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ABSTRACT
Particle swarm optimization (PSO) is a stochastic population-
based search algorithm that is inspired by the flocking be-
haviour of birds. Here, a PSO is used to implement swarms
of cameras flying through a virtual world in search of an
image that satisfies a set of compositional constraints, for
example, the rule of thirds and horizon line rules. To effec-
tively process these multiple, and possible conflicting, cri-
teria, a new multi-objective PSO algorithm called the sum
of ranks PSO (SR-PSO) is introduced. The SR-PSO is use-
ful for solving high-dimensional search problems, while dis-
couraging degenerate solutions that can arise with other ap-
proaches. Less user intervention is required for the SR-PSO,
as compared to a conventional PSO. A number of problems
using different virtual worlds and user-supplied constraints
were studied. In all cases, solution images were obtained
that satisfied the majority of given constraints. The SR-PSO
was shown to be superior to other algorithms in solving the
high-dimensional virtual photography problems studied.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation

Keywords
particle swarm optimization, virtual photography, multi-objective
optimization

1. INTRODUCTION
In recent years, research has investigated the creation of

high-level tools for assisting photographers in the produc-
tion of images adhering to artistic rules of composition. Au-
tomated photography refers to algorithmic techniques for the
unsupervised automation of photographic composition, for

.

images taken in both virtual and real-life environments. We
adopt the term virtual photography to refer to automatic
photography within a virtual 3D environment. The auto-
mated composition of such images is important, since images
should comply to established norms of artistic composition.
This technology is also applicable to automated editing of
digital photographs. This may result in intelligent photo-
graphic assistants built into cameras that modify images
to make them more compositionally pleasing and “profes-
sional”. A related problem is virtual world exploration [14],
where agents autonomously seek out desirable subject mat-
ter within the virtual world.

Particle Swarm Optimization (PSO) is commonly used in
virtual photography. Ermetici et al. [9, 19] use a PSO to
generate images in a virtual environment complying to a set
of supplied constraints. These constraints specify the visi-
bility of different game avatars, and their orientation with
respect to the camera. Preuss et al. [25] apply a niching
evolutionary algorithm to the virtual photography problem,
in search for a diversity of results that satisfy compositional
constraints. Bares and Kim [6] automate rules of composi-
tion by considering subject size, view angle, location, depth,
exclusion, and occlusion. Bares [5] expanded this work with
a Virtual 3D Camera Assistant for 3D virtual photography.
Virtual photography has been applied to cinematography
to assist in composition. Abdullah et al. [1] use a PSO to
optimize cinematographic images via composition rules. Ex-
amples of real-life photographic editing include [3, 4, 8, 22,
27].

This paper presents a new technique for virtual photog-
raphy. Like Ermetici et al. [9, 19], a PSO algorithm is used
to harness a swarm of cameras to autonomously explore a
virtual 3D world. Each camera will move through the world
in search of an image that satisfies a supplied set of aes-
thetic rules. Since there are usually multiple compositional
requirements to be satisfied, a multi-objective approach is
taken here, in order to reconcile the multiple aesthetic con-
straints of images. When composing a picture with a cam-
era, many things must be considered. The subject(s) of
interest must be present, and the amount of image real es-
tate it covers must be considered. The subject should be
positioned close to one of the four rule of thirds loci. Other
objects of interest will have similarly considerations. The
horizon rule states that it should reside at a one-third or
two-thirds vertical position in the image. The colour palette
of the image also may be of consideration. An advantage of
multi-objective search is that the user is usually not required
to specify how different objective scores are to be measured



with respect to each other.
We introduce a new multi-objective PSO algorithm called

the Sum of Ranks PSO. The SR-PSO borrows a multi-
objective strategy used in high-dimensional genetic algo-
rithms [7], which are used to optimize problems with a large
number of conflicting objectives. Besides its ability to han-
dle many problem constraints, images obtained with it are
less likely to be outlier solutions (ones that satisfy a small
minority of objectives).

Obvious applications for this research may be within video
games, virtual reality portals (Google Streetview), and 3D
building design software. For example, today’s games strive
to generate complex, realistic virtual worlds. These worlds
also contain objects of interest to the game, which require
time and effort for creating specific cameras to focus upon.
Using the strategy proposed in this paper, game developers
could have PSO agents automatically discover objects of in-
terest, and return dramatically composed images of them.
More advanced applications of this technology are conceiv-
able. For example, one could imagine the PSO swarm to be
autonomous robot helicopters [23].

The paper is organized as follows. Multi-objective prob-
lem solving is discussed in Section 2. Section 3 introduces
the SR-PSO algorithm, as well as other PSO algorithms used
in comparisons in later sections. The composition rules used
in this research are discussed in Section 4. The system archi-
tecture is described in Section 5. Results and comparative
analyses are given in Section 6. Comparisons to related re-
search is given in Section 7. Section 8 gives conclusions and
directions for future research.

2. MULTI-OBJECTIVE PROBLEMS
A multi-objective optimization problem is one in which

two or more objectives must be optimized [11]. These mul-
tiple objectives often interact in complex, nonlinear, and
conflicting ways. Often, the best one can hope for is that
the majority of objectives can be balanced and satisfied to
an acceptable degree.

2.1 Pareto Ranking
The most popular multi-objective scoring strategy is Pareto

ranking [13]. Pareto ranking is based on the concept of
Pareto dominance.

A dominates B ↔ (∀obj fobj(A) ≤ fobj(B))
∧ (∃obj fobj(A) < fobj(B))

where fobj(P ) is the score of objective obj in agent P , 1 ≤
obj ≤ n objectives, and f defines a minimization problem.
A dominates B if it is superior to B in at least one objective,
and equal to B in the remaining objectives.

Using the definition of Pareto dominance, a population of
agents is examined. The undominated agents are assigned
the Pareto rank of 1 and removed. The undominated agents
from the remaining population are assigned the rank of 2.
This continues until all agents are ranked. Lower ranks are
preferred. Example rankings are given in Table 1.

Pareto ranking becomes ineffective with more than 5 ob-
jectives, because most of the population becomes undom-
inated. In such cases, the sum of ranks scoring strategy
should be considered.

Objectives Ranks
O1 O2 O3 P R1 R2 R3 SR

1) 10 5 80 1 5 1 2 2.25
2) 6 50 80 3 4 3 2 2.55
3) 3 60 20 3 3 4 1 2.1
4) 2 40 20 2 2 2 1 1.4
5) 1 40 20 1 1 2 1 1.2

max: 5 4 2

Table 1: Example of sum of ranks calculation. Oi are
raw scores (lower preferred), P are the Pareto ranks,
Ri is the rank of Oi, and SR is the (normalized) sum
of ranks.

2.2 Sum of Ranks
The sum of ranks (or average rank) was originally pro-

posed for solving high-dimensional multi-objective problems
[7, 12]. Consider a problem with K objectives, each of which
must be minimized. Each individual j in the population is
assigned a rank vector, in which each objective score for the
objective is given a rank value r(1 ≤ r ≤ N) for population
size N : Rj = < r1, ..., rK >. Individuals with tied scores
have the same rank value. These rank scores are always set
relative to the current population. Hence, a rank ri = 1 will
be found in the vector of the individual that has the best
score in objective i in the population. The sum of ranks
score Sj for each individual in the population is then:

SRj =
K

X

i=1

wiri

maxi

where wi is an optional weight (default 1.0), and maxi is the
maximum rank for each objective. Normalizing the ranks
by max makes the rankings uniform amongst the different
objectives.

Table 1 shows some example calculations. Rows 1-5 rep-
resent the population. Objective scores are to be minimized.
Note how the ranks Ri replace the raw objective scores with
rank orderings. SR is the sum of the normalized ranks in
that row, which are found by dividing each Ri by the max-
imum rank for that objective (column). Note that the rela-
tive orderings of the SR scores and Pareto ranks (P) differ.

3. PARTICLE SWARM OPTIMIZATION

3.1 The Basic PSO Algorithm
Particle swarm optimization (PSO) is a population based

search algorithm inspired by the social behaviour known as
flocking [15]. Swarm individuals (particles, agents) have two
important attributes: velocity and position. These two at-
tributes are best thought of as a K size vector, for a problem
with K values to optimize. Throughout a simulation, each
individual updates its own position by its own velocity, and
the velocity is modified by one value from within the pop-
ulation and one value from itself. The influence from the
population is a global best gbest, which is the best individ-
ual from within the swarm. The influence from an individual
agent is its personal best pbest, which is the best solution
that the individual has seen.

More formally, the different attributes that contribute to
the change of a particles position or state are:



p⃗i: particle position or state
v⃗i: particle velocity
w: an inertia value to control the velocity

⃗pbest: particle’s personal best solution
r1: random number between (0,1)
c1: constant constraint for pbest

⃗gbest: swarm’s best solution
r2: random number between (0,1)
c2: constant constraint for gbest

Using these attributes, individuals in a swarm update their
velocity:

v⃗i = wv⃗i + c1r1( ⃗pbest − p⃗i) + c2r2( ⃗gbest − p⃗i) (1)

A particle’s position is then updated:

p⃗i = p⃗i + v⃗i (2)

Algorithm 1: Particle swarm optimization

1 for i = 1 to N do
2 pi ← randomize;
3 pbesti ← pi;
4 if f(pi) < f(gbest) then
5 gbest ← pi;
6 end
7 vi ← randomize;
8 end
9 while Termination criteria not met do

10 for i = 1 to N do
11 for d = 1 to D do
12 Generate random numbers r1, r2;
13 Update vi with Eqn. (1);
14 end
15 Update pi with Eqn. (2);
16 if f(pi) < f(pbesti) then
17 pbesti ← pi;
18 if f(pi) < f(gbest) then
19 gbest ← pi;
20 end
21 end
22 end
23 end

Algorithm 1 outlines the basic PSO. The algorithm as-
sumes a swarm size of N. Termination criteria will either be
a maximum number of iterations of the algorithm, or the
detection of a particle whose fitness is within a minimal re-
quirement. The conventional PSO outlined is distinguished
by the fitness evaluator f returning a single-value numeric
result, where lower values are preferred. Should the prob-
lem in question have multiple constraints to satisfy, then a
weighted sum formula is used:

f(p) =
K

X

j=1

wjfj

where there are K constraints p = (f1, ..., fK), and wj is a
weight factor.

The next two sections present alternative ways of calcu-
lating the fitness of a particle with multiple constraints.

3.2 The SR-PSO Algorithm
A new PSO algorithm, the sum of ranks PSO (SR-PSO),

is introduced. It is largely the same as the PSO in Algo-
rithm 1. The main difference is the method by which fitness
scores are found in the multi-objective search space, where it
replaces the weighted sum formula (line (13)) with the sum
of ranks scoring method discussed in Section 2. In order to
find pbesti and gbest, the SR-PSO uses archives of particle’s
multi-objective score vectors for determining sum of ranks
scores. Each particle has its own archive of personal best
vectors, while the swarm has an archive recording best vec-
tors seen overall. The sum of ranks calculation is applied to
these archives, and the lowest sum of ranks scores are used
to identify the pbest for each particle, and gbest for the
swarm.

To update the simulation best gbest, the sum of ranks
algorithm determines the current gbest from the popula-
tion and appends this agent to the simulation best archive.
If there is more than one current best when analyzing the
population (multiple individuals have the same sum of ranks
value), all the tying agents are added to the archive. This
archive is then sorted by the sum of ranks, and the best
from the archive is chosen as the simulation best. If there
is more than one best, one of these is randomly selected.
Similarly, each particle has a personal archive, which is pro-
cessed similarly to determine the pbest value for a particle.
Since archives might grow very large during long runs, a
user-supplied size limit is placed on the archives.

3.3 The Pareto PSO
The MOP PSO algorithm of Mostaghim and Teich [24]

was selected as a comparison algorithm. Briefly, this al-
gorithm assigns each agent in the swarm a σ value, which
is a slope value. Equation 3 solves the σ value for a 2-
dimensional problem:

σ =
f 2
1 − f 2

2

f 2
1

+ f 2
2

(3)

N-dimensional problems have higher-dimensional slopes com-
puted. A global archives of Pareto undominated swarm best
solutions is maintained, along with their σ values. To de-
termine the gbest for a particle, the Pareto undominated
particle in the archives with the closest slope to that particle
is determined, and is selected as the guide for the particle.
If an agent is already considered to be Pareto optimal then
it uses itself as the gbest. The rationale for this approach
is that such a selected guide will direct the particle more
directly towards the Pareto front.

The pbest is determined in the same manner as the con-
ventional PSO in Section 3.1.

3.4 Bootstrapping
An option called bootstrapping is available. Image evalu-

ation rules in Section 4 such as object detection and rule of
thirds are not measurable if an object of interest is not seen
in an image. When this happens, only rules such as colour
palette matching and horizon line return meaningful scores,
and the swarm will optimize only these rules, and ignore
the others. With bootstrapping, the PSO will repeatedly
randomize particles until at least one particle has spotted
an object of interest. Once such an object is found, object
detection and rule of thirds will be measurable, and this will
improve PSO performance across multiple objectives.



4. COMPOSITION RULES

4.1 Rule of Thirds
The rule of thirds is one of the most important composi-

tion rules[18]. An image is subdivided into thirds horizon-
tally and vertically. The areas around the four intersections
are positions where dominant objects of interest should re-
side. To implement the rule of thirds, the pixel mask for
objects of interest is determined (Section 4.3 below). If an
object of interest is found in the image, the centroid for its
visibly rendered pixels (n total) is determined:

Cx,y =

P

[x, y]
n

Then the Euclidean distances between Cx,y and each of the
four rule of thirds locations is determined. The least distance
found is assigned as the rule of thirds score.

4.2 Horizon Line
The horizon line rule also uses the concept of proportion

of thirds. The horizon is the delineation line where the sky
meets the land. The horizon line rule states that the hori-
zon should reside at a proportion of either one-third or two-
thirds vertically in an image[17]. The implementation of the
horizon line rule first requires a mask image to be rendered,
with the mask indicating the ground and sky in the scene.
The horizon line, if visible, is easily determined from this
mask. Note that cameras are not permitted to roll, and so
the horizon will always be horizontal. Next, the shortest
vertical distance between the horizon and one of the hori-
zon rule lines (at the one-third and two-thirds positions) is
calculated. The smaller of these distances is used as the
horizon rule score.

4.3 Object of Interest
Subject matter is an important factor in photography.

The automation of object recognition is an advanced com-
puter vision topic beyond the scope of this research. Since
we are working in a virtual 3D environment, however, we
exploit the system’s knowledge of the models rendered in an
image. Each object is rendered with a colour-coded mask
value. This mask image is examined it to see whether a par-
ticular object of interest is rendered within it. Furthermore,
the area of that object relative to the total image can be
determined. Using this idea, we can specify a desired area
that an object of interest should have within an image.

4.4 Colour Palette
Colour is an important aspect of aesthetics, and a means

to identify subject matter. The Colour Histogram Quadratic
Matching (CHISTQ) algorithm [26] is used to determine the
colour match between a rendered image from the PSO and
the target colour image. A colour target image is supplied to
the system. This image specifies a desired colour palette, as
well as relative amount of each colour. A quantized colour
histogram is generated for the colour target image at the be-
ginning of a run. When evaluating a PSO image, the image
is processed to generate another quantized colour histogram.
Then the quadratic distance between the histograms is com-
puted, which measures each colour of one histogram with
every colour in the other histogram, producing a relaxed
measurement of colour correspondence.

5. SYSTEM ARCHITECTURE

Table 2: Rotation and field of view constraints
RotationX 30◦ ≤ Rx ≤ 150◦

RotationY N/A (camera roll not allowed)
RotationZ 0◦ ≤ Rz ≤ 360◦

FoV 40◦ ≤ fov ≤ 72◦

Each agent in the swarm is a camera in a virtual envi-
ronment capable of generating an image based on the di-
rection it is facing. Three properties modify the camera:
Location (x,y,z), Rotation, and Field of View (FoV). To pre-
vent gimbal lock (rotation issues from using Euler angles)
in the camera from the Rotation and undesired rendering
artifacts from the FoV, constraints were included (Table 2).
These properties are stored in a vector, which every PSO
agent uses to determine the camera location and viewpoint
in the environment.

We implemented a virtual 3D environment with 3ds Stu-
dio Max [2]. A custom plug-in was written in C# and
MaxScript to manipulate an agent’s camera in the scene and
render the current viewport of the camera. Three indepen-
dent modules (Image Analysis, Particle Swarm Optimiza-
tion and 3ds Max) are loaded and executed in parallel. The
Image Analysis component analyzes an agent’s image and
return fitness values. The PSO algorithm uses these fitness
values to update the swarm, by modifying every agent’s state
vector in the swarm. Then each agents vector is transferred
to 3ds Max. 3ds Max updates the Location, Rotation, and
FoV of the respective camera within the world, and ren-
ders a new image. Once all agents are updated, the process
iterates until the simulation is complete.

6. RESULTS

Table 3: PSO parameters

Number of Runs 30
Swarm size 25
Max iterations 100
Inertia 0.8
Personal best constraint 0.45
Global best constraint 0.5

Table 4: Fitness ranges for objectives. Low scores
preferable.

Fitness Objective Fitness Range

Object Detection (OD) 0 ≤ f ≤ 153600
Rule of Thirds (ROT) 0 ≤ f ≤ 800
Horizon Line (HZ) 0 ≤ f ≤ 240
Colour Similarity (CS) 0.0 ≤ f ≤ 1.0

The virtual worlds used here are typical of those found in
video games and computer animations. The problem spec-
ifications used have between 6 to 10 objectives. These are
potentially challenging problems for the swarm to satisfy,
given that conflicting objectives will arise.

Table 3 are the PSO parameters used for all these exam-
ples, and Table 4 give the score ranges.



6.1 Sunrise

Table 5: Sunrise objectives

1. Object detection: boat on land (10%)
2. Object detection: boat in water (10%)
3. Object detection: Sun (5%)
4. Rule of thirds: boat on land
5. Rule of thirds: boat in water
6. Rule of thirds: sun
7. Horizon line
8. Colour similarity

This example of an ocean sunrise scene uses 8 objectives
in total (Table 5). There are two boats and a Sun as objects
of interest, all of which should be composed with the rule of
thirds. Figure 1(a) shows one view of the environment.

Two result images are shown in Figure 1 (b) and (c), and
their objective scores are shown in Table 6. Image (b) is
typical of the results obtained, and has tried to satisfy most
of the requirements. However, it is difficult applying the
rule of thirds to both ships and the sun simultaneously, and
so the boat in the water is off on this. On the other hand,
image (c) is an example of an anomalous result image. It
has missed both ship objects (see the poor OD and ROT
scores for the ships in Table 6), but has obtained better Sun
ROT and horizon scores. Although the sum of ranks scor-
ing usually discourages such anomalies, they can sometimes
arise. Therefore, PSO algorithms are almost always exe-
cuted many times on a problem, in order to generate a set
of solutions for consideration.

Images (d) through (f) in Figure 1 are screen captures
from an animation of the swarm in action. The initial state
of the swarm is shown in (d), where the particles are scat-
tered randomly throughout the environment. As the simu-
lation proceeds in (e), the swarm begins to converge as the
particles detect objects of interest. The swarm converges in
(f). It is common to see the final swarm converge together,
which shows convergence in the PSO search.

A comparison of the bootstrapped sum of ranks (SRB),
bootstrapped Pareto PSO from [24] (PB), and normal weighted-
sum PSO bootstrapped (NB) was done. Given the many ob-
jectives to consider, a statistical analysis was undertaken to
clearly summarize the performance. Each algorithm was run
30 times, and 30 solutions were obtained. (For the Pareto
PSO, an arbitrary rank 1 solution was taken from each run.)
The non-parametric Mann-Whitney U test was used to test

Table 6: Objective scores for result images in Figure
1.

Objective (b) (c)

OD boat land (%) 17.0 –
OD boat water (%) 19.3 –

OD Sun (%) 9.9 9.9
ROT boat land 0.33 800.0
ROT boat water 10.87 800.0

ROT Sun 75.89 22.32
HZ 18 2
CS 0.011 0.019

Table 7: Frequency that algorithm beat others on
Sunrise scene objectives (95% confidence). Table
values represent # objectives in which algorithm A
beat algorithm B (maximum 10).

B
A SRB NB PB

SRB - 4 5
NB 1 - 4
PB 0 0 -

when one algorithm performed statistically better than an-
other on a particular objective (95% confidence level). The
number of times each algorithm outperformed another on a
each objective was tallied (Table 7). The table shows that
both the sum of ranks PSO and conventional PSO outper-
formed the Pareto PSO on half or more of the objectives.
The sum of ranks PSO also did better than the conventional
PSO on half the objectives. This gives evidence that the
sum of ranks PSO is indeed suitable for high-dimensional
multi-objective search, as seen in the problem studied.

6.2 Space

Table 8: Space objectives

1. Object detection: boat on land (10%)
2. Object detection: boat in water (10%)
3. Object detection: red moon (5%)
4. Object detection: blue moon (5%)
5. Rule of thirds: boat on land
6. Rule of thirds: boat in water
7. Rule of thirds: red moon
8. Rule of thirds: blue moon
9. Horizon line
10. Colour similarity

This example enhances the previous scene, by replacing
the Sun with two moons. The objectives are similarly de-
fined (Table 8). Figure 2 shows 3 solution images, and Table
9 shows the scores. There is no perfect solution, given that
the swarm struggles to position all four objects at one of
the rule of thirds loci, and satisfy object detection require-
ments. All three solutions show different compositional com-
promises in satisfying the competing criteria.

Another comparison of the 3 PSO algorithms was done,
and the results are shown in Table 10. Here, the Pareto
PSO was further outmatched by both the conventional PSO
and sum of ranks PSO. Once again, the sum of ranks PSO
statistically outperformed the other algorithms on more ob-
jectives simultaneously.

6.3 Table Conversation
This example highlights the effect of colour matching as a

problem constraint. Here, we are to find two specific people
in a crowd of eight. The two people of interest will be iden-
tified via the colour similarity test, based on their clothing
colour. Therefore, the PSO cannot rely on the OD algorithm
to uniquely identify the pair of individuals, but instead must
use the CS test to find them. The scene was set up so that
the four male faces have the same model mask identifier, and



(a) Environment. (b) Result 1. (c) Result 2. Ships missing, but Sun
and horizon composed well.

(d) Swarm in initial scattered state. (e) Swarm starts to converge. (f) Swarm close to convergence.

Figure 1: Sunrise experiment.

Table 9: Objective scores for result images in Figure
2.

Objective (a) (b) (c)

OD boat land (%) 18.4 16.2 18.1
OD boat water (%) 19.0 19.2 19.4
OD red moon (%) 9.9 10.0 10.0
OD blue moon (%) 9.9 10.0 10.0

ROT boat land 1.33 43.52 13.62
ROT boat water 79.40 18.11 1.94
ROT red moon 31.48 37.67 31.69
ROT blue moon 45.88 24.40 37.42

HZ 11 27 1
CS 0.023 0.028 0.005

similarly for the females. This means that all the people can
satisfy the OD requirements, which forces the colour test to
come into consideration. Table 11 lists the objectives for this
simulation. The colour similarity image is also placed as a
bitmap on the table (see Fig. 3, image (c)), which acts as a
decoy to trick the swarm when evaluating colour similarity.

Three results are shown in Figure 3, and their objective
scores are in Table 12. In image (a), the simulation found
multiple faces for both female and male but managed to find
the two people of interest (both partially obscured by man
in green shirt) by using the colour similarity. Image (b)
manages to find multiple males and females in the scene,
but focuses on the female subject in the yellow shirt. Image
(c) finds the people of interest, and composes them well
with the rule of thirds. The “decoy” bitmap on the table,

Table 10: Frequency that algorithm beat others on
Space scene objectives (95% confidence). (See Table
7.)

B
A SRB NB PB

SRB - 4 8
NB 0 - 9
PB 0 0 -

Table 11: Table Conversation objectives

1. Object detection: male face (10%)
2. Object detection: female face (10%)
3. Rule of thirds: male face
4. Rule of thirds: female face
5. Horizon line
6. Colour similarity

although visible in the image, did not distract the swarm
from obtaining good OD scores.

The above images, and the scores in Table 12, show that
solutions obtained in multi-objective problems are often com-
promises. As the scope and number of objectives increases,
a balance must be found in satisfying objectives. For ex-
ample, image (b) has the best object detection and rule of
thirds scores for the male, but has poor OD and ROT scores
for the female. These “democratic compromises” naturally
arise with the sum of ranks scoring strategy.



(a) Result 1. (b) Result 2. (c) Result 3.

Figure 2: Image results for the Space environment.

(a) Result 1: Top in CS, HZ. (b) Result 2: Top in OD male & female, Result 3: Top in OD female.

Figure 3: Image results for the Table Conversation scene.

Table 12: Objective scores for result images in Fig-
ure 3.

Objective (a) (b) (c)

OD male (%) 19.7 18.1 19.5
OD female (%) 19.9 19.7 19.8

ROT male 10.79 7.45 8.54
ROT female 7.01 21.94 0.10

HZ 0 0 3
CS 0.061 0.086 0.110

7. COMPARISON TO RELATED WORK
Gaspero et al. [9, 19] introduced the use of particle swarms

for virtual photography. They use upwards of 10 rules, which
are divided into hard constraints, which must be satisfied be-
fore an image can be accepted, and lower-priority soft con-
straints. Their conventional PSO requires the user to sup-
ply weights to specify the relative importance of objectives
to each other. Compared to our system, their rules require
the user to specify a much lower level of detail, for example,
positions within the frame, object distances, and so on. We
did not require weights for the SR-PSO (although they are
optional). Our bootstrapping idea is analogous to Gaspero
et al.’s hard constraints.

Abdullah et al. [1] use a PSO for virtual photography.
The swarm produces several photos as a starting point from
which a human director can use. They use rule of thirds,
diagonal dominance, visual balance, and others. One major

difference between their work and ours is that they use a con-
ventional PSO which, again, requires user-supplied weights
to balance objectives.

Other work in automatic composition and virtual photog-
raphy is related to our research. Lino et al.’s virtual cine-
matography [21] applies various aesthetic rules to evaluate
frames of animations in virtual environments. Liu et al. [22]
apply a PSO to automatically improve the compositions of
photographs. Bares and Kim [6] use composition rules such
as the horizon line test to automatically control cameras in
a virtual environment.

8. CONCLUSIONS
A new multi-objective swarm technique for automatic vir-

tual photography has been proposed. The SR-PSO is capa-
ble of reconciling the high number of conflicting objectives
found in virtual photography problems. Empirical compar-
isons of it against a conventional PSO and a Pareto-based
PSO showed its effectiveness on the problems studied. Fur-
thermore, problem-specific weights were not required. This
contrasts to earlier work with conventional PSO’s, which
require user micromanagement of compositional specifica-
tions, for example, low-level measurement requirements of
compositions, and weights for combining objectives in the
PSO.

All experiments were done on a dual quad core Intel run-
ning at 2.9 GHz with 4G RAM. Runs took between 11 and
21 hours to process, largly due to the raytraced rendering
required. Although execution time of the PSO system was
not of primary concern in this research, future work should



consider execution efficiency.
There are many other directions for future work. The in-

troduction of more intelligent computer vision analyses is
worth consideration, for example, automatic face recogni-
tion. More advanced virtual photography needs computer
vision algorithms for object detection and recognition. These
would be necessary if PSO photography were to be applied to
non-virtual, real-world environments. More intelligent im-
age analyses might also include knowledge-based approaches
to virtual/real environment search. More intelligent search,
perhaps looking for human subjects to photograph, would
first look for instances of human habitation (towns, houses,
roads, ...) within the virtual or real world, knowing that
humans are likely to be found in such settings.

There has been much research in the field of multi-objective
PSO [16]. The sum of ranks PSO should be empirically com-
pared to other MOP PSO’s on virtual photography prob-
lems, as well as other MOP problems in the literature. The
issue of swarm diversity is also worth consideration. Adding
diversity heuristics to a multi-objective PSO would result in
a variety of alternative solution images from a single run.

There is also the opportunity to introduce more advanced
rules of composition and aesthetics as found in [10, 17, 18,
20]. However, implementing many of these sophisticated
principles of composition requires advanced computer vision
and artificial intelligence.
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