) we obtain d  (c ! a)_ (c ! b). Since d 2 F2 and F2 is
prime we have c ! a 2 F2 or c ! b 2 F2. Suppose, without loss of generality, that
c ! a 2 F2. Then, c⌦ (c ! a) 2 F1 ⌦F2, and therefore, as c⌦ (c ! a) a, we get
c⌦ (c ! a) a 2" (F1 ⌦F2).

If F,G are filters of L let F ! G df
= {a : F ⌦{a}✓ G}.

Lemma 3.4. Let F,G be filters of L. Then, F ! G is a filter or F ! G = /0.

Proof. Let a 2 F ! G, i.e. F ⌦{a} ✓ G. Let a  b and c 2 F ; then c⌦a 2 G by
the hypothesis, and thus, c⌦b 2 G by the monotony of ⌦. Hence, b 2 F ! G.

Next, let a,b 2 F ! G. We need to show that F ⌦ {a^ b} ✓ G, so, let c 2 F .
Since c⌦ a 2 G and c⌦ b 2 G by the hypothesis, we have (c⌦ a)^ (c⌦ b) 2 G
as well. By Lemma 2.2(7) we have c⌦ (a^ b) = (c⌦ a)^ (c⌦ b), and therefore,
c⌦ (a^b) 2 G.

The following example shows that F ! G may be empty:

Example 3.5. Let L = [0,1], hL,_,^,0,1i be the unit interval lattice, hL,⌦,1i
the multiplicative semigroup of the unit interval, and x ! y df

= min{1, y
x}. Then,

L
df
= hL,_,^,⌦,!,0,1i is a BL–algebra, sometimes called the Goguen algebra or

product algebra. In L, each " – closed set is a filter (and vice versa). Let F df
= [1

2 ,1],

H df
= (1

2 ,1]. If F ⌦ {a} ✓ H for some a 2 L, then, in particular, 1
2 ⌦ a = 1

2 · a > 1
2 .

However, this is only possible if a > 1.
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Lemma 3.6. Let F,G,H be filters of L. Then, G ✓ F ! H () F ⌦G ✓ H.

Proof. “)”: Suppose that a 2 F, b 2 G; we need to show that a⌦ b 2 H. Now,
a⌦b 2 F ⌦{b}✓ H, the latter by b 2 G and the hypothesis.

“(”: Assume F ⌦G ✓ H, and let a 2 G. Then, F ⌦{a}✓ F ⌦G ✓ H, and thus,
a 2 F ! H.

Corollary 3.7. Let F,H be filters of L. Then, F ⌦F ✓ F ! H () F ⌦F ⌦F ✓ H.

Lemma 3.8. [15, Lemma 6.9], [31, Lemma 2.2] Suppose that F,G are filters of L,
and that H is a prime filter of L such that F ⌦G ✓ H. Then, there are prime filters
F 0,G0of L such that F ✓ F 0, G ✓ G0 and F 0 ⌦G0 ✓ H.

4 Duality for MTL–algebras

Consider a structure X = hX ,,Ri, where X is a nonempty set,  is a partial order
on X , and R is a ternary relation on X . For Y,Z ✓ X define

Y ⌦R Z = {z : (9x,y)[x 2 Y,y 2 Z, and R(x,y,z)]},
Y !R Z = {x : (8y,z)[y 2 Y and R(x,y,z)) z 2 Z]}.

X is called an MTL–frame if it satisfies FMTL1 – FMTL6 below for all x,x0,y,y0,z,z0,
u,v,w 2 X . The right hand side of each condition shows the corresponding alge-
braic property:

FMTL1 R(x,y,z) and x0  x and y0  y and z  z0 ) R(x0,y0,z0).
Compatibility of ⌦R with ✓

FMTL2 (9u)[R(y,z,u) and R(x,u, t)]() (9v)[R(x,y,v) and R(v,z, t)].
Associativity of ⌦R

FMTL3 R(x,y,z)) R(y,x,z). Commutativity of ⌦R

FMTL4 (R(x,y,z) and R(x,v,w))) (y  w or v  z). Prelinearity
FMTL5 (8z)(9y)[R(z,y,z)]. Y ✓ Y ⌦R 1
FMTL6 R(x,y,z)) x,y  z. Y ⌦R 1 ✓ Y

Let X be an MTL–frame, and let L(X ) be the collection of all order filters of
X , i.e. Y 2 L(X ) () Y =" Y . We observe in passing that " /0 = /0, and thus,
/0 2 L(X ). The complex algebra of X is the algebra

Cm(X )
df
= hL(X ),[,\,⌦R,!R, /0,Xi.
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Lemma 4.1. [25], [26] If X is an MTL-frame, then Cm(X ) is an MTL–algebra.

If X is an MTL–frame and Y1,Y2, . . . ,Yn 2 L(X ), then the associativity of ⌦R
allows us to write Y1 ⌦R Y2 ⌦R . . .⌦R Yn unambiguously. For Y 2 L(X ) we write
Y 1 = Y , and Y n+1 = Y n ⌦R Y for n � 1.

The following lemma whose proof follows easily from the definition and associa-
tivity of ⌦R will be helpful later on.

Lemma 4.2. Let X = hX ,,Ri be an MTL–frame, Y 2 L(X ) and n � 2. Then,

z 2 Y n () (9y1, . . . ,yn,x1, . . . ,xn�1 2 Y )[yn = z and R(yi,xi,yi+1),1  i � n].
(4.1)

Let L= hL,_,^,⌦,!,0,1i be an MTL–algebra. The canonical frame of L is the
structure

Cf(L) = hPrim(L),✓,R⌦i

where Prim(L) is the set of all prime filters of L and R⌦ is the complex relation
induced by ⌦, i.e., for F,G,H 2 Prim(L),

R⌦(F,G,H)
df() F ⌦G ✓ H.(4.2)

In other words,

R⌦(F,G,H)() (8a,b)[a 2 F and b 2 G ) a⌦b 2 H].(4.3)

Lemma 4.3. [25], [26] If L is an MTL–algebra, then Cf(L) is an MTL–frame.

Theorem 4.4. [25], [26]1 Let L be an MTL–algebra and X an MTL–frame.

1. Cf(L) is an MTL–frame and L can be embedded into the complex algebra of
its canonical frame via the mapping h : L ! Cm(Cf(L)) defined by h(a) =
{F 2 Prim(L) : a 2 F}.

2. Cm(X ) is an MTL–algebra and X can be embedded into the canonical
frame of its complex algebra via the mapping k : X ! Cf(Cm(X )) defined
by k(x) = {Y 2 L(X ) : x 2 Y}.

1One of the referees pointed out that this follows from a more general result in [5] which also
uses a representation with ternary frames.
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The complex algebra of an MTL-frame is a complete MTL–algebra in the sense
that its underlying lattice order is complete, i.e., all infinite meets and joins ex-
ist. This is evident from the fact that the meets and joins are intersections and
unions, respectively, of "-closed subsets and hence are "-closed themselves. Thus,
the above theorem also provides a method of embedding any MTL–algebra into a
complete MTL–algebra, namely the complex algebra of its canonical frame.

As BL is a subclass of MTL one may ask whether there is a corresponding duality
theorem for BL on the basis of the constructions above, e.g. by adding additional
frame conditions. If such additional frame conditions existed, it would imply, as
discussed in the previous paragraph, that every BL–algebra can be embedded into
a complete BL–algebra. The following example shows that this is not the case (a
different example can be found in [22]):

Example 4.5. Let L be the Goguen BL–algebra of Example 3.5. Then L is also
an MTL–algebra and so Cm(Cf(L)) is an MTL–algebra into which L embeds by
Theorem 4.4. In L, each proper filter is a prime filter and has the form (a,1] or
[a,1] for some a 2 L,a 6= 0. In particular, {1} is a prime filter. Let F df

= [ 1
2 ,1], and

H df
= ( 1

2 ,1]; then, H ( F. Set Z df
=" F and Y df

=" H, where the " is taken in the
partial order hPrim(L),✓i; then, Y and Z are increasing sets of prime filters, i.e.
Y,Z 2 L(Cf(L)), and Z ( Y .

Assume that Cm(Cf(L)) satisfies DIV. Then, Z ✓ Y ⌦R (Y !R Z), in particular,
F 2 Y ⌦R (Y !R Z). Thus, there are G 2 Y, G0 2 Y !R Z with G⌦G0 ✓ F. Since
G 2 Y and Y =" H, we have H ✓ G.

The next task is to show that G0 = {1}: Assume there is some a 2 G0 such that
a 6= 1. Since 0 < a < 1, we have 1

2 < 1
2a . Choose some x with 1

2 < x < 1
2a ; then,

x 2 H ✓ G, and thus, x⌦a 2 G⌦G0 ✓ F. On the other hand, x⌦a < 1
2a ⌦a = 1

2
and thus, x⌦a 62 F, a contradiction.

By definition of R⌦ we have R⌦({1},H,H), and {1}= G0 2 Y !R Z implies that
H 2 Z, i.e. F ✓ H, a contradiction.

5 n-potent MTL–algebras

Throughout this section, X = hX ,,Ri is an MTL–frame and L= hL,_,^,⌦,!
,0,1i an MTL–algebra.

For each integer n � 1 we define the class of n-potent MTL–algebras as the class
of MTL–algebras satisfying the identity: (8a)[an = an+1].

9



The 1-potent case is not very interesting as it implies that ⌦ = ^ in all such alge-
bras; in fact, this is the variety of Heyting algebras generated by all linearly ordered
Heyting algebras. It is also the variety of Gödel algebras.

The aim of this section is to establish a discrete duality between n-potent MTL–
algebras and a special class of MTL–frames. To this end we consider the following
frame conditions for n � 2.

FMTLn For all y1, . . . ,yn,x1, . . . ,xn�1, if R(yi,xi,yi+1) for all 1  i  n�
1, then there exist v2 {y1,x1, . . . ,xn�1} and u1, . . . ,un+1 such that
u1 = v, un+1  yn and R(ui,v,ui+1) for all i 2 {1, . . . ,n}.

First, we shall prove some preparatory lemmas:

Lemma 5.1. Let a1, . . . ,an 2 L. Then, a1 ⌦ . . .⌦an  an
1 _ . . ._an

n.

Proof. By Theorem 2.1, it suffices to show the claim for linearly ordered L, in
which case the maximum element of {a1, . . . ,an} exists, say ak for some k 2
{1, . . . ,n}. Then, a1 ⌦ . . .⌦an  an

k  an
1 _ . . ._an

n.

The n-potent property has a straightforward translation to inclusion of filters:

Lemma 5.2.

(8F 2 F)[Fn+1 ✓" (Fn)]() (8a 2 L)[an  an+1].

Proof. “)”: Let a 2 L and set F df
=" {a}. Then, an+1 2 Fn+1, and by the hy-

pothesis there are b1, . . . ,bn 2 F such that b1 ⌦ . . .⌦ bn  an+1. The definition of
F implies a  bi for all i 2 {1, . . . ,n}, and from the monotony of ⌦ we obtain
an  b1 ⌦ . . .⌦bn  an+1.

“(”: Let F 2 F and a1, . . . ,an+1 2 F ; we need to show that a1 ⌦ . . .⌦ an+1 2"
(Fn). Let p df

= a1 ^ . . .^ an+1. Since F is a filter, p 2 F and, therefore, pn 2 Fn.
Now,

pn = (a1 ^ . . .^an+1)
n

 (a1 ^ . . .^an+1)
n+1 by the hypothesis,

 a1 ⌦ . . .⌦an+1 since ⌦ respects .

Since pn 2 Fn, it follows that a1 ⌦ . . .⌦an+1 2" (Fn).
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The next result is the key observation for establishing the discrete duality:

Lemma 5.3. Let L be an n-potent MTL–algebra and F1, . . . ,Fn 2 Prim(L). Then,
there exists i 2 {1, . . . ,n} such that Fn+1

i ✓" (F1 ⌦ . . .⌦Fn).

Proof. Assume that Fn+1
i 6✓" (F1 ⌦ . . .⌦Fn) for all i 2 {1, . . . ,n}. Then, for each

i 2 {1, . . . ,n}, there are ai
1, . . . ,a

i
n,ai

n+1 2 Fi such that ai
1⌦ . . .⌦ai

n⌦ai
n+1 62" (F1⌦

. . .⌦Fn). Set di
df
= ai

1 ^ . . .^ai
n ^ai

n+1; then, di 2 Fi. Furthermore,

dn+1
i = (ai

1 ^ . . .^ai
n ^ai

n+1)
n+1  ai

1 ^ . . .^ai
n ^ai

n+1 62" (F1 ⌦ . . .⌦Fn),

and therefore, dn+1
i 62" (F1 ⌦ . . .⌦Fn). Since L is an n-potent MTL–algebra, this

implies

dn
i 62" (F1 ⌦ . . .⌦Fn)(5.1)

for all i 2 {1, . . . ,n}. Now, d1 ⌦ . . .⌦ dn 2" (F1 ⌦ . . .⌦Fn) and, therefore, since
" (F1 ⌦ . . .⌦Fn) is a filter, by Lemma 3.2, and d1 ⌦ . . .⌦ dn  dn

1 _ . . ._ dn
n by

Lemma 5.1, we have dn
1 _ . . ._ dn

n 2" (F1 ⌦ . . .⌦Fn). Since " (F1 ⌦ . . .⌦Fn) is
prime by Lemma 3.3, it follows that dn

i 2" (F1 ⌦ . . .⌦Fn) for some i 2 {1, . . . ,n}.
This contradicts (5.1).

Lemma 5.4. The canonical frame of an n-potent MTL–algebra L satisfies FMTLn.

Proof. Let F1, . . . ,Fn,G1, . . . ,Gn�1 2 Prim(L) such that R⌦(Fi,Gi,Fi+1), i.e., Fi ⌦
Gi ✓ Fi+1, for all i 2 {1, . . . ,n�1}. Then we have

F1 ⌦G1 ⌦ . . .⌦Gn�1 ✓ F2 ⌦G2 ⌦ . . .⌦Gn�1 · · ·✓ Fn�1 ⌦Gn�1 ✓ Fn.

By Lemma 5.3, there exists H 2 {F1,G1, . . . ,Gn�1} such that Hn+1 ✓" (F1 ⌦G1 ⌦
. . .⌦Gn�1). Since Fn is a filter, we have " (F1 ⌦G1 ⌦ . . .⌦Gn�1) ✓ Fn and so
Hn+1 ✓ Fn. For each i 2 {1, . . . ,n + 1} set Ui

df
=" (Hi). By Lemma 3.3, each

Uj is a prime filter. Furthermore, U1 = H, Un+1 ✓ Fn and Ui ⌦H ✓ Ui+1, i.e.,
R⌦(Ui,H,Ui+1), for all i 2 {1, . . . ,n}.

Lemma 5.5. If X = hX ,,Ri is an MTL–frame which satisfies FMTLn, then its
complex algebra is an n-potent MTL–algebra.

Proof. Suppose that Y 2 L(X ), i.e., Y is an "-closed subset of X , and n � 2;
we shall show that Y n ✓ Y n+1. Let z 2 Y n; then, by Lemma 4.2, there exist
y1, . . . ,yn, x1, . . . ,xn�1 2 Y such that yn = z and R(yi,xi,yi+1) for all i 2 {1, . . . ,n�
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1}. Thus, the hypothesis of FMTLn is fulfilled, so there exist v 2 {y1,x1, . . . ,xn�1}
and u1, . . . ,un+1 such that u1 = v, un+1  z and R(ui,v,ui+1) for all i 2 {1, . . . ,n}.
Since v 2Y and u1 = v, we have u1 2Y . By the definition of ⌦R, since R(u1,v,u2),
we get u2 2 Y 2 and, continuing in this way, we get un+1 2 Y n+1. Then un+1  z
implies z 2 Y n+1, since Y n+1 2 L(X ) and hence is "-closed.

Using the same mappings as in Theorem 4.4, the previous lemmas allow us to
obtain the following duality result:

Theorem 5.6. Let L be an n-potent MTL–algebra and X an MTL–frame that
satisfies FMTLn.

1. Cf(L) is an MTL–frame that satisfies FMTLn and L can be embedded into
the complex algebra of its canonical frame.

2. Cm(X ) is an n-potent MTL–algebra and X can be embedded into the
canonical frame of its complex algebra.

6 2-potent BL–algebras

The following was shown in [4]:

Theorem 6.1. Suppose that V is a subvariety of BL. Then, V admits completions
if and only if the identity (8a)[an = an+1] is satisfied for some integer n � 1.

The necessary condition for a subvariety of BL to have a representation theorem
such that the representation algebra is a complete BL–algebra is that it is n-potent
for some n � 1. Thus, a necessary condition for a subvariety of BL to have a
duality theorem is that it is n-potent for some n � 1. Note that the Goguen algebra
of Example 3.5 does not have this property. In this section we describe a duality
theorem for 2-potent BL–algebras.

Recall that a BL–algebra is a residuated lattice which satisfies the prelinearity con-
dition and DIV. Consider the following identity:

V2 : (8a,b)[(a ! b)_ (b ! a⌦b) = 1].

Theorem 6.2. The variety of 2-potent BL–algebras is precisely the variety of resid-
uated lattices that satisfy V2.

12



Proof. The variety of 2-potent BL–algebras is generated by algebras that are ordi-
nal sums of copies of the following two BL–algebras: the two–element Boolean
algebra (with ⌦ = ^) and the three–element chain BL-algebra on a {0,a,1} with
0 < a < 1 and a⌦a = 0 (see, e.g., [19], [6]). Observe that the latter is isomorphic
to the three element MV-chain.

Since algebras of this form are linearly ordered, for any two elements a,b in such
an algebra we have a  b or b � a. In the first case, a ! b = 1. Suppose b � a. If
a and b are in different components of the ordinal sum, then a⌦b = b. Otherwise,
both a and b are in the same two–element or three–element chain, and is easy
to check that also a⌦ b = b. Hence, b ! a⌦ b = 1, so the algebra satisfies V2.
Consequently, the variety of 2-potent BL–algebras satisfies V2.

Conversely, suppose that L = hL,_,^,⌦,!,0,1i is a residuated lattice that satis-
fies V2 and let a,b 2 L. From a⌦b  a we obtain b ! a⌦b  b ! a, hence, from
V2 we obtain

1 = (a ! b)_ (b ! a⌦b) (a ! b)_ (b ! a).(6.1)

Therefore, (a ! b)_ (b ! a) = 1, and thus L is an MTL algebra. All that is left
to show is that L satisfies DIV and a2 = a3 for all a 2 L. By Theorem 2.1 and the
fact that V2 is an identity, we may assume w.l.o.g. that L is linearly ordered. Since
a⌦b  a⌦ (a ! b) we have b ! a⌦b  b ! a⌦ (a ! b). Thus, V2 implies

1 = (a ! b)_ (b ! a⌦b) (a ! b)_ (b ! a⌦ (a ! b)).(6.2)

It follows that (a ! b)_ (b ! a⌦ (a ! b)) = 1, hence L satisfies DIV by Lemma
2.3.5.

Suppose that a2 L. If a= a2, then a2 = a3, so, suppose that a2 � a. Then, a! a2 6=
1 and from V2 and the fact that L is linearly ordered we obtain a2 ! a⌦ a2 = 1,
and it follows that a2  a3. Since a3  a2 by Lemma 2.2.1, we have a3 = a2.

A structure X = hX ,,Ri, where X is a nonempty set,  is a partial order on X
and R is a ternary relation on X is called a residuated lattice frame if it satisfies
FMTL1 – FMTL3, FMTL5, FMTL6. We define the complex algebra of a residuated
lattice frame in analogy to the complex algebra of an MTL–frame. Such a complex
algebra is a residuated lattice - this follows from the proof of the corresponding
result for MTL–frames in [25], [26], where the FMTL4 axiom is only used to show
prelinearity. Now consider the following frame condition:

FBL2 : (8x,y,y0,z,z0)[(R(x,y,z) and R(x,y0,z0))) (R(y,y0,z0) or y0  z)].
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Lemma 6.3. If X = hX ,,Ri is a residuated lattice frame that satisfies FBL2,
then its complex algebra satisfies V2, i.e. it is a 2-potent BL–algebra.

Proof. Suppose that Y,Z are "–closed subsets of X ; we need to show that

(Y !R Z)[ (Z !R (Y ⌦R Z)) = X .

Assume that there is some x 2 X such that x 62Y !R Z and x 62 Z !R (Y ⌦R Z). By
definition of !R, there are y,z 2 X such that R(x,y,z), y 2 Y , and z 62 Z. Similarly,
there are y0,z0 2 X such that R(x,y0,z0), y0 2 Z, and z0 62Y ⌦R Z. Since R(x,y,z) and
R(x,y0,z0), by FBL2 we have either R(y,y0,z0) or y0  z. If R(y,y0,z0), then y 2Y and
y0 2 Z imply that z0 2Y ⌦R Z, a contradiction. If y0  z, then y0 2 Z and the fact that
Z is "-closed imply that z 2 Z, a contradiction as well.

Lemma 6.4. If L is a residuated lattice that satisfies V2, then its canonical frame
satisfies FBL2.

Proof. Assume that FBL2 does not hold in L. Then there are F,G,G0,H,H 0 2
Prim(L), such that the following conditions are satisfied, by the definition of ⌦
and by Lemma 3.1:

1. R⌦(F,G,H), i.e. " (F ⌦G)✓ H,

2. R⌦(F,G0,H 0), i.e. " (F ⌦G0)✓ H 0,

3. �R(G,G0,H 0), i.e. G⌦G0 6✓ H 0,

4. G0 6✓ H.

Then, G⌦G0 6✓" (F ⌦G0) and G0 6✓" (F ⌦G). Choose some a 2 G⌦G0 with a 62
" (F ⌦G0). Then, there are b 2 G,d 2 G0 with b⌦d = a. Let c 2 G0,c 62" (F ⌦G),
and set e df

= d ^ c. Since c,d 2 G0 and G0 is a filter, we obtain e 2 G0. Furthermore,
b⌦ e  a, and therefore, b⌦ e 62" (F ⌦G0), since a 62" (F ⌦G0). Similarly, since
e  c and c 62" (F ⌦G), it follows that e 62" (F ⌦G).

Now, since L satisfies V2, we have (b! e)_(b! b⌦e)= 1, and since F is a prime
filter we obtain b! e2F or b! b⌦e2F . If b! e2F , then (b! e)⌦b2F⌦G.
Since (b! e)⌦b e we obtain e2" (F⌦G), a contradiction. On the other hand, if
e ! b⌦e 2 F , then (e ! b⌦e)⌦e 2 F ⌦G0, and therefore, (e ! b⌦e)⌦e  b⌦e
implies b⌦ e 2" (F ⌦G0), a contradiction as well.
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Finally, using the same procedure as in the previous cases, we obtain the following
duality result:

Theorem 6.5. Let L be a 2-potent BL–algebra and X a residuated lattice frame
that satisfies FBL2.

1. Cf(L) is a residuated lattice frame that satisfies FBL2 and L can be embedded
into the complex algebra of its canonical frame.

2. Cm(X ) is a 2-potent BL–algebra and X can be embedded into the canon-
ical frame of its complex algebra.

7 Correspondence theory and syntactic aspects

Correspondence theory is well developed for modal logics which require binary
relations in their semantic structures. The Sahlqvist theorem provides a syntactic
characterization of a class of modal formulas such that the class of frames which
validate those formulas is first order definable. However, this is only an existen-
tial non-constructive statement, and a concrete frame condition must be discov-
ered. For that purpose a computer system SQEMA [8] was developed which - if
it terminates - generates first order frame conditions for the binary relations de-
termining modal operators in a formula. The system is available at www.fmi.uni-
sofia.bg/fmi/logic/sqema/. For the correspondences in logics whose operators re-
quire ternary relations in the frames such as the product and its residuals in residu-
ated lattices much less is known. One of the possibilities is to apply the algorithm
SCAN which is based on a method of elimination of second order quantifiers from
formulas of the monadic second order logic. The elimination method was devel-
oped in [1] and then it was described and studied in [30] and [13]; see also [24] and
[14]. The foundations of the system can be found in [3]. Given a formula of the
monadic second order logic, the algorithm computes - provided that it terminates -
an equivalent first order formula. It can be used in the correspondence theory for a
search of a first order condition for a relation in a Kripke frame corresponding to a
property of an operator expressed as a formula in (the language of) the complex al-
gebra of that frame. However, SCAN is usually not applicable to theories based on
the monadic second order logic. Applied to the 2-potence property in the complex
algebra of a residuated lattice it did not give any meaningful result.

It was pointed out by one of the referees that a frame condition for knotted rules
in the context of residuated lattices can be obtained from an algorithm in [28], not
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yet published at the time of writing this paper (see also [29]). The frame con-
dition FMTLn presented in Section 5 is somewhat simpler than the one obtained
by that algorithm due to the assumptions of prelinearity and distributivity of the
underlying lattices. The algorithm in [28] is developed for general residuated lat-
tices which require two-sorted frames for representation theorems in the style of
Dedekind-MacNeille (see [32] and [10]), while for distributive lattices two sorts
are not needed.

8 Conclusion and outlook

Since its origin in 2001 the logic MTL has been a subject of extensive study mo-
tivated by the facts that it is complete with respect to the class of lattices endowed
with left-continuous t-norms and their residua, and that the necessary and sufficient
condition for a t-norm to be residuated is left-continuity. The Esteva-Godo-Ono
hierarchy [12] of substructural and fuzzy logics and their corresponding algebras
starts with the full Lambek calculus with exchange and weakening which in the
field of fuzzy logic is referred to as a monoidal logic [21]. An algebra L0 is above
an algebra L in the hierarchy whenever L0 is an axiomatic extension of L. The
logics above MTL are:

SMTL = MTL + a^¬a = 0

IMTL = MTL + ¬¬a  a

CMTL = G = MTL + a  a⌦a

PMTL = SMTL + ¬¬c  (((a⌦ c)! (b⌦ c))! (a ! b))

BL = MTL + (DIV) a^b = a⌦ (a ! b)

Ł = MV = MTL + a_b = (a ! b)! b = IMTL + (DIV)

’ = PMTL + (DIV)

Bool = CMTL + a_¬a = 1.

Discrete dualities for algebras SMTL, IMTL, and CMTL are presented in [25]. In
CMTL–algebras, obtained from MTL–algebras by endowing them with the con-
traction axiom a  a⌦ a, which in MTL–algebras is equivalent to idempotence
a = a⌦ a, the product coincides with the meet. A discrete duality for PMTL al-
gebras has not been approached yet. The result presented in [4] shed a light on

16



the problem of constructing a completion and, in particular, a discrete duality for
axiomatic extensions of MTL satisfying the divisibility axiom. It is proved there
that any such axiomatic extension admits completions if and only if it satisfies the
n-potent law for some n � 2. In view of that theorem in the present paper we ap-
proached the problem of developing a discrete duality for n-potent MTL–algebras
and for 2-potent BL–algebras. The dualities we obtained are presented in Section 5
and Section 6, respectively. It follows that based on the theorem on discrete duality
for SMTL–algebras we also get a discrete duality for 2-potent SBL–algebras. The
corresponding frame axioms are those of 2-potent BL–frame axioms and

(9y,z 2 X)[R(x,y,z) and x  y].

Similarly, based on the theorem on discrete duality for IMTL–algebras we get a
discrete duality for 2-potent MV–algebras. The frame axioms are those of 2-potent
BL–algebras and

(8z 2 X)(9t 2 X)[(R(x,z, t)) (9u 2 X)R(z,y,u))) y  z].

Furthermore, the theorem in [4] implies that no completion exists for SBL and MV
alone.

A hierarchy of n-contractive MTL–algebras for n � 2 is studied in [20], however
no representation theorems are achieved. Our results of the present paper provide
discrete dualities for CnMTL algebras for all n � 2 from that hierarchy. Moreover,
together with a discrete duality for IMTL–algebras we obtain discrete dualities for
all CnIMTL, n � 2, in that hierarchy. A discrete duality for MTL–algebras with the
WNM axiom has not been approached yet.
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