

Brock University
Department of Computer Science

Feature Extraction Languages and
Visual Pattern Recognition

Mehran Maghoumi and Brian J. Ross

Technical Report # CS-14-03
January 2014

Brock University
Department of Computer Science
St. Catharines, Ontario Canada L2S 3A1
www.cosc.brocku.ca

Feature Extraction Languages
and Visual Pattern Recognition

Mehran Maghoumi
mm12tm@brocku.ca

Brian J. Ross
bross@brocku.ca

ABSTRACT
Visual pattern recognition and classification is a challenging com-
puter vision problem. Genetic programming has been applied to-
wards automatic visual pattern recognition. An important factor
in evolving effective classifiers is the suitability of the GP lan-
guage for defining expressions for feature extraction and classifi-
cation. This research presents a comparative study of a variety of
GP languages suitable for classification. Four different languages
are examined, which use different selections of image processing
operators. One of the languages does block classification, which
means that an entire region of pixels is classified simultaneously.
The other languages are pixel classifiers, which determine classifi-
cation for a single pixel. Pixel classifiers are more common in the
GP-vision literature. We tested the languages on different instances
of Brodatz textures, as well as aerial and camera images. Our re-
sults show that the most effective languages are pixel-based ones
with spatial operators. However, as is to be expected, the nature of
the image will naturally determine the effectiveness of the language
used.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation

Keywords
genetic programming, feature extraction, pattern classification, tex-
ture, computer vision

1. INTRODUCTION
Pattern recognition and classification is a challenging computer

vision problem. In basic terms, visual pattern classification in-
volves the automatic identification of some image feature of inter-
est. For example, one may want a computer program to automati-
cally differentiate given different bitmap images of textures (wood

.

grain, cloth, fur,...). The automatic recognition of more complex
patterns is also possible, such as fingerprints, faces, and military
targets in satellite images.
Genetic programming (GP) has been used in computer vision

classification problems [4]. GP has been shown to be effective in
a variety of image analysis tasks such as texture classification [16,
13] and image and texture segmentation [10, 14, 15]. GP has also
been applied to other complex computer vision problems such as
target and object detection [6, 5, 17], face detection [18], mineral
identification [12], and medical image analysis [11]. More recently,
GP has been applied to real-time computer vision problems such as
adaptive [2] and automated [3] object recognition.
Much of the aforementioned GP vision research use pixel-based

classifiers. These classifiers involve GP expressions that examine
features of a subject image centred around a pixel of interest, and
determine a classification result for that pixel. To process an entire
image, the GP tree is executed consecutively on all the pixels in an
image. Although this has the potential of very precise pixel-level
classification, it can be computationally expensive – and especially
so for large GP expressions and high resolution images.
Song et al.’s work in GP vision uses a different approach – block

(or region) classification [13, 14, 15, 16]. Here, the GP tree also
accesses features of a region of an image, for example, a 32×32
square block. After one single execution of the classifier expres-
sion, a classification is made for the entire region of the image.
They reported very good results with block classification. Further-
more, block classifiers are much more efficient than pixel classifiers
– in fact, 1024 times more efficient using 32×32-sized blocks.
The motivation of this paper is to more closely examine the effect

of GP-based feature extraction languages on visual pattern recog-
nition. In particular, we compare performance of block- and pixel-
based classifiers on a different pattern recognition problems, for
example, Brodatz textures[1], as used in [13, 14, 15, 16], as well as
some satellite and camera images.
Although it is clear that block classifiers are more efficient than

pixel classifiers, we are primarily interested here in comparing per-
formance accuracy between the different pattern classification lan-
guages. Our curiosity is motivated by the fact that block classifiers
such as in [13, 14, 15, 16] examine a very sparse selection of data
compared to pixel classifiers typically found in the GP vison litera-
ture.
The paper is organized as follows. The pattern classification

problems to be examined are introduced in Section 2. Four classi-
fication languages are defined in Section 3, and other experimental
details are given in Section 4. Results of our experiments are pre-
sented in Section 5, and further discussed in Section 6. Section 7
summarizes the paper, and discusses directions for future research.

2. PATTERNCLASSIFICATIONPROBLEMS

Figure 1: Brodatz textures. (Full image is 512×512 pixels, and
each texture area is 128×128.)

Figure 2: Aerial image of boats. (1692×843 pixels.)

Themain vision problem of concern is the recognition of textures
taken from the Brodatz texture data set1[1], which were used previ-
ously in [13, 14, 15, 16]. Figure 1 shows the textures we have used.
The 5 numbered textures are used separately as positive examples.
For example, when texture 1 is a positive example, the remaining
15 textures are used as negative cases. The textures were selected
to introduce various levels of difficulty. Some textures such as 1
and 5, have very similar patterns while other textures such as 3, are
easily distinguished from other textures in the set.
We also examine two other images, to give potential insights of

the pattern recognition languages on other kinds of vision prob-
lems. We examine an aerial image of boats near a port obtained
from the satellite view of Google Maps2 (Figure 2). We wish to
detect boats on water. We also use a photo of a group of people
(Figure 3), in which we wish to identify human faces from the rest
of the image. Ground truth images were manually made to indicate
the areas of the images with boats and faces – in other words, image
areas to be considered as “positive” or true.

1http://www.ux.uis.no/∼tranden/brodatz.html
2http://maps.google.com/

Figure 3: Group photo. (1280×720 pixels.)

3. CLASSIFICATION LANGUAGES
A goal of this paper is to compare two different approaches to

GP-evolved pattern classifiers – pixel classifiers and block (or re-
gion) classifiers. A pixel classifier makes a classification decision
for a single pixel of interest, normally by examining spatial infor-
mation in the surrounding image region of that pixel. A block clas-
sifier makes a decision for all the pixels within a region, based on
information in that region. Pixel-based classifiers are more com-
mon in the GP literature (see Section 1), while block-based classi-
fiers are used by Song et al. [13, 14, 15, 16].
In the following, we will describe both of these methodologies in

detail. Since they are highly dependent upon the GP language used
to define the classifier, the four GP languages studied (one block
language, and three pixel languages) are also described.

3.1 Block classifier language
A block classifier language was presented by Song et al. [13,

16], and has been used in other vision applications [14, 15]. We im-
plemented a block language resembling Song et al.’s original lan-
guage. To perform block classification, three images are provided
to the system: a target image for positive classification, the target
for negative classification, and a test image. Training instances are
created by randomly sampling 400 sub-image blocks each from the
positive and negative target images. Our blocks are of size 32×32
pixels. The blocks contain various grey-scale (and possibly colour)
information about the positive and negative target images, and com-
prise a feature vector for the GP system. Using the feature vector,
an evolved GP tree composed of various mathematical and decision
making functions can extract classification information from each
block. This results in a binary classifier which, when applied to an
image region, makes a classification decision for that entire region.
The goal for evolution is to evolve a classifier that correctly clas-
sifies positive and negative image instances, on a block-by-block
basis.
The block classification language is given in Table 1, and uses

functions and terminals standard in the literature. Att[x] represents
the xth pixel in the block (modulo total pixels in the block), and
returns the RGB or grey-scale value. Strongly typed GP is used for
this and the other languages [8]. The language shown has Boolean
and double data types. The root of each GP tree is double. Com-
puted values greater than or equal to zero are interpreted as true,
while negative are false.
When a block classifier makes a decision about a 32×32 region,

all 1024 pixels in that region are assigned that classification. There-
fore, for the majority of the pixels in an image, there are 1024 po-
tential ways for assigning a classification to each pixel, depending
on the placement of the 32×32 block overlaying that pixel. This

Table 1: Block classification language. (D=Double, B=Boolean)
Return Argument

Name type type Description
Add D D addition
Sub D D subtraction
Mul D D multiplication
Div D D protected division
If D B, D, D if a true then b else c
>= B D, D true if a ≥ b
=< B D, D true if a ≤ b
Between B D, D, D true if b < a < c
Random D - random constant, -1 ≤ c ≤ 1
Att[x] D I Value of attribute

poses some difficulty in comparing block classifiers with pixel clas-
sifiers, since the odds are good that there is at least a few block
placements which give contradictory classifications for any given
pixel. Therefore, in order to make a more meaningful comparison
between block and pixel classifiers, we use the following approach.
During testing, block classifiers are applied to images by placing
the block area over every possible 32×32 region of an image (edges
are not crossed, and so pixels close to edges have fewer block over-
lays). We then tally the number of times each pixel was identified
as “true” within a tested block, scaled by the number of times that
pixel was processed in total. This results in a percentage value that
each pixel was classified as true. Should a pixel be classified as true
the majority of time (ie. threshold of 50%), then it is considered to
be true with respect to performance measurements.

3.2 Pixel classifier languages

Table 3: Pixel language part 2. (I=integer, D=double)
Return Argument

Name type type Description
Add I/D I/D addition
Sub I/D I/D subtraction
Mul I/D I/D multiplication
Div I/D I/D protected division
Neg D D negation
Exp D D e raised to the operand
IfGT D D,D,D,D if a > b then c else d
Max D D,D maximum
Min D D,D minimum
Sin D D sine
Cos D D cosine

Pixel-based classification works as follows. For a given data set,
two images are provided to the GP system – an image to process,
and a ground truth image. The ground truth image is marked to
show the positive region(s) to be identified in the image. Using
the ground truth, the system randomly samples 512 positive pixels
and 1024 negative pixels from the input image. These centre pixels
are then used for creating training instances. Using the coordinates
of the centre pixels, a block of n×n pixels is formed around these
pixels in a way that the centre pixels coincides with the coordinates
(⌊n/2⌋, ⌊n/2⌋). We refer to these blocks as grids. For each pixel
in the grid, spatial filter values (average and standard deviation) are
calculated and stored for later access by GP expressions. To speed
up processing, we compute these values using NVIDIA CUDA [9].
During training, a binary classifier is evolved using positive and

Table 4: Summary of the language variations
Spatial Block

Name operations Offsets processing
Complete × ×
No Offset ×
Raw Features ×
Block Processing × ×

negative training instances. The raw pixel values, as well as the
spatial filter values, form the feature matrix for the system. GP uses
this matrix in conjunction with mathematical and decision making
functions to evolve a classifier. Integer offsets can be used to extract
features in the vicinity of the centre pixel. The decision made by the
classifier is applied to the centre pixel. During testing, the classifier
processes every pixel of the image. This contrasts to the block
classifier, which assigns the classification to all the pixels in the
region.
We define 3 pixel classification languages, which will use func-

tions and terminals selected from Tables 2 and 3. The languages
use 3 data types: double, integer, and channel. Terminals (see Ta-
ble 2) include ephemeral random constants for integers and dou-
bles, channel index, and random terminals (every access generates
a new random value). Pixel values (RGB and/or grey-scale) are ac-
cessible, either directly for a centre pixel, or for a specified integer
offset within the 32×32 block. The channel argument c specifies
the particular channel (R, G, B, grey-scale) to retrieve. Grey-scale
images have R, G, and B removed. Spatial data (average, standard
deviation) can also be read for centre pixels and offsets near them,
again for the specified channel. The area values (15, 17, 19) were
determined by experimentation, as earlier attempts using smaller
areas were not beneficial. Table 3 shows the remaining functions,
which are standard in the literature. There are integer and double
versions of the basic arithmetic operators.
The four languages used for the experiments are summarized in

Table 4. Spatial operations refer to the average and standard devia-
tion functions, while offsets include the colour and spatial operators
that use (i,j) offsets. The first two languages (Complete, No Offset)
thus use spatial operators, while the others do not. Raw Features
is essentially the Block Processing language with extended mathe-
matical operators, but to be used in a pixel-classification manner.

4. EXPERIMENT SETUP

Table 5: Run Parameters
Parameter Value
Population size 1024
Generation size 50
Crossover rate 90%
Mutation rate 10%
Selection method Tournament selection
Tournament size 4
Elites 2
Number of Runs 20
Pixel block size 32×32

In all runs, the static range selection method [7] was used. A GP
expression is evaluated for a pixel (block), and if the output is≥ 0,
it is considered a positive classification. This is compared to the
ground truth image. The number of true positives and true nega-
tives are then used to calculate the fitness value of the individual in

Table 2: Pixel language part 1. (I=integer, D=double, c=channel)
Return Argument

Name type type Description
c c - channel index (0,1,2,3)
ERC D - ephemeral random constant in the range [0, 1]
Random I - random integer in the range [0, 31]
GridERC I - ephemeral random constant in the range [0, 31]
Input colour D c channel value of the selected pixel
Avgk=15,17,19 D c average of k × k area
Stdevk=15,17,19 D c standard deviation of k × k area
Input colour D c, I, I channel value c at (i,j) offset
GAvgk=15,17,19 D c, I, I average of k × k area of channel c, offset (i,j)
GStdevk=15,17,19 D c, I, I standard deviation of k × k area of channel c, offset (i,j)

question:

fitness =
TP + TN
TOTAL

× 100 (1)

where TP is the number of true positives, TN is true negatives, and
TOTAL is the total number of cases.
Table 5 summarizes the GP parameters used.

5. RESULTS
Table 6 shows the final score results of the experiments. Most

scores are averaged over 20 runs, except for best total, which is the
overall image score of the single top performing classifier found.
Testing scores are the true positive and true negative scores for
the image, with training pixels removed. Total are the true pos-
itive, true negative, and all pixels combined score for the entire
image (including training pixels). We have tagged the best overall
performing languages (within a statistical significance measure of
95%) for each image studied. Statistical significance was measured
with an unpaired t-test with unequal variance.
Firstly, training and testing scores for true positives/negatives are

closely matching in all experiments, and so over-training is unlikely
to be occurring.
There is some variability apparent in performance for different

languages and images. For example, for Texture 1, the Raw Fea-
tures language is weaker at positive identification than the other
languages. The Block Processing language, however, is weak in
negative identification. Overall the spatial languages do better on
Texture 1, with the No Offset language being the best performer.
Texture 4 was the most challenging image for the languages. The

No Offset language was again the best performer. Surprisingly,
most solutions from the Complete language were weak, mostly due
to poor positive recognition performance (low true positive scores).
Summarizing the scores in Table 6, the No Offsets spatial lan-

guage was the overall top performing language, having the best
(statistically significant) average solution performance for 5 im-
ages. This is followed by the Complete spatial language (2 images),
and the Block Processing language (2 images). Together, the spa-
tial languages (Complete, No Offset) are the overall top performers,
meaning that spatial operators are useful for many images studied.
Curiously, even though the Complete language is a super-set of the
No Offset language, it was not as good a performer in many in-
stances. This contradicts conventional wisdom that GP evolution
will naturally select the best language operators for a problem at
hand. In our experience, the more complex language was not re-
fined by evolution. This may be due to the larger language defining
too complex a search space for the image at hand. On the other
hand, the Raw Features and Block Processing languages do not use

spatial operators. It is clear that the block processing strategy we
used with the Block Processor is advantageous for that language,
as it is the main technical difference between it and the Raw Fea-
tures language, which is the poorest performing language of the
four studied.
Figure 4 show some texture image results of the experiments.

Images (a-d) are the best solution image results for Texture 1 recog-
nition, and (e-h) for Texture 2. The overall scores for these im-
ages are found in the “best total” rows in Table 6. Green indicates
positive identification. Therefore, the high density of green in the
Texture 1 area (see Figure 1) that is apparent in images (a-d) corre-
sponds to the high true positive scores. Green in other texture areas
denotes false positives. Hence, one can see where the Complete,
No Offset, and Block Processing languages were tricked by the
texture in the bottom-left corner. Similarly, the Raw Features lan-
guage was fairly liberal in (c) when identifying positive instances,
resulting in a low overall score of 65.6%.
Texture 2 is one of the more difficult textures to recognize. The

results in (e-h) show that it is usually recognized, but more mistakes
(false positives and negatives) arise in (e,f,g). The Block Process-
ing results in (h) have a high degree of false positive. A good result
of the Block Processing language on Texture 3 is shown in (i).
Also note that inter-texture boundaries can be difficult for some

languages. This is because boundaries represent complex mixes of
different textures. The spatial operators are free to overlay across
these boundaries, which can complicate recognition of positive re-
gions. We consider boundary artifacts to be acceptable noise.
Figure 5 show sample results for the aerial boat image. The No

Offset result in (b) is very close to the ground truth (a), and has an
88.05% image score. False positive are mostly found in the ground
clutter on the right-side. For comparison, a Block Processing result
is shown in (c). The details in (d) show the primary advantage of
pixel-based classification over block processing — the ability to do
precise classification.
Figure 6 show some results with the group photo. The faces are

identified, but with quite a lot of false positive results on arms and
background. The block result shown is much worse. In hindsight,
this is a challenging image to analyze, as the faces are very difficult
to ascertain without higher-level image processing. Although the
group photo’s results are worse than the textures and boats, they
are useful in that they highlight some natural limitations of the lan-
guages studied for difficult images.
Figure 5 shows the fitness performance for the Texture 1 runs.

The top 4 curves are for the spatial languages, which show superior
fitness to the non-spatial languages.

6. DISCUSSION

Table 6: Experiment results. All scores are %. “test +/-” scores are for testing, “total +/-” is entire image, (including training pixels),
and total is overall average image score. All scores are averaged over 20 runs, except for “best total”, which is image score from single
best classifier found. Top performing overall languages (within statistical significance of 95%) tagged * and highlighted in bold.

Language
Image Scores Complete No Offset Raw Feat. Block Proc.

Texture 1

test + 79.40 89.91 39.69 95.73
test - 93.67 93.73 83.75 35.33
total + 79.44 89.96 39.78 97.94
total - 93.67 93.73 83.75 35.41
total 86.55 *91.85 61.76 66.68

best total 94.17 93.51 65.60 81.34

Texture 2

test + 75.55 58.20 25.76 97.40
test - 85.74 90.20 90.64 60.68
total + 75.62 58.28 25.78 99.49
total - 85.75 90.21 90.65 60.78
total *80.68 74.24 58.21 *80.13

best total 89.78 82.68 62.21 85.32

Texture 3

test + 96.76 96.39 73.68 94.66
test - 97.68 97.64 87.78 98.05
total + 96.77 96.41 73.70 97.12
total - 97.69 97.64 87.78 98.21
total 97.23 97.03 80.73 *97.67

best total 98.19 98.25 81.41 98.27

Texture 4

test + 27.33 67.51 2.41 94.23
test - 91.94 88.70 98.23 41.95
total + 27.37 67.55 2.42 96.46
total - 91.94 88.70 98.23 42.03
total 59.66 *78.12 50.33 69.24

best total 84.01 86.05 51.65 70.41

Texture 5

test + 81.85 87.37 20.09 89.79
test - 86.32 89.41 90.28 57.14
total + 81.90 87.41 20.15 92.01
total - 86.33 89.41 90.28 57.24
total 84.11 *88.41 55.21 74.63

best total 91.06 90.71 62.78 80.44

Boats

test + 94.53 94.74 77.25 95.89
test - 96.21 96.45 93.35 67.11
total + 94.56 94.79 77.31 97.76
total - 96.21 96.45 93.35 67.14
total *95.38 *95.62 85.33 82.45

best total 96.31 96.83 88.05 93.59

Face

test + 90.94 95.28 87.90 94.97
test - 92.65 94.26 89.86 64.69
total + 91.01 95.37 87.99 99.29
total - 92.65 94.26 89.86 64.72
total 91.83 *94.81 88.92 82.00

best total 95.71 96.96 90.37 94.71

(a) Ground truth.

(b) No Offset.

(c) Block Processing.

(d) Details: (left) No Offset, (right) Block Proc.

Figure 5: Boat output images

Our results show that pixel-classification languages with spatial
operators are preferable to those without spatial operators, and to
block-classification languages. As described in Section 3.1, our
block processing strategy used to analyze the results in Table 6 is
not the manner in which other papers used block languages [13,
14, 15, 16]. Our initial analysis applied the block language on a
block-by-block bases on images, similar to [13]. The resulting test
scores were quite low, because block-based classification is hit-or-
miss, and mistakes are costly. By using exhaustive block overlays
and thresholding, we improved the block language performance.
Examining research in [13, 16, 14, 15], we note that the GP ex-

pressions used for block processing were apparently not applied in
a random-sampled manner to images. Rather, fixed coordinate po-
sitions for block overlays were used on training images, which also
apparently coincide to the overlays used during testing. This means
that the same relatively small set of image samples were seen dur-

(a) Ground truth.

(b) No Offset.

(c) Details: (left) No Offset, (right) Block Proc.

Figure 6: Face output images

ing training and testing, and the resulting testing performance can
be respectable. Computational performance in wall-clock speed is
also advantaged by the ability to classify large regions of images at
once.
Our experience is that using a block classifier with random sam-

pling of images during training and testing is more challenging for
block classification. Since the simple block language samples only
a relatively sparse number of pixel points in an image region, it
is difficult to learn pattern concepts for complex images when too
sparse a set of training points are used. Spatial languages over-
come this due to their ability to extract pertinent features over an
image region, and in our case, using average and standard deviation
calculations (which are akin to blur and edge filters). Furthermore,
because a pixel-based spatial language can error for one pixel rather
than an entire region, errors are far less costly.

7. CONCLUSION
Our results show that spatial pixel classifiers are the best per-

formers for the problems we studied. The rich set of spatial op-
erators used means that they are capable of sophisticated feature
extraction compared to other languages studied. We found that the
block classifier was competitive with the pixel classifiers in the test
environment undertaken. However, it should be realized that block
classifiers are not intended to be run repeatedly on images in the
way we did during testing. In this sense, we gave the block lan-

Figure 7: Fitness performance graph for Texture 1 runs (aver-
age 20 runs).

guage some advantages, since the classification result of a pixel
was determined after typically 1024 GP tree executions (compared
to the usual single execution [13]). Nevertheless, our test results
show that the block classifier language studied has respectable ca-
pabilities, considering the simplicity of the language used.
There are many directions for future investigations. The GP vi-

sion literature (see Section 1) shows that much more complex GP
languages for pattern classification are possible. The language def-
initions we used could be made considerably more advanced, by
considering sophisticated image processing primitives. The degree
to which complex languages are required, however, depends upon
the application. Song et al.’s work shows that a very rudimentary
language is capable of texture recognition, and there is no reason to
believe that all problems require complex primitives. Future work
should also consider alternate kinds of vision applications. New
problems will undoubtedly require the use of appropriate pattern
classification languages.
Another direction of research is the application of GP-evolved

classification languages towards image segmentation. Our “win-
dow sweeping” of classifiers on the aerial boat image produced
interesting results, and especially so with the block classifier lan-
guage. Although the block thresholding we used is slow compared
to the normal block classifier approach, it is more accurate than
standard block classification, and has the same efficiency as pixel
classifiers. We intend to exploring this new application further, and
are considering implementation with NVIDIA CUDA to speed up
processing [9].

8. REFERENCES
[1] P. Brodatz. Textures: a photographic album for artists and

designers, volume 66. Dover New York, 1966.
[2] M. Ebner. A real-time evolutionary object recognition

system. In Proceedings of the 12th European Conference on
Genetic Programming, EuroGP ’09, pages 268–279, Berlin,
Heidelberg, 2009. Springer-Verlag.

[3] M. Ebner. Towards automated learning of object detectors. In
Proceedings of the 2010 international conference on
Applications of Evolutionary Computation - Volume Part I,
EvoApplicatons’10, pages 231–240, Berlin, Heidelberg,
2010. Springer-Verlag.

[4] P. Espejo, S. Ventura, and F. Herrera. A survey on the
application of genetic programming to classification.
Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, 40(2):121–144, 2010.
[5] N. Harvey, S. Perkins, S. Brumby, J. Theiler, R. Porter,

A. Cody Young, A. Varghese, J. Szymanski, and J. Bloch.
Finding golf courses: The ultra high tech approach. In
S. Cagnoni, editor, Real-World Applications of Evolutionary
Computing, volume 1803 of Lecture Notes in Computer
Science, pages 54–64. Springer Berlin Heidelberg, 2000.

[6] D. Howard, S. C. Roberts, and R. Brankin. Target detection
in sar imagery by genetic programming. Adv. Eng. Softw.,
30(5):303–311, May 1999.

[7] T. Loveard and V. Ciesielski. Representing classification
problems in genetic programming. In Evolutionary
Computation, 2001. Proceedings of the 2001 Congress on,
volume 2, pages 1070–1077 vol. 2, 2001.

[8] D. Montana. Strongly Typed Genetic Programming.
Evolutionary Computation, 3(2):199–230, 1995.

[9] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming with cuda. Queue, 6(2):40–53, Mar.
2008.

[10] R. Poli. Genetic programming for feature detection and
image segmentation. In T. Fogarty, editor, Evolutionary
Computing, volume 1143 of Lecture Notes in Computer
Science, pages 110–125. Springer Berlin Heidelberg, 1996.

[11] R. Poli. Genetic programming for image analysis. In
Proceedings of the First Annual Conference on Genetic
Programming, pages 363–368. MIT Press, 1996.

[12] B. Ross, A. Gualtieri, F. Fueten, and P. Budkewitsch.
Hyperspectral Image Analysis Using Genetic Programming.
Applied Soft Computing, 5(2):147–156, 2005.

[13] A. Song. Texture Classification: a Genetic Programming
Approach. PhD thesis, RMIT University, April 2003.

[14] A. Song and V. Ciesielski. Fast texture segmentation using
genetic programming. In Evolutionary Computation, 2003.
CEC ’03. The 2003 Congress on, volume 3, pages
2126–2133 Vol.3, 2003.

[15] A. Song and V. Ciesielski. Texture analysis by genetic
programming. In Evolutionary Computation, 2004.
CEC2004. Congress on, volume 2, pages 2092–2099 Vol.2,
2004.

[16] A. Song, T. Loveard, and V. Ciesielski. Towards genetic
programming for texture classification. In M. Stumptner,
D. Corbett, and M. Brooks, editors, AI 2001: Advances in
Artificial Intelligence, volume 2256 of Lecture Notes in
Computer Science, pages 461–472. Springer Berlin
Heidelberg, 2001.

[17] W. A. Tackett. Genetic programming for feature discovery
and image discrimination. In Proceedings of the 5th
International Conference on Genetic Algorithms, pages
303–311, San Francisco, CA, USA, 1993. Morgan
Kaufmann Publishers Inc.

[18] J. F. Winkeler and B. Manjunath. Genetic programming for
object detection. In Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages
330–335. Morgan Kaufmann, 1997.

(a) Texture 1 - Complete (b) Texture 1 - No Offset (c) Texture 1 - Raw Features

(d) Texture 1 - Block Proc. (e) Texture 2 - Complete (f) Texture 2 - No Offset

(g) Texture 2 - Raw Features (h) Texture 2 - Block Proc. (i) Texture 3 - Block Proc.

Figure 4: Texture output images

