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ABSTRACT

Passive solar building design considers the effect that sun-
light has on energy usage. The goal is to reduce the need
for artificial cooling and heating devices, thereby saving en-
ergy costs. A number of competing design objectives can
arise. Window heat gain during winter requires large win-
dows. These same windows, however, reduce energy effi-
ciency during nights and summers. Other model require-
ments add further complications, which creates a challenging
optimization problem. We use genetic programming for pas-
sive solar building design. The EnergyPlus system is used
to evaluate energy consumption. It considers factors rang-
ing from model construction (shape, windows, materials)
to location particulars (latitude/longitude, weather, time of
day/year). We use a split grammar to build 3D models,
and multi-objective fitness to evaluate the multiple design
objectives. Experimental results showed that balancing win-
dow heat gain and total energy use is challenging, although
our multi-objective strategy could find interesting compro-
mises. Many factors (roof shape, material selection) were
consistently optimized by evolution. We also found that ge-
ographic aspects of the location play a critical role in the
final building design.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Experimentation

Keywords
passive solar performance, energy efficiency, evolutionary de-

sign, genetic programming, split grammar

1. INTRODUCTION

Evolutionary design is well established in the field of archi-
tecture [2, 28]. Genetic algorithms have been used to design
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external shapes [27, 26, 6], internal floor plans [12, 17, 13],
and structurally sound forms [31].

Of particular relevance in today’s world of climate change
is the application of evolutionary algorithms towards energy-
efficient building design. Some examples are as follows. Cal-
das applies evolutionary design towards a number of energy-
related design problems, such as window placement, and
building and roof design, in order to minimize energy use
[7]. Turrin et al. evolve large roof structures that provide
thermal and lighting comfort using passive solar techniques
[30]. Malkawi et al. address the placement of windows and
air ducts to maximize ventilation and satisfy thermal cri-
teria [19]. Marin et al. create 3D building designs that
maximize sunlight explosure during winter [20]. Harring-
ton et al. evolve structures that maximize sun exposure
in summer, and minimize it in winter [14]. Yu considers
human occupancy factors, which helps in efficiently using
lighting and mechanical heating and cooling systems [33].
Bouchlaghem designs building envelopes using energy con-
siderations [5]. Wright et al. use a genetic algorithm to
design the HVAC (heating, ventilating, and a/c) system for
a multi-story building [32].

This paper uses genetic programming (GP) to evolve build-
ings using energy efficiency considerations. A split gram-
mar denotes aspects of the building to be evolved, including
model geometry, window definitions, roof shape, and con-
struction materials. Experiments focus on simple cuboid
structures with optional roof shapes and open-space floors.
The two main energy factors investigated are winter window
heat gain and annual energy usage. These factors are usually
at odds with each another. Passive solar heating in winter
requires windows to collect the mid-day solar radiation. But
these same windows are poor insulators at night, and also
can cause overheating during warmer weather. One goal is
to see how well evolution balances these competing factors in
the solutions produced. We introduce other model require-
ments into fitness measurements, which pertain to model
shape and window usage. We use multi-objective analysis
to evaluate these multiple, often conflicting, requirements.

Another goal is to explore the effects of location geogra-
phy on the model designs. Fitness evaluation uses the En-
ergyPlus simulation software to perform energy simulations.
This comprehensive system considers a wealth of factors,
such as model shape and size, windows, and materials used.
It also considers environmental information about the lo-
cation, for example, weather conditions, latitude/longitude,
time of year and day, and many others. This results in a
very detailed and precise analysis of energy usage.



The paper is organized as follows. Section 2 reviews the
EnergyPlus system, and discusses basic issues regarding en-
ergy analyses and evolutionary design. Our system’s split
grammar and sum of ranks multi-objective technique are
described in Section 3. Section 4 presents results for two
experiments. The first examines a single-story building de-
signed for 5 diverse world locations. The second case inves-
tigates a multi-story building, evolved using 5 fitness objec-
tives pertaining to shape and energy factors. Comparisons
with related work are made in Section 5. Concluding re-
marks end the paper in Section 6.

2. ENERGY EFFICIENCY AND EVOLUTION-

ARY DESIGN
2.1 EnergyPlus

A green building is a sustainable resource-efficient build-
ing, that minimizes negative impact on the environment [16].
According to a report published in 2006 [1], over 70% of
green building research was focused on energy and atmo-
sphere research. Therefore, in most cases when designing
a green building, architects and engineers try to minimize
fossil fuel energy and electricity usage. One way to do this
is by using passive and active solar techniques for heating
during the winter, and not overheating in the summer.

There are many building analysis systems available for
thermal simulation and energy usage analysis. One popular
free system is EnergyPlus [24]. EnergyPlus uses a sophis-
ticated and detailed simulation that considers load calcula-
tion, building and energy performance, heat and mass bal-
ance, water use, energy flow, and other factors. To analyze
a building model, EnergyPlus will consider the structure’s
geometry and construction (eg. materials, windows, doors,
roof shape), and environmental information about the loca-
tion (latitude and longitude, weather, time of year, time of
day, and many others). The result is a precise and com-
prehensive analysis, useful for performing detailed investi-
gations about many aspects of energy use of the building.
More than 2000 international weather files are available.

We use EnergyPlus to perform energy analysis during fit-
ness evaluation. Our GP system (written in ECJ) commu-
nicates with EnergyPlus via multi-threaded spawned pro-
cesses. GP generates an input file for EnergyPlus, contain-
ing all evolved aspects of the building to analyze, including
model geometry, location of windows and doors, and mate-
rial information for all components. A weather file will sup-
ply the relevant geographic and environmental information
for the building’s location. Results of EnergyPlus’s analysis
will then be used to establish energy performance. Final
results of analyses, including 3D model views, are readable
with Sketchup®, a free 3D design and visualization tool. All
the 3D images in this paper are rendered with Sketchup.

2.2 Preliminary Insights

Preliminary experiments gave useful insights into the na-
ture of energy evaluation and evolutionary design. We quickly
learned that the most energy-efficient buildings may also be
undesirable ones. For example, we did some runs using a
single fitness criteria: minimize annual energy usage in win-
ter. Figure 1 shows the inevitable result — a tiny insulated
shack with no windows, and small or missing door. Small
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Figure 1: Evolved result using only winter heating
energy usage, and not considering solar heat gain
via windows.

buildings with no windows and doors are most efficient to
heat and cool.

Practical designs require balancing energy efficiency and
functional necessities. With respect to the window creation,
there are two strategies that can be used. One approach is
to enforce window creation with the split grammar, to guar-
antee window generation via the genotype itself. However,
enforcing too many design constraints this way can discour-
age innovation, which is a recognized strength of evolution-
ary design. Another strategy is to use evolutionary pres-
sure to encourage windows. For example, one can introduce
a window heat gain measurement, which EnergyPlus read-
ily calculates. This encourages passive solar heating during
winter daytimes, which should promote lower energy con-
sumption during winter. However, these windows also result
in heat leakage during winter nights, and higher air condi-
tioning costs in the summer, both of which increase energy
consumption. It will be a task for GP to balance these com-
peting factors.

Early experiments showed that using winter window heat
gain alone was often unsatisfactory. Although it would in-
deed encourage window creation, especially in the direction
of the noon Sun, other sides of the building could still have
minimal window areas, or none at all. A combination of
window heat gain and other window area evaluations (eg.
area %) seems to be an approach to consider.

Other design trends were seen. Skylights are energy leak-
ers, and GP always discards them. Similarly, flat roofs were
always preferred. Because we did not incorporate insulated
attics, any non-flat roof would needlessly enlarge the build-
ing’s interior, adding to energy use. These insights not with-
standing, gabled roof shapes and skylights were always avail-
able for use, although we expected evolution to ignore them.

(¢) Overhangs and skylights.

(d) Gabled Skylight roof.

Figure 2: Roof, overhangs, skylights.



The architectures examined are based on basic cuboid
structures, with roof variations (Fig. 2). We do not con-
sider room layouts (floorplans), but instead treat each floor
as an open space. EnergyPlus can handle either case, and
both affect its energy simulations. Note that, in the case
of open areas, EnergyPlus will not accurately simulate floor
levels whose footprints have concavities.

3. SYSTEM DETAILS
3.1 Split Grammar

G
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Figure 3: An example of rules for a split grammar.
The split rule at the top splits a wall into 12 sub-
walls. The bottom-left rule converts a sub-wall to
wall and door. The bottom-right rule converts a
sub-wall to window, overhang, and wall.
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Figure 4: View of a building model, and its split
grammar tree.

Stiny proposed shape grammars for constructing 2D and
3D designs [29]. A shape grammar is a context-sensitive
grammar that rewrites configurations of shape components
into new configurations, visaviz rewriting rules. A split
grammar is a restricted shape grammar that uses iterative
sub-division rules instead of general rewrite rules (see Fig-
ure 3). Although of weaker expressivity, split grammars are

more easily implemented in computer software, and are also
practical in applications for 3D architecture [15, 23, 10].

Our GP design grammar takes the form of a split gram-
mar. We implement the split grammar in the style of one
used in McDermott et al. [21]. Explicit mappings are made
between the GP tree expressions and models being designed.
Figure 4 shows a GP tree, along with the corresponding
building structure. Each modeling requirement (cubic model
with 3 walls, 1 wall with a door, floor, roof,...) is encoded
directly in the tree. Other GP functions likewise refine the
requirements of walls, doors, windows, skylights, and so on.

We use the ECJ GP system [18]. The grammar is im-
plemented using strong typing [22], where 11 data types
are defined. These range from basic numeric types, to spe-
cialized types for different components (window, door, roof,
...). Specialized functions define specific architectural com-
ponents. For example,

Add Door Grid(I1,1I2,Is,D, W, I4)

is a function of type DoorGrid. It creates a subdivided wall
into an I; x I grid, locates the door at position I3, uses
expression D to define the door, W to define the windows,
and I4 to define the wall material. D and W are subtrees
of type Door and Wall respectively. Other design functions
include Add Window, Add Gabled Roof, and others.

Name | Material U-Factor
Wall_1 | wood, fiberglass, plaster 0.516
board
Wall 2 | wood, plywood, insula- 0.384
tion, gypsum
Wall 3 | gypsum, air (0.157 TR), 1.978
gypsum
Wall 4 | gypsum, air (0.153 TR), 1.994
gypsum
Wall_5 | brick, insulation, con- 0.558
crete, gypsum plaster
Name | Material U-F. | SHGC
Win 1 | 3mm glass, 13mm air, | 2.720 | 0.764
3mm glass
Win_2 | 3mm glass, 13mm argon, | 2.556 | 0.764
3mm glass
Win_3 | 6mm glass, 6mm air, 6mm | 3.058 | 0.700
glass
Win 4 | 6mm LG, 6mm air, 6mm | 2.371 | 0.569
LG
Win_5 | 3mm glass 5.894 | 0.898
Win_6 | 6mm glass 5.778 | 0.819

Table 1: Wall and window materials. LG=low emis-
sivity glass.

Different construction materials with varying energy ef-
ficiency properties are available to the grammar. Wall and
window materials are shown in Table 1. U-factor is the over-
all heat transfer coefficient. Lower U-factors means better
insulation. SHGC (Sun heat gain coefficient) measures the
solar energy transmittance of glass. A high SHGC means
solar energy (heat) is more easily transferred through the
glass. The total number of materials were 5 walls , 3 roofs,
2 floors, 6 windows, and 3 doors.



3.2 Multi-objective Fitness Evaluation

Table 2: Example different rankings for a minimiza-
tion problem. Best in each ordering labelled *.

Fitness Wt- Pareto| Ranks | NRS
Sum Rank
(33,0,125,39) | 197 1% (3,1,6,3) | 2.27
(30,24,38,18) | 110 * (2332) | 14
(0,47,43,18) | 108% | 17 (1442) | 1.73
(78,62,2,0) | 142 * (6,61,1) | 1.377
(43,19,20,79) | 161 * (4224) | 147
(55,55,89,80) | 279 2 (5,5,5,5) | 2.67

Given the multiple, heterogeneous factors used in fitness
evaluation, we treat this as a multi-objective problem (MOP)
[9]. This avoids the complexities and biases involved with
a single-objective, weighted sum approach. We use the sum
of ranks (average rank) scoring strategy. It was originally
used for high-dimensional MOP [3, 11], since Pareto ranks
is increasingly ineffective with 4 or more objectives. Unlike
Pareto, sum of ranks does not commonly result in outlier
solutions that are strong in a minority of objectives [4].

Sum of ranks is computed as follows. Given a minimiza-
tion problem in k objectives, a population member i has
a raw objective vector (oi7 ...,02). Next, each objective 1
through k is assigned a rank relative to the rest of the popu-
lation, resulting in a rank vector (7%, ..., ri) The normalized
sum of ranks is then:

k i
. T
Fitness; = E
— mazx;
Jj=1

where max; is the maximum rank value for objective j.
Lower fitness scores are preferred.

Table 2 shows example rankings for a minimization prob-
lem of 4 objectives. The weighted sum tallies the raw scores
using a weight of 1 for all. This is followed by the Pareto
rank. Finally, the normalized sum of ranks is shown, using
the above procedure.

To promote diversity, when 2 individuals have identical
raw fitness vectors, a penalty value is added to their ranks.
This discourages copies of the same individual.

4. EXPERIMENTS AND RESULTS
4.1 Experiment: Geography

Table 3: Average daily temperature (C) for 5 cities.

Location Description Jan. July

Anchorage, USA  northern subarctic -2 14

Eldoret, KE equatorial, tropical 17 17

Las Vegas, USA  subtropical, hot desert 9 32

Melbourne, AU southern hemisphere, 18 8.5
temperate

Toronto, CA humid continental -6 21

A single-story building suitable as a public facility (pool,
library) or small business (offices, store) is to be designed.
Table 3 lists 5 cities to be separately considered. The goal is
to see how their geographic locations and weather affects the

Functions Add Root, Add Cube, First Floor, Add
Door Grid, Add Grid, Add Door, Add
Window, Add Window Overhang, Add
Empty Grid, Add Simple Roof, Add Sky-
light, Add Gabled Roof, Add Gabled
Roof2

Flt/Int math avg, max, min, *, /, IfElse,

float: (half, half2), int: (inc, dec)

Terminals ERC, Int_ERC

Table 4: Design language.
Parameter Value
Number of runs per city 10
Generations 100
Population size 300
Initialization ramped half&half
Grow tree depth range 2-6
Full tree depth range 5-12
Max tree depth 17
Tournament size 3

Crossover /mutation rates 90%/10%
Probability of function node selection  90%
Elitism 2
Diversity penalty 2

Table 5: GP Parameters

resulting designs. Files containing weather data and other
geographic information for the cities were obtained from [25],
and used by EnergyPlus.

The split grammar is summarized in Table 4. Only single
floor models are considered. A variety of roof shapes are
possible, as well as skylights and window overhangs. Walls,
windows, doors and floors are constructed from materials,
as described in Section 3. Reasonable size ranges for floors,
walls, doors, and roofs are specified. For example, floors are
between 10 to 20 meters in length and width.

The fitness objectives are: (i) Window heat gain in win-
ter (maximize); (ii) Annual energy consumption (minimize);
(iii) At least 25% window area per wall. The first two objec-
tives are measured by EnergyPlus. Temperatures below 20C
invoke heating, and those above 24C activate air condition-
ing. Window area is evaluated by proportionally penalizing
wall window areas below 25%. Other GP parameters are
shown in Table 5.

4.1.1 Results

Location | South | West | North | East
Toronto 94 27.5 24 35
Las Vegas | 87 28 25 28
Eldoret 45 52.5 27.5 55
Anchorage | 89 26 22.5 28
Melbourne | 25 29 81.5 38

Table 6: Window area of top solutions.

Figure 5 (a-e) shows the top ranked solution for each city’s
10 runs, and an additional Toronto solution (f). They were
selected by collecting the top ranked solution of each of the
10 runs per city, and re-ranking using the sum of ranks.
The resulting top score is designated the top-ranked solu-



(a) Anchorage, USA (b) Eldoret, Kenya

(¢) Melbourne, Australia (d) Las Vegas, USA

(f) Least efficient Toronto
solution (“a”)

(e) Toronto, Canada

Figure 5: Top ranked solution for each location.

tion (which does not necessarily mean they have the mini-
mal energy efficiency, since energy usage is but one of the 3
objectives considered).

Some design trends can be seen. Energy considerations
meant that all models have flat roofs. Alternate roof shapes
do not contribute to window heat gain, and so the greater
volumes they introduce are detrimental. Skylights never ap-
pear, as they reduce energy efficiency (they are poor insu-
lators). Window awnings are missing or very small. Larger
awnings reduce heat gain, and so they are discarded.

All northern cities (a, d, e, f) have a wall of windows fac-
ing south for solar heat gain, while Melbourne’s (c) is facing
north. Eldoret’s equatorial location means that window heat
gain is omnidirectional. Windows on the other walls are of-
ten minimally over the desired 25% target. Many Eldoret,
Melbourne, and Toronto models tended to have larger win-
dow areas on the east compared to the west. Perhaps this
warms the building in the morning, after a cold night. Table
6 summarizes the window areas for the top solutions.

Most building footprints expanded to the maximum area.
The exception to this was Anchorage, whose models were
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250.00 -

ed

E 200.00 ¥
? 150.00 | ® ¥ # Anchorage

>K MEldoret
& * d K "
% 100.00 - ‘ % A Melbourne
3 ? ™ Yy
c A& m B ®Tomonto
S 5000 - A
<t * A = Wegas

A
b
0.00 T T
0 20000 40000 60000 80000

Window Heat Gain{W)

Figure 6: Energy usage scatter plot of top-ranked
solutions. Each point is top scoring solution from
one run.
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Figure 7: Emnergy consumption of the top-ranked
model for each city, January 1 and July 1.

smaller than the others. Because of the weak sub-arctic Sun,
window heat gain has less impact, and so smaller building
sizes are preferred for heating.

Figure 6 is an energy vs window heat gain scatter plot of
the solutions. Each city’s set of solutions occupies a distinct
niche, with only Melbourne and and Las Vegas partially
coinciding. Note that heat gain is proportional to annual
energy usage: greater sun exposure for heat gain requires in-
creased window area. But these windows are poor insulators
during winter nights, and also increase cooling costs during
the summer. Anchorage models have the least window heat
gain. Conversely, the intense sunlight at Eldoret (equator)
and Las Vegas give them the highest heat gain. The most
efficient model was a Melbourne model (b), while an outly-
ing Toronto solution (a) was the least efficient. Curiously,
the plotted solutions appear to reside on Pareto fronts. An
analysis shows that 8 solutions for Eldoret, Toronto and Las
Vegas sets are Pareto undominated, as are 9 for Anchorage
and Melbourne.
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Figure 8: Annual window heat gain: Toronto and
Melbourne

The annual energy usage in Figure 6 spans a significant
range. The average home energy usage in Canada ranges
between 94-129 GJ?, and so our energy range is reasonable.
Note that domestic houses are much smaller than the build-
ings in Fig. 5, and do not have empty, open floor plans as
our models have. In the GP runs, energy efficiency competed
equally with window heat gain and minimum window area,
and the solutions indicate varying degrees to which these
criteria were satisfied. Besides factors in material selection
(discussed below), the main criteria for comparing and se-
lecting between solutions for each city is to determine the
preferred balance between heat gain and energy use. The
top-ranked Toronto solution in Figure 5(e), also happens to
be the most energy efficient of the Toronto models. An al-
ternative Toronto solution shown in Figure 5(f) is the least
energy efficient Toronto solution (“a” in Figure 6) The dif-
ference between these solutions’ scores — and most solutions
for all cities — is due to this classic trade-off between energy
use and window heat gain. The model in (f) has the largest
roof height, and hence largest southern window area. This
optimizes window heat gain, but also increases energy use
on the whole. The model in (e) has the smallest height of
all the Toronto models. Hence it has lower heat gain, and
uses less energy.

Figure 7 shows the hourly energy consumption of the top-
ranked models for each city, during January 1 and July 1.
Melbourne has consistently low energy use. Las Vegas, how-
ever, is an energy hog during winter nights and summer days.
Toronto also requires heating energy during winter nights.

The effect of latitude is illustrated in Figure 8. Toronto’s

heat gain peaks in August, while Melbourne’s peaks in March.

Consistent use of energy-efficient materials could be seen
in the solutions. Walls always used an energy-efficient ma-
terial definition composed of brick, insulation, concrete, and
gypsum plaster (Walls in Table 1). A window glass (Winz)
having a balance of good U-factor and high SHGC was used
in almost all cities. Anchorage results, however, sometimes
used Wing, which sacrifices SHGC efficiency for higher in-
sulating properties.

4.2 Experiment: Multi-floor Building

Here, we create a 5-floor office building to be built in
Toronto, Canada. Five fitness objectives measuring energy

*http://www.statcan.gc.ca/pub/11-526-s/2010001 /part-
partiel-eng.htm

efficiency and model design are defined: (i) Window heat
gain in winter (maximize). (ii) Annual energy usage (min-
imize). (iii) Each wall should have 35% window area. (iv)
Each floor should have 15% smaller area than the floor be-
low it. (v) The sum of floor level volumes should be 10000
m?>. Ttems (i) and (ii) use the evaluations as used in Section
4.1. Sum of errors squared is used for (iii) and (iv), and
the absolute volume error is used in (v). The GP language
in Table 4 is used, except that Add Root permits 5 floors.
The parameters in Table 5 are used, although the maximum
generations is increased to 80.

4.2.1 Results
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Figure 9: Window sum of errors. Average 10 runs.
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Figure 11: Annual energy. Average of 10 runs.

Figure 9 shows the performance of the 10 runs for the
window objective (volume and floor area graphs are simi-
lar). The plots of the energy objectives are in Figures 11
and 10. Due to the stringent geometry criteria used, en-
ergy improvements were more difficult to optimize. Window
heat gain steadily improves, until it plateaus at generation
45. This concides with the time when window areas have
reached their 35% goal (Fig. 9). Thus, window heat gain



Figure 12: Best model of 10 runs for multi-floor
experiment

can only improve by reducing the window objective score.
Hence, a balance has been reached between them.

Looking at the annual energy plot, a slow increase in en-
ergy consumption occurs up to generation 40. At that point,
there is a gradual improvement to the score until the end of
the run. This phenomenon often arises with sum of ranks
scoring. Improvements to one objective can be delayed, to
allow for improvements in other objectives. It is a demo-
cratic distribution of benefits to the population as a whole.

Figure 12 shows the top ranked solution of the 10 runs
(again determined by using sum of ranks on the 10 top-
scoring solutions). Its window areas are 32.3% (N), 33.5%
(E), 36.4% (W), and 36.4% (S). The total volume is 9950 m>.
The same wall and window materials were selected as used
in the majority of cities in Section 4.1. Some very small
window awnings appeared in the model. Larger awnings
reduce solar heat gain during the winter.

S. RELATED WORK

Caldas’s research using evolutionary computation towards
energy efficient building design (reviewed in [7]) is the most
related to ours in many respects. In [8], she uses multi-
objective Pareto ranking to reconcile two objectives: max-
imize daylight use and minimize energy consumption. She
examines Pareto-undominated solutions to show trade-offs
between these conflicting objectives. Whereas a single run
with Pareto ranking can produce multiple candidate solu-
tions, we obtain a similar effect in Section 4.1.1 with mul-
tiple runs using the sum of ranks. (We did not examine
multiple solutions from a single run.) An advantage of sum
of ranks over Pareto is that its solutions tend to perform
well in multiple objectives, whereas Pareto solutions can of-
ten be outliers, with a good score in only one objective. For
evolutionary design problems [4], including those examined
here, such solutions are often of little value. Furthermore,
Pareto ranking becomes ineffective with 5 or more objec-
tives, as found in our multi-floor building experiment. Sum
of ranks was originally suggested for high-dimensional multi-
objective problems [3, 11], and is quite suitable for the size
of problems examined here.

Caldas uses the DOE2 simulation software to evaluate en-
ergy usage. DOE2 is a forerunner of EnergyPlus, and uses
many of the same factors we use (material, model shape,

windows, etc.). Since she uses a genetic algorithm, her chro-
mosome has fixed fields for denoting the evolved model pa-
rameters required in DOE2 simulations. Our split grammar
is more flexible for denoting variable-sized, complex struc-
tures. Although we did not exploit split grammars to explore
complex building shapes, we were easily able to denote vary-
ing forms of roof structures, skylights, and multiple floors.

Whereas our GP system was entirely automated, many
researchers use semi-automated methods for energy-efficient
building design. Turrin et al. evolve roofs using an inter-
active GA [30]. The user will consider the roof aesthetics,
along with energy simulation results, to interactively eval-
uate results. Similarly, Malkawi et al. use a GA to evolve
energy efficient rooms using a combination of energy simu-
lation and user interaction [19]. Marin et al. also incorpo-
rate results of energy evaluation with human judgements to
evolve building envelopes (shapes) [20]. We feel that user
interaction is the next natural direction for our system, as it
would permit aesthetic judgements to be included. Although
we did not examine complex building envelopes, aesthetics
would definitely be useful for that, as well as for evaluating
the window design and placement that arose in our models

Our split grammar is a simplified version of one presented
by Muller et al. [23], and later used by Coia et al. with GP
[10]. Our implementation of the split grammar is inspired
by the grammar used in McDermott et al. [21].

6. CONCLUSIONS

This paper applied GP towards the energy-oriented de-
sign of building architectures. By using the sum of ranks
analysis, multiple diverse and conflicting design objectives
were considered. Results show that solutions from differ-
ent runs present trade-offs of the design goals. In particu-
lar, because we treated annual energy use and winter heat
gain with equal priority, solutions usually indicate a trade-
off of these two factors: winter heat gain improvements come
at the expense of annual energy usage. In future work, it
would be worth examining different preferential targets for
energy use and heat gain. One intriguing idea is to con-
sider seasonally-adaptable window awnings. Furthermore,
EnergyPlus is capable of accounting for an enormous range
of factors besides those that we examined, including ven-
tilation models, various HVAC design factors, floor plans,
human factors (clothing), staged zone thermostats, and a
host of others. All these factors can be considered in evolu-
tionary design.

We found the split grammar implementation to be very
practical for the problems examined. Any aspect of the
building architecture (size, shape, material, window place-
ment,...) was quickly incorporated into the grammar. Fur-
thermore, candidate structures were usually sensible. This
would not be the case if a more general design grammar
(L-system, shape grammar) were to be used. Although we
focussed exclusively on simple cuboid structures with dif-
ferent roof choices, the split grammar formalism can denote
many complex building layouts and envelopes, which future
research should examine. However, in order for EnergyPlus
simulations to be accurate, complex footprints will require
floor plan definitions. Automated floor plan design is itself
a significant complex problem [12, 17, 13].

Our experiments never considered the aesthetic merits
of the evolved structures. Although the cuboid structures
permit little design variation, window placement could be



evaluated with respect to aesthetics.

For this purpose, a

symmetry analysis might be included. Alternatively, per-
mitting user interaction with the system, as done by other
researchers (Section 5), is worth considering.
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